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Given a continuum X and n € N. Let C,,(X) be the hyperspace of all nonempty closed
subsets of X with at most n components. Let C), (X) be the hyperspace of all elements in
Cp(X) containing K where K is a compact subset of X. The quotient space Cy,(X)/Cp(X)
will be denote by C7%(X). Given a mapping f: X — Y between continua, let Cy,(f): Cp,(X) —
C,(Y) be the mapping induced by f, defined by C,,(f)(A) = f(A). We denote the natural
induced mapping between C}(X) and C}‘( K)(Y) by C%(f). In this paper, we study relati-
onships among the mappings f, C,(f) and C%(f) for the following classes of mappings:
almost monotone, atriodic, confluent, joining, light, monotone, open, OM, pseudo-confluent,
quasi-monotone, semi-confluent, strongly freely decomposable, weakly confluent, and weakly
monotone.

1. Introduction. A continuum is a nonempty compact connected metric space. A subconti-
nuum of a continuum X is a subset of X which is a continuum. A mapping is a continuous
function. We will denote by N the set of positive integers, by I the unit interval [0, 1], and
by S' the unit circle {(z,y) € R* : 2% + y* = 1}.

Given a continuum X and n € N, we consider the following hyperspaces of X

2% = {A C X : A is nonempty and closed in X},
Cp(X) = {A € 2% : Ahas at most n components},
F,(X) = {A €2% : A has at most n points }.

All the hyperspaces topologized with the Hausdorff metric (see the definition below). Given

a nonempty compact subset K of X, the subspace C, (X) of C,(X) defined by
Coxg(X)={Ae€C,(X) : KCA}

is called the containment hyperspace for K in C,(X).

The hyperspace C,(X) is called the n-fold hyperspace of X, his structure topologic is
different to other hyperspaces, see [22] and [23]. For example, by [18, Lemma 2.3, p. 349],
Co(I) is not homeomorphic to Cy(S?). In fact, Cy(I) is homeomorphic to a 4-dimensional cell
(see [18, Lemma 2.2, p. 349]) and C5(S?) is homeomorphic to the cone over the solid torus

(see [19]). The hyperspace C1(X) is called the hyperspace of subcontinua, some geometric
models of C}(X) are (see [20, Chapter II]):

e (4(I) is a triangle;
o (1(S") is the unit disk;
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e ((T) is a cube with three triangles, where T is the cone over three points;

e (1(X) is the n-dimensional polyhedron built by attaching n two dimensional cell with
an n-dimensional cell where X is the cone over n points, n € N.

e (1(P) is a 3-dimensional polyhedron (see |20, Figure 6, p. 37]), where P is the union of
a simple closed curve and an arc whose intersection is one of the end points of the arc.

For a continuum X, since C,, x(X) is a nonempty closed subset of C,,(X),
{Car(X)}U{{A} - A € Cu(X) = Cug(X)}
is an upper semi-continuous decomposition of C,,(X). By [29, Theorem 3.10, p. 40|, the
space Cp,(X)/Cpg(X) is a continuum, which is denoted by C%(X), where w5 stands for the
quotient mapping 7% : Cp(X) — C7(X). For each A € C,(X) — Cpx(X) we denote the
class of A by A, and let CX, = 7% (C, (X)) Thus, 75 is given by

s [A, FAreatn
e it Ae Chi(X).

In 1979 S. B. Nadler Jr., see 28|, began the study of the quotient space C;(X)/Fi(X),
which he called the hyperspace suspension of X. Later, in 2004, R. Escobedo, M. de J. Lépez
and S. Macias extended the study of hyperspace suspension in [14].

Subsequently, S. Macias generalized the study of hyperspace suspension, considering the
quotient space C,(X)/F,(X), which he called the n-fold hyperspace suspension of X, see
[24], continuing with the study in 2006, see [25]. In the year 2008, J. C. Macias analyzes the
quotient space C,,(X)/F;(X), which he called the n-fold pseudo-hyperspace suspension of X,
see |21]. J. Camargo and S. Macias in 2016 considered the quotient space C,(X)/Ci(X),
they show several of their properties, see [9]. With respect to the space C3(X) in [2] is
demonstrated that C}(I) is homeomorphic to the suspension over C,x([), where K €
{{0},{1}}. In particular, C}%(I) is homeomorphic to a 2-dimensional cell for n = 1 (see |2,
Corollary 3.11]). Other example is that C%-(S") is homeomorphic to a 2-dimensional cell for
n=1and K € 25 (see [2, Theorem 3.13]).

On the other hand, given a mapping f: X — Y between continua, the mapping

Calf): CalX) = ColY)
defined by C,(f)(A) = f(A) for each A € C,(X) is called the induced mapping by f. Let
Cr(f): Cp(X) — CE(Y) be the function defined by

Cr(f)(mic(A)) = 754y (Cu(f)(A)) = 7y ) (f(A))
for each A € C,,(X). By [13, Theorem 4.3, p. 126|, C+(f) is a mapping.

Let A be a class of mappings between continua. A general problem is to determine all
possible relationships among the following statements:

(1) feA; (2) Cu(f) €A; (3) C(f) € A for each K € 2%;
(4) C(f) € A for some K € 2%.

There are particular results concerning this problem, which relate (1) and (2). Readers
especially interested in this topic are referred, for example, to [5], [7], [8], [11], [12], [16], [17].
Regarding induced mappings in quotient hyperspaces we refer the reader, for example, to
(1], 131, [4], [6], [10].

Following this line of research, in this paper we study interrelations among the statements
(1)—(4), for the following classes of mappings: almost monotone, atriodic, confluent, joini-
ng, light, monotone, open, OM, pseudo-confluent, quasi-monotone, semi-confluent, strongly
freely decomposable, weakly confluent, and weakly monotone.
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2. Definitions and notations. Given a topological space Z, we denote the closure and
interior of a subset A of Z by Clz(A) and Intz(A), respectively. Let X be a continuum,
with metric d, and ¢ > 0. The open ball in X of radius € and center x will be denoted by
Bé(x). The hyperspace 2% is considered with the Hausdorff metric induced by d, which is
denoted by H,; and defined as follows (see |27, (0.1), p. 1] or [20, Definition 2.1, p. 11]): for
any A, B € 2%,

Hy(A, B) = inf{e > 0: A C Ny(B,€) and B C Ny(A,€)}, where Ny(A,€) = | ] B!(x).

€A

Given a mapping f: X — Y between continua. The induced function from 2% into 2V is the
function f* defined by f*(A) = f(A) for each A € 2X. For each H(X) € {2%,C,(X), F,,(X)},
the induced function from H(X) into H(Y") is the function H(f) = f*lux): H(X) = H(Y)
which is a mapping (see [20, Theorem 13.3, p. 106]).

Let A, B € 2X. An order arc from A to B is a mapping a: I — 2% such that o(0) = A,
a(1) = B, and «(r) is a proper subset of a(s) whenever r < s (see [27, (1.2)-(1.8), p. 57-59)]).
For any finitely many subsets Uy, ..., U, of X, we define

<U1,...,Ur>:{A€2X: ACUUi,AﬂUi#Q, for each 2':1,...,7"}.
i=1

The set {(Uy,...,U,): foreach i € {1,...,r}, U; is an open subset of X, r € N} is a
base for a topology on 2% . This topology is called the Vietoris topology and matches with the
topology induced by Hy (see [20, Theorem 3.2, p. 18|). In this paper, (U, ..., U,), denote
the set (Uy,...,U,.) N Cu(X).

An onto mapping f: X — Y between continua is said to be:

e almost monotone provided that for each subcontinuum @ of Y with Inty(Q) # &,
Q) is connected;

e atriodic if for every subcontinuum () of Y, there exist two components C' and D of
f7HQ) such that f(C)U f(D) = Q and for each component E of f~(Q), we have that
either f(E) = Q, or f(E) C f(C) or f(E) C f(D);

e confluent if for every subcontinuum K of Y and for each component M of f~!(K),
f(M) = K;

o freely decomposable if whenever A and B are proper subcontinua of Y such that ¥ =

AU B, then there exist two proper subcontinua A’ and B’ of X, such that X = A’UB’,
f(A")y Cc Aand f(B') C B;

e joining provided that for each subcontinuum @) of Y and for any two components C'

and D of f~1(Q), we have that f(C)N f(D) # o;
o light if f~1(y) is totally disconnected for each y € Y;
e monotone if f~1(y) is connected for each y € Y;
e open if f(U) is open in Y for each open subset U of X;

e OM if there exist a continuum Z and mappings g: X — Z and h: Z — Y such that
f = hog, gis monotone and h is open;

e pseudo-confluent provided that for each irreducible subcontinuum B of Y, there exists
a component C of f~!(B) such that f(C) = B;
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e quasi-monotone provided that for any subcontinuum B of Y with Inty (B) # @, f~!(B)
has only finitely many components and each of these components maps onto B under f;

e semi-confluent if for every subcontinuum B of Y and every pair of components C' and

D of f~1(B), either f(C) C f(D) or f(D) C f(C);
e semi-open if for every open subset U of X, Inty (f(U)) # &;

o strongly freely decomposable if whenever A and B are proper subcontinua of Y such
that Y = AU B, we obtain that f~'(A) and f~!(B) are connected;

o weakly confluent if for each subcontinuum K of Y, there exists a subcontinuum M of

X such that f(M) = K;

e weakly monotone provided that for each subcontinuum B of Y with Inty (B) # &, each
component of f~1(B) is mapped by f onto B.

3. Preliminary results. Let X be a continuum and let L be a subcontinuum of X. We
denote by X/L the quotient space obtained by shrinking L to a point. By [29, Theorem 3.10,
p. 40|, X/L is a continuum. Let X, Y be continua, let L be a subcontinuum of X, and let
f: X — Y be an onto mapping. Let ¢x: X — X/L and ¢y: Y — Y/f(L) be the quotient
mappings. We will denote ¢x(L) and ¢y (f(L)) by Lx and Ly, respectively. Note that f
induces a function f: X/L —Y/f(L) (see [13, Theorem 7.7, p. 17|) given by

Fla) - {qLi/(f«qX)—l(A))) £ A% Lx,

The continuity of f follows from [13, Theorem 4.3, p. 126]. Observe that fogy =qyof.

Suppose that A is any of the following classes of mappings between continua: monotone,
OM, confluent, semi-confluent, weakly confluent, pseudo-confluent, quasi-monotone, weakly
monotone, joining, almost monotone, atriodic, freely decomposable or strongly freely decom-
posable. With the previous notation, we have the following result.

Proposition 1. If f € A, then f € A.

Proof. In [4, Theorem 3.2, p. 493| is proved that if f is either almost monotone, or atrio-
dic, or freely decomposable or strongly freely decomposable, then f is almost monotone,
or atriodic, or freely decomposable or strongly freely decomposable, respectively. Let A be
one of the other classes of mappings of the statement. Since ¢y is monotone, gy € A. By
[26, (5.1), (5.4), (5.5), (5.6)], and Propositions 4.1, 4.3 and 4.4 of [6], ¢y o f € A. Now, by
[26, (5.15), (5.16), (5.19), (5.20) and (5.21)], A has the composition factor property. Since
gy o f = fogqx, foqx €A. Therefore f € A. O

Since gx|x—r and gy|y—y(z) are homeomorphisms and f|;-1(y_fz)) = q{,1|y_f(L) o fogy,
we have the following proposition.

Proposition 2. Let f: X — Y be a mapping between continua and let L be a subcontinuum
of X.

(1) If f is confluent, then for each subcontinuum B C'Y — f(L) and each component A of
f7H(B), [(A) = B.

(2) If f is weakly confluent, then for each subcontinuum B C Y — f(L), there exists A a
subcontinuum of X such that f(A) = B.
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(3) If f is quasi-monotone (weakly monotone), then for each subcontinuum B C'Y — f(L)
with Inty (B) # @ and each component A of f~1(B), f(A) = B.

The following proposition is a consequence of [4, Theorem 3.1, p. 492].

Proposition 3. Let X, Y be continua and let K be a compact subset of X. If f: X — Y
is an onto mapping, then the following hold:

(1) The mappings T and 7T}/(K) are monotone;
(2) The mappings mi¢|c,,(x)-Cyie(x) Cu(X) = Cuge(X) = CR(X) — {C}ic} and
T |0 =Cn ey ) Cn(Y) = Clpiy (V) = CF ey (V) ={C i)} are homeomorphisms;

(3) If Cri(X) and G, yx)(Y) are nowhere dense in C,,(X) and C,(Y), respectively, then

mx and 7T}/( k) are semi-open mappings.

Lemma 1. Let f: X — Y be an onto mapping between continua and n,r € N such that
r <n. Let Ly, ..., L, be nonempty disjoint closed subsets of Y. For each i € {1,...,r}, let
M; be a component of f~'(L;). Then:

(1) (M, ..., M), is a component of C,,(f)"'({Ly,..., L.)n).

(2) If M is a component of f~'(L;) such that M # M; and r < n, then (M, ..., M,, M),
is a component of Cy,(f) " ({(Ly, ..., L))

(3) If K € 2% and f(K) ¢ U;_, Li, then mx((Mj, ..., M,),) is a component of
Cr () (e (L1, Le)a)).

Proof. The statements (1) and (2) are proved in |1, Proposition 2.4, p. 478]. We prove (3), let
® be the component of C(f) ™" (7} ((L1, ..., Ly)n)) containing 7TK(<M1, ..., M,),,). Note
that (My,...,M,), C (m%)~ ( ). Smce FIK) & Uiy Lis (L1, .., L) N Crpiey(Y) = 2.
Thus, 75 (Crpy)(Y)) ¢ 75, ((Ll,..., +)n). Hence, m5(Cx (X)) ¢ ® and CnK( )N
(mx)~(D) = @. Since CK(f) TR = T © Culf), (mg)7H®) € Cul) 7 ({Ln, -+, L)),
By (1) of this proposition and (1) of Proposmon 3, we have that (7% )"1(D) C (M, ..., M),.
Therefore ® = mx ((My, ..., M,),). O

The following result is a consequence of C), i (X) = {X}, when K = X.

Proposition 4. Let H be a nondegenerate connected subset of C,,(X). If X € H, then there
exists K € 2% such that C,x(X) C H.

Lemma 2. Let f: X — Y be an onto mapping between continua, n € N, and let Q be a
closed subset of C,,(Y).

(1) If X ¢ C,(f)~'(Q), then there exists m € N such that C,x(X)NC,(f)"1(Q) = @ for
each K € B (X).

(2)If X € C’:(f)*l(Q), then there exists K € 2% such that C,(X) C C,,(f)"*(Q).

Proof. Suppose that for each m € N, there exists K,, € Bf (X) such that C,x (X) N

Cn(f) " H(Q) # @. Then, we may assume that {K,, ey is a snéquence in C,,(X) such that
{ K, }men converges to X. We consider L,, € Cp, (X)NCyr(f)~1(Q) for each m € N. Note
that {L,,}men is a sequence in C,,(f)~1(Q) such that K,, C L,,. Thus, {L,, }men converges
to X. Then, X € C,(f)*(Q), this is a contradiction.

To prove (2), let H be a component of C,,(f)~1(Q) such that X € H. If H is degenerate,

is easy to verify (2). In another case, by Proposition 4, we conclude (2). O
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Lemma 3. Let f: X — Y be a mapping between continua, K € 2% andn € N. If f(K) €
Fl(Y), then

RN ) =mi (U Cam(X)).
pef~M(f(K))

Proof. Let A € ﬂ[)g(upef,l(f(m) Cn{p}(X)> there exist p € f~'(f(K)) and B € Cp (1 (X)
such that 7 (B) = A. Then C(f)(A) = CR(f)((B)) = ) (Cul(f)(B)) and f(p) €
f(B). Since f(K) € Fi(Y), f{p}) = f(K). Thus, Wf(K)(Cn(f)(B)) = C’B:f(K). Therefore,
A€ CR(f)HChr)-

Now, let A € C} (f)*l(CZf(K) Then C'” w(f)(A) =
i (A) = A. Since Cyy ) = C(f)(A) = (f)(ﬂﬁ(A)) o) (Ca(f)(A))) and f(A) =
Co(f)(A4), f(K) C f(A). Take p € f7'(f(K)) N A, thus A € Cphy,(X). Hence, A €

i ( Uper10x) Crtmy (X >> : U

Proposition 5. Let f: X — Y be a mapping between continua, K € 2% and n € N. Then
Cr(f) MOy x)) is connected.

- Let A € Cy(X) such that

I i“<

o

Proof. Suppose that H and £ are different components of C%(f) ! (C)(x))- We may assume

that C%- € H. By (1) of Proposition 3, (73%)~ 1(7—[) and (r)"'(L) are disjoint connected
subsets of C,(X) such that C,x(X) C (%) (H). Now, let L € (mx) '(L). Note that
Cr(f)(mX(L)) = C’Zf (x)> and for each order arc a: I — Cn(X) from L to X, we have

Cr(f)(m¥(a(D))) = {C}L/f(K} Then, X € (7%) '(H) N (7%)~Y(L), this is a contradiction.
Therefore, C1:(f)~1(CY K)) is connected. O

4. Homeomorphlsm and open mappings.

Theorem 1. Let f: X — Y be a mapping between continua and n € N. Then the following
conditions are equivalent:
(1) f is one to one; (2) C,,(f) is one to one; (3) C%(f) is one to one for each K € 2%;

(4) C(f) is one to one for some K € 2°X.

Proof. 1t is easy to see that (1) and (2) are equivalent, (2) implies (3), and (3) implies (4). In
order to prove that (4) implies (1), let z,y € X such that f(x) = f(y). Then WJZQK)({f(x)}) =
Traoy({F(W)})- Since CE(f) (7 (A)) = 77y (f(A)) for each A € C,,(X) and C(f) is one to
one, T ({z}) = 75 ({y}). Then, {z} = {y} or K C {z} N{y}. In any case, x = y. Therefore
f is one to one. O

Theorem 2. Let f: X — Y be a mapping between continua and n € N. We consider the
following conditions:

(1)] f is onto; (2) Cy,(f) is onto; (3) C%(f) is onto for each K € 2°*;

(4) C(f) is onto for some K € 2X.

Then, (2) < (3), (3) = (4), (2) = (1), (3) = (1), and (4) = (1).

Proof. Note that (2) implies (3) and (3) implies (4). We will prove that (3) implies (2).
Let B € C,(Y). If f~1(B) = X, then C,(f)(X) = B. Now suppose that f~}(B) C X, let
K € 2% such that KN f~1(B) = @. Since C%(f) is onto, there exists A € C%(X) such that
CR(f)(A) = 7} 5, (B). Also, there exists A € C,,(X) such that 7z (4) = A.
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Then, C%(f)(A) = Ci(N(mi(A)) = i (Calf)(A)) = Ty (B). Since 7} (B) #
Corxy» Cn(f)(A) = B. Hence, C,(f) is onto.

Now, let us prove (4) implies (1). Let K € 2% such that C%(f) is onto and y € Y.
If y € f(K), there exists k; € K such that f(k;) = y. Now, suppose that y ¢ f(K),
{y} & Cryxy(Y). Then WﬁK)({y}) # C’zf(K). Since C(f) is onto, there exists A € CE(X)
such that Ct(f)(A) = W]?K)({y}). Moreover, there is A € C,(X) such that 7 (A) = A.
Since C(f) o 7§ = 7%, © Culf), CRUA(TE(A)) = e (Cal£)(A)) = ey ({y})- Thus,
there exists a € A such that f(a) = y. O

By Theorem 2 and [12, Proposition 1, p. 784| we have the following result.
Corollary 1. Let f: X — Y be a mapping between continua and n € N. Then
Ck(f): Ok (X) = Cey(Y)
is onto for every K € 2% if and only if f is weakly confluent.

The next example shows us that there are continua X, ¥ and a mapping f: X — Y such
that f is not weakly confluent and C%(f) is onto for some K € 2%,

Example 1. Let f: I — S! be defined by f(t) = (cos(2nt),sin(27t)). Then, f is not pseudo-
confluent, weakly monotone, or freely decomposable. If K = {0}, then C}(f) is a monotone
mapping for every n > 1.

Proof. Note that f is not pseudo-confluent, weakly monotone, or freely decomposable.
Now, let ) = {0} and n € N. We shall prove that C(f) is monotone. Let B € Cf . (S).

Suppose that B = C’S;(K), by Proposition 5, C%(f)~!(B) is connected. In another case, by
Lemma 3,

C%(f)_l(cﬁ}m):?fé( U Cn{p}(1)>-

pef~H(f(K))
Then, C,(I) — Upef,l(f(K)) Cripy(I) = ((0,1)),. Since f|(,1) is one to one, C?((f)’@@(((o,mn)
is one to one. Therefore, C7-(f)~'(B) is connected. O

Example 2. In the interval I, we identify the point 0 with the point %, and the point % with
the point 1. Let g be the quotient mapping, note that ¢ is onto and is not weakly confluent.
Thus, by [12, Proposition 1, p. 784|, C,.(g) is not onto. Moreover, note that for no K € 2%,
C(g) is onto.

Theorem 3. Let f: X — Y be a mapping between continua and n € N. Then the following
conditions are equivalent:

(1) f is a homeomorphism; (2) C,(f) is a homeomorphism; (3) C%(f) is a homeomorphism
for each K € 2%; (4) C%(f) is a homeomorphism for some K € 2.

Proof. By [12, Theorem 46, p. 801| (1) implies (2). Note that (2) implies (3) and (3) impli-
es (4). By Theorem 1 and Theorem 2 f is bijective. Thus, f is a homeomorphism. Therefore
(4) implies (1). O
Theorem 4. Let f : X — Y be a mapping between continua and n € N. Consider the
following conditions:

(1) f is a homeomorphism; (2) C,,(f) is open; (3) C%(f) is open for each K € 2°%;

(4) C(f) is open for some K € 2. Then,

(1)< (2)« (3), (1) = (4), (2) = (4), and (3) = (4).
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Proof. Clearly each of the conditions (1), (2) or (3) implies (4). By [5, Corollary 3.3, p. 122],
(1) and (2) are equivalent. By Theorem 3, we have that (2) implies (3). Now, we prove that
(3) implies (2). Let U be an open subset of C,,(X).

First, we may assume that X € U. Since U is an open subset of C,(X), there exists
¢ > 0 such that B"¢(X) N C,(X) C U. Let 0 < 6 < € such that B'(X) N C,(X) C
Cle, (x) (B (X) N C, (X)) C U. Moreover, using order arcs, it is easy to see that By*(X) N
C,n(X) is connected. By Proposition 4, there exists K € 2% such that

Crx(X) C Clo,x) (B (X) N C(X)) C U.

By [2, Lemma 6.10], 73 (i) is an open subset of C%(X) containing C:%. Since C%(f) is an

open mapping, C%(f)(mx(U)) is an open subset of Cl ) (Y) containing C’Zf(K). Moreover,

note that C (f)(mic U)) = 7 e (Cu (/)W) Thus, (w} 50)) ™ (7 10y (Ca (/) U))) = Cu(f) (W)
is an open subset of C, (V).

Otherwise, if X ¢ U, set K = X then C,(X)NU = @. Hence, mix (U) and C%(f)(mx(U))
are open subsets of C% (X) and CF . (Y), respectively. Note that CXe ¢ m(U) and CY 1) &

Cr (N U)). Since C(f)(mg (U)) = 75 4 (Cu(f) (U)), we have

(7Y 0) ™ (T ey (Cu(F)U))) = Cu(F)(U)
is an open subset of C,,(Y'). Therefore, C,(f) is an open mapping. ]

Example 3. Let f: [-1,1] — I be the mapping defined by f(t) = |t|. Then, f is not a
homeomorphism. If K = {0}, then C%(f) is an open mapping for every n > 1.

5. Monotone-type mappings. Let M be any of the following classes of mappings: mono-
tone, almost monotone, quasi-monotone, weakly monotone.

Theorem 5. Let f: X — Y be a mapping between continua and n € N. If C}(f) € M for
each K € 2%, then f € M.

Proof. Let B € C(Y) — {Y} (with Inty(B) # @ for the cases: almost monotone, quasi-
monotone and weakly monotone). If f~!(B) = X, then C,(f)(X) = B. Now suppose that
fYB) € X, let K € 2% such that K N f~}(B) = @. Then C,(B) is a subcontinuum of
Cn(Y) (with Inte, (v)(Cr(B)) # @) such that C,,(B)NCy (k) (Y) = @. Thus, we conclude that
i) (Cn(B)) is a subcontinuum of CF ey (Y) — {C) ;) } (Inten o v) (T} 1) (Cn(B))) # 2).

(a) If CE(f) is monotone (or almost monotone), then C’}l((f)*l(w}/(K)(Cn(B))) is connected.

Since 73 is monotone, it follows that (Wf(()*l(C’I"((f)*l(ﬁ}/(K)(Cn(B)))) is connected. Thus,
Colf)HCulB)) = () (CR() ™ (7Y (Ca(B)))) i conmected. Then Co(f)~ (C,(B)) =
(f~Y(B)),. Hence, f~1(B) is connected. Therefore, f is monotone (or almost monotone).

(b) If C%(f) is quasi-monotone (or weakly monotone), then C}}(f)_l(w}/(K)(Cn(B))) has
only finitely many components, £4, ..., £,, such that C3(f)(£;) = W}}:(K)<OH(B)) for each
i€ {1,...,m}. Now let L be a component of f~1(B). By (3) of Lemma 1, 7% ((L),) is a
component of Ci(f)™ (7, (Cn(B))). Consequently, each component of f~!(B) determi-
nes one component of C%(f)™ (7} (Cy(B))). Therefore, f~!(B) has only finitely many
components and by (3) of Proposition 2, f(L) = B. Hence, f is quasi-monotone (or weakly
monotone). O

Theorem 6. Let f: X — Y be a mapping between continua and n € N. Then the following
conditions are equivalent:



INDUCED MAPPINGS 91

(1) f is monotone; (2) C,(f) is monotone; (3) C%(f) is monotone for each K € 2%.

Moreover, each of them implies that
(4) C(f) is monotone for some K € 2%.

Proof. By [12, Theorem 4, p.784|, (1) and (2) are equivalent. By Proposition 1 and Theo-
rem 5, (2) implies (3) and (3) implies (1), respectively. Clearly, (3) implies (4). O

By Proposition 1 and Theorem 5, we have the following result.

Theorem 7. Let f: X — Y be a mapping between continua and n € N. We consider the
following conditions:

(1) f € M; (2) Co(f) € M; (3) C(f) € M for each K € 2%; (4) C%(f) € M for some
K € 2%, Then following implications hold:

2)=3),2) = {4), (3) = (4), (2) = (1), and (3) = (1).

Example 1 shows us that there are continua X, Y and a mapping f: X — Y such that
f is not monotone, almost monotone, quasi-monotone, or weakly confluent. But C(f) is
monotone for some K € 2.
6. Strongly freely decomposable mappings.

Theorem 8. Let f: X — Y be a mapping between continua and let n € N. Then, C%:(f)
is almost monotone if and only if C}(f) is strongly freely decomposable.

Proof. Suppose that C}(f) is strongly freely decomposable. Since C}(X) is unicoherent (see
[2, Theorem 2.1]), by [7, Theorem 4.2, p. 894| C7:(f) is almost monotone. Since every almost
monotone mapping is strongly freely decomposable, we have proved this theorem. O

The next result follows from Theorem 7 for almost monotone mappings and Theorem 8.

Corollary 2. Let f: X — Y be a mapping between continua and let n € N. If C%:(f) is
strongly freely decomposable, then f is an almost monotone mapping.

7. Confluent-type mappings. Let C be any of the following classes of mappings: confluent,
semi-confluent, weakly confluent, pseudo-confluent, joining.

Remark 1. Given a continuum X and n € N. If B is a subcontinuum of X and x¢,...,x,_1 €
X, then B = ({z1},...,{zn-1}, B)n C C,(X) is homeomorphic to B. In particular, if B is
an irreducible continuum, then B is an irreducible continuum.

Theorem 9. Let f: X — Y be a mapping between continua and n € N. If C}(f) € C for
each K € 2%, then f € C.

Proof. Let B be a proper subcontinuum (irreducible for the case of pseudo-confluent) of Y.
Let D; and D be two components of f~1(B). If f~}(B) = X, then C,(f)(X) = B. Now
suppose that f~}(B) C X. Note that we can choose K € 2% such that K N f~}(B) = @
for which there exist y1,...,y,—1 € Y — (B U f(K)) such that y; # y; for i # j. Let
M; be a component of f~!(y;) for each i € {1,...,n — 1}. Then, by (3) of Lemma 1,
for each i € {1,2} mx((My,..., M,_1,D;),) is a component of C’}‘((f)*l(ﬁ}/(K)(B)) where
B = ({z1},...,{zn_1}, B)n. Note that BN C,¢x)(Y) = @ (by Remark 1, this implies that

Ty (B) is a irreducible subcontinuum of CF ) (Y) such that O iy & Ty ) (B))-



92 J. G. ANAYA, E. CASTANEDA-ALVARADO, J. A. MARTINEZ-CORTEZ

(a) If C(f) is confluent, then by (1) of Proposition 2 for each component D of f~(B),
Co(fY((My, ..., M,_1,D),) = B. Hence, f(D) = B. Therefore, f is confluent.

(b) If C(f) is semi-confluent, without loss of generality we can suppose that
Cr(Hrg (M., My—1,D1)n)) C Cr(f)(mg (M, ..., My, Ds)n)).
Then Cn<f)(<M1, N Mn—l; D1>n) C On(f)<<M1, c. ,Mn_l, D2>n) r_FhU.S7 f(D1> C f(DQ)

Therefore, f is semi-confluent.

(c) If Ct(f) is weakly confluent, then by (2) of Proposition 2, there exists a continuum 9t
of C,,(f)~'(B) such that C,(f)(9M) = B. Since M N C,,x(X) = &, we can find a subset
M, of X, such that M, is a component of f~'(B) and (M,..., M,), N M # &. By (2)
of Lemma 1, (M, ..., M,), is a component of C,(f)~(B). Thus, M = (M, ..., M,), and
f(M,) = B. Therefore f is weakly confluent.

(d) If CE(f) is pseudo-confluent, then there exists a component € of C}( f)*l(W}/(K) (B))
such that CL(f)(€) = 71'}/(1() (B). Since CX ¢ €, it follows that (73 )~!(€) is a component of
(mi) T (CR () () (B))) = C(f) 71 (B). Note that Cy,(f)((m5) 7' (€)) = B.

On the other hand, by [15, Lemma 1, p. 1578], J(7%)~*(€) has at most n components. But
UG (©) € =) U U S~ g 1) U £ (B). Moreover, £ 0 (UeE) (@) # 2
for each i =1,...,n— 1 and (J(7mx)"1(€)) N f~YB) # @. Then | J(7%)~*(€) has exactly n
components, let’s say Ci,...,C,. Without loss of generality, we assume that C; C f~(y;)
fori=1,...,n—1and C, C f~}(B). Let C be the component of f~*(B) such that C,, C C.
Claim. f( ) B.

Let b € B and let £ = {y1,...,y,—1} Ub. Then E € B. Hence, there exists A € (ﬂ%)*l(C)
such that f(A) = E. This implies that b € f(A) C f(U(r%)"H€)) = f(CHU--- U f(Cp). 1
there exists j € {1,...,n—1} such that b € f(C}), then b = y;, this is a contradiction. Hence
be f(C,). Thus, b € f (C). It follows that B C f(C'). Therefore, f is pseudo-confluent.

(e) If CE(f) is joining, then

Cr(N(m (M, ..., Myoy, D1)n)) 0 Ce(f) (g (M, ..., M1, Da)a)) # 2.

Thus, C,,(f)(My, ..., Mu_1,D1)n) NCL(f)((My, ..., M,_1,Ds),) # @ and, in consequence,
f(Dy1) N f(Dq) # &. Therefore, f is joining. O

By Proposition 1 and Theorem 9, we have the following result.

Theorem 10. Let f: X — Y be a mapping between continua and n € N. We consider the
following conditions:

(1) f € C; (2) C,(f) € C; (3) Cr(f) € C for each K € 2%; (4) C(f) € C for some K € 2%.
Then following implications hold:

2)=3),2) = {4), (3= 4, (2)= (1), and (3) = (1).

Example 1 shows us that there are continua X, Y and a mapping f: X — Y such
that f is not pseudo-confluent, weakly confluent, semi-confluent, or confluent, but C%(f) is
confluent for some K € 2%.

7. OM, atriodic and light mappings. Let X be a continuum. Given a sequence {A,, }.nen
of nonempty subsets of X we define limsup,, ,. A,, as the set of points x € X such that
there exists a sequence of positive integers m; < mg < --- and points z,,, € A,,, such that
limz,,, = .



INDUCED MAPPINGS 93

Lemma 4. (|12, Lemma 12, p. 788|) A mapping f: X — Y between continua is OM if and
only if for each point y € Y and each sequence of points y,, € Y converging to y, the set
limsup,, .., f ' (ym) meets each component of f~1(y).

Theorem 11. Let f: X — Y be a mapping between continua and n € N. We consider the
following conditions:

(1) f is OM; (2) C,(f) is OM; (3) CR(f) is OM for each K € 2X; (4) C%(f) is OM for some
K € 2. Then following implications hold:

2)=3),2) = {4), (3= (4, (2)= (1), and (3) = (1).

Proof. Clearly, (2) implies (1) and (3) implies (4). By Proposition 1, (2) implies (3). Set
y € Y. Let {y;}ien be a sequence of points in Y converging to y. We consider K € 2%
such that f(K)N{y,y1,...} = @. Take z1,...,2,1 € Y — (f(K) U {y,v1,...}) such that
zj # z for j # 1. Let M; be a component of f~!(z;) for each j € {1,...,n — 1} and let
M, be a component of f~'(y). By (3) of Lemma 1, 7% ({Mj,..., M,),) is a component of
C’[”{(f)*l(W}/(K)({zl, ey Zn-1,Y})). Since the sequence {71'}/([()({21, ey Zn-1,Yi}) bien conver-
ges to WJ’K(K)({zl, ey Zn-1,Y}), by Lemma 4,
T (M, My)n) N limsup Cx(f) 7 (mh e ({21, 201, 0 })) # 9.

t—o0
Let A € (M,..., M,), besuch that 7 (A) € limsup,_, Cx(f) (7} o) ({21, -+ 201, 4:}))-
Then, there exists a subsequence {mx(A;)}ren such that for each r € N, 78(4;) €
Cr(N) (i ({2 2am1, 9, })) and limy oo T (Ay,) = 7 (A). Let a € AN M,. Since
lim, o A;, = A,, there exists a sequence {a, },en, With a;, € A, such that it converges
to a € A. Thus, there exists a positive integer mg such that f(a;,) = vy, for each r > my.
Hence a € AN M, Nlimsup,_,. f~'(y;). Therefore, by Lemma 4, f is OM. O

The mapping f: X — Y of Example 1 is not OM but C%(f) is OM for some K € 2%.

Theorem 12. Let f: X — Y be a mapping between continua and n € N. We consider the
following conditions:

(1) f is atriodic; (2) Cy,(f) is atriodic; (3) C%(f) is atriodic for each K € 2%; (4) C%(f) is
atriodic for some K € 2X. Then following implications hold:

2)=3),2)={4), (3= (4, (2)= (1), and (3) = (1).

Proof. Note that (2) implies (1) and (3) implies (4). By Proposition 1, (2) implies (3). Let
B be a proper subcontinuum of Y. If f~'(B) = X, then C,(f)(X) = B. Now suppose
that f~1(B) € X, let K € 2% such that K N f~}(B) = @. We consider i,...,y,1 €
Y — (BU f(K)) with y; # y; for ¢ # j. Set B = ({v1},...,{yn-1}, B)n. Since C%(f) is an
atriodic mapping, there exist two components D1 and D, of C%(f) ™" (7} (B)) such that:

(a) Ck(/)(D1) UCK(f)(D1) = 74 (B),

(b) for each component € of C}L((f)_l(W}/(K)(B)), we have either Cp.(f)(€) = WJXC/(K) (B), or
Cr(F)(€) € Ck(f)(D1) or CR(f)(E) C Ck(f)(Da). | |

For each j = 1,2, we have that (73%) 1 (D;) N Cphx(X) = @. Then there exist M7, ..., MJ
of X such that MZJ is a component of f~1(y;) for each i = 1,...,n—1 and M is a component
of f~(B). We may assume that ©; N ((M{, ..., MJ),) # @. Since ®; is a component of
C}‘((f)_l(ﬂ}/(K)(B)), by (3) of Lemma 1, ®; = ¥ ((M{, ..., M7),). Thus, by (a), f(M}!)U

f(M?) = B. Now, let C be a component of f~'(B). Since mx((M{,..., M} ,C),) is a

n
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component of C%(f) ™! (7}, (B)), by (a), we have either f(C') = B, or f(C) C f(M,) or
f(C) C f(M). O

Theorem 13. Let f: X — Y be a mapping between continua and n € N. We consider the
following conditions:
(1) f is light; (2) C,(f) is light; (3) C%(f) is light for each K € 2%; (4) C%(f) is light for
some K € 2%. Then following implications hold:

(2) = (1), (3) = (1), and (3) = (4).

Proof. Clearly, (3) implies (4). It follows from [11, Theorem 3.10, p. 185| that (2) implies (1).
Now, suppose that C(f) is a light mapping. To prove that f is a light mapping, we may
assume that exists y € Y such that f~!(y) is not totally disconnected. Note that f~1(y) #
X, in the contrary case, C}-(f) is a constant mapping. Now, let M be a nondegenerate
component of f~(y). Let K € 2% such that KN f~1(y) = @ and let y1,...,y,.1 € Y —
(f(K) U {y}) such that y; # y; for i # j. Let M, be a component of f~(y;) for each i =
1,...,n—1. By (3) of Lemma 1, 7% ({(My, ..., M,_, M),) is a subcontinuum nondegenerate
of CR(f) (7 ey({y1s -+ s Yn—1,¥})), this is a contradiction. O

Example 4. Let f: [-1,1] — I be the mapping defined by f(t) = |t|. Then, f is light. If
K = {1}, then C}%(f) is not light for every n > 1.

Proof. Since f~'(f(K)) = {~1,1}, by Lemma 3, C%(f)""(C};) is nondegenerate. By
Proposition 5, C’}‘((f)_l(Cif(K)) is a connected subset of C%t([—1,1]). Therefore, Cp(f) is
not light. O]
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