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We aim at determining existence conditions of single layer potentials for pseudo-differential
equations related to some linear transformations of a rotationally invariant stable stochastic
process in a multidimensional Euclidean space and investigating their properties as well. The
carrier surface of the potential is smooth enough. We consider two main cases: the first,
when this surface is bounded and closed; the second, when it is unbounded, but could be
presented by an explicit equation in some coordinate system. The density of this potential is
a continuous function. It is bounded with respect to the spatial variable and, probably, has
an integrable singularity with respect to the time variable at zero. Classic properties of this
potential, including a jump theorem of the action result of some operator (an analog of the
co-normal differential) at its surface points, considered.

A rotationally invariant α-stable stochastic process in Rd is a Lévy process with the characte-
ristic function of its value in the moment of time t > 0 defined by the expression exp{−tc|ξ|α},
ξ ∈ Rd, where α ∈ (0, 2], c > 0 are some constants. If α = 2 and c = 1/2, we get Brownian
motion and classic theory of potential. There are many different results in this case. The
situation of α ∈ (1, 2) is considered in this paper. We study constant and invertible linear
transformations of the rotationally invariant α-stable stochastic process. The related pseudo-
differential equation is the parabolic equation of the order α of the “heat” type in which the
operator with respect to the spatial variable is the process generator. The single layer potential
is constructed in the same way as the single layer potential for the heat equation in the classical
theory of potentials. That is, we use the fundamental solution of the equation, which is the
transition probability density of the related process. In our theory, the role of the gradient
operator is performed by some vector pseudo-differential operator of the order α− 1. We have
already studied the following main properties of the single layer potentials: the single layer
potential is a solution of the relating equation outside of the carrier surface and the jump
theorem is held. These properties can be useful to solving initial boundary value problems for
the considered equations.

Introduction. A rotationally invariant α-stable (α ∈ (0; 2]) stochastic process in the mul-
tidimensional Euclidean space Rd, d ≥ 2 is a standard Markov process (x0(t))t≥0 defined by
its transition probability density

g0(t, x, y) =
1

(2π)d

∫
Rd
ei(ξ,x−y)−t|ξ|αdξ, t > 0, x ∈ Rd, y ∈ Rd.
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Let P be some invertible real d × d-matrix. Consider the Markov process x(t) = Px0(t),
t ≥ 0. It has got the transition probability density given by the following equality

g(t, x, y) =
1

(2π)d

∫
Rd
ei(ξ,x−y)−t(Qξ,ξ)

α
2 dξ, (1)

where Q = PP T .
Function (1) is the fundamental solution to the following pseudo-differential equation

∂u(t, x)

∂t
= Au(t, ·)(x), t > 0, x ∈ Rd, (2)

where A is the pseudo-differential operator defined by its symbol (−(Qξ, ξ)
α
2 )ξ∈Rd .

In this paper, we consider the case of α ∈ (1; 2). If α = 2, the process (x0(t))t≥0 is the
standard Brownian motion and relation (2) is the well-known heat equation. In the case of
α ≤ 1, we have the first order equation, what is a completely different situation.

Let S be some two-sided surface in Rd and ψ(t, x) be some function determined on the
domain (0; +∞)× S. We call the function (v(t, x))t≥0,x∈Rd , defined by the equality

v(t, x) =

∫ t

0

dτ

∫
S

g(t− τ, x, y)ψ(τ, y)dσy, (3)

the single layer potential with the density ψ on the surface S for the pseudo-differential
equation (2).

The aim of this article is determining of existence conditions of the single layer potentials
and researching their properties. We consider the surface S to be quite smooth, at least it
belong to the class H1+γ with some γ ∈ (0, 1) (see below). In this paper, two main situations
are considered: the first, when the surface S is bounded and closed; the second, when it is
unbounded, but for every two its points x ∈ S, y ∈ S it holds that cos(n̂x, ny) ≥ ρ0 > 0,
where nx ∈ Rd is a normal vector to one side of the surface S at the point x ∈ S.

The notation of the simple layer potential for the pseudo-differential equation of the type
(2) (in the case Q = const ·I with the unit matrix I) was introduced in [1], where its main
properties were proved in that case. The usage of the single layer potentials for solving initial
boundary value problems was considered in [1, 5, 6]. In paper [7], we obtained some results
which were approximately close to ours, but we managed to consider some different analog
of the gradient operator.

1. Some auxiliary results.

1.1. The function g. The function g given by formula (1) above is continuous in the
domain t > 0, x ∈ Rd, y ∈ Rd and it is uniformly continuous on each set like t ∈ [τ,+∞),
x ∈ Rd, y ∈ Rd for τ > 0.

The following estimations of the function g and its derivatives (see [3, Ch.4]):

|Dkg(t, ·, y)(x)| ≤ Nk
t

(t1/α + |y − x|)d+α+k
, t > 0, x ∈ Rd, y ∈ Rd. (4)

|Dκg(t, ·, y)(x)| ≤ Ñκ
1

(t1/α + |y − x|)d+κ , t > 0, x ∈ Rd, y ∈ Rd. (5)
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Here Dk denotes the differential operator of the degree k = 0, 1, 2..., Dκ denotes the pseudo-
differential operator defined by a homogeneous symbol (Qκ(ξ))ξ∈Rd of a degree κ, which
have all derivatives of degrees 1 ≤ l ≤ M at points ξ 6= 0, where M ≥ 2d + κ + α + 1, and
satisfies the inequality |DlQκ(ξ)| ≤ CM |ξ|κ−l for all ξ 6= 0, where CM ≥ 0 is some constant;
Nk and Ñκ are some positive constants.

1.2. The operator A. The action of the operator A defined in the introduction at smooth
enough (at least which have Lipschitz continuous gradient) and bounded with its derivatives
functions ϕ(x)x∈Rd is defined by the following expression

Aϕ(x) =
qα

(detQ)1/2

∫
Rd

(ϕ(x+ z)− ϕ(x)− (∇ϕ(x), z))(Q−1z, z)−
d+α

2 dz, (6)

where qα = αΓ((3−α)/2)Γ((d+α)/2)

π(d+1)/2Γ(2−α)
. The value of the constant qα can be obtained by using the

operator A to the function ϕξ(x) = ei(ξ,x) with some fixed ξ ∈ Rd.

1.3. The operator B is an analog of the gradient. Let us define the operator B by
its symbol (i|ξ|α−2ξ)ξ∈Rd . The action of the operator B on a bounded Lipschitz continuous
function (ϕ(x))x∈Rd is defined by the following formula:

Bϕ(x) =
qα
α

∫
Rd

(ϕ(x+ z)− ϕ(x))

|z|d+α
zdz,

where qα is the same constant as above.
It is not difficult to obtain (see, for example, [7]) that

Bg(t, ·, y)(x) =
1

αt
(y − x)g(t, x, y) + f(t, x, y), t > 0, x ∈ Rd, y ∈ Rd, (7)

where f(t, x, y) = i
(2π)d

∫
Rd(|ξ|

α−2ξ − (Qξ, ξ)
α
2
−1Qξ)ei(ξ,x−y)−t(Qξ,ξ)

α
2 dξ.

Take into consideration that the function f is the action result on the function (t > 0,
y ∈ Rd are fixed) (g(t, x, y))x∈Rd of the pseudo-differential operator which is defined by the
symbol (i|ξ|α−2ξ − (Qξ, ξ)

α
2
−1Qξ)ξ∈Rd . The results of the monograph [3, Ch.4] (see also (5))

lead us to the following estimation

|f(t, x, y)| ≤ C

(t
1
α + |x− y|)d+α−1

,

where C is some positive constant.
Here and below, we denote by the letter C any positive constant which value does not

matter. Sometimes we equip this letter with an index to indicate which parameter this
constant depends on.

Let ν be some fixed vector in Rd. We use the notation Bν for the operator (ν,B) which
is the pseudo-differential operator with the symbol (i|ξ|α−2(ξ, ν))ξ∈Rd .

1.4. The class H1+γ of surfaces. Let some surface S be given in Rd. Suppose that there is
such a constant r0 > 0, that for any point x ∈ S the part of this surface Sr0(x) = S ∩Br0(x)
(here and below the notationBδ(z) means the closed ball in Rd which has the radius δ > 0 and
the center placed in the point z ∈ Rd) can be defined by an equation yd = Fx(y

1, y2, . . . , yd−1)
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in some local coordinate system with the origin in the point x. Here Fx is some single-valued
function. Remember (see, for example, [2, Ch.IV, §4]) that S is called a surface of the class
H1+γ with some γ ∈ (0, 1) if for every x ∈ S the corresponded function Fx has continuous
partial derivatives ∂Fx

∂yk
, k = 1, 2, . . . , d− 1 in the domain

d−1∑
k=1

(yk)2 ≤ r2
0/4

and they are Hölder continuous with power γ and the constant which does not depend on x.
It is clear that there exist the tangent hyperplane and the normal at each point of such

kind of surfaces.

2. The single layer potential.

2.1. Existence conditions and properties. Let the surface S be smooth enough, i.e. it
belongs to the class H1+γ with some fixed γ ∈ (0; 1), and it separates the set Rd into two
open subsets: D− and D+ which satisfy the equality Rd = D−∪S∪D+. Above we call them
by “interior” and “exterior” set, respectively.

Consider the following two situations, where the surface S has some additional properties:
(A) S is bounded and closed;
(B) S is unbounded and for any two its points x ∈ S, y ∈ S the exterior normal vectors nx

and ny form an angle ϕxy such that cosϕxy ≥ ρ0 > 0.
Note that a hyperplane satisfies the property (B).

Let us consider some continuous function (ψ(t, x))t≥0,x∈S so that the following inequality
|ψ(t, x)| ≤ KT t

−β holds for all 0 < t ≤ T , x ∈ S and for each fixed T > 0. There β < 1 is
some constant and KT > 0 is constant that, possibly, depends on T .

Next we need the following useful statement.

Lemma 1. Let the surface S satisfy the above formulated conditions. Then for every θ > −1
there exists a constant C > 0 such that for all t > 0, x ∈ Rd the following inequality∫

S

dσy
(t1/α + |y − x|)d+θ

≤ Ct−
θ+1
α

holds.

Proof. Let S satisfy condition (A). The statement of the lemma is proved in [1]. Otherwise,
if S satisfies the condition (B), let project the surface S on the tangent hyperplane to S in
the point x̃, which is the orthogonal projection of x on S.

Then we obtain inequalities (ỹ is the projection of the point y ∈ S on the mentioned
hyperplane)∫

S

dσy
(t1/α + |y − x|)d+θ

≤
∫

Rd−1

cos(n̂x̃, nỹ)
−1
dỹ

(t1/α + |ỹ − x̃|)d+θ
≤ 1

ρ0

∫
Rd−1

dz

(t1/α + |z|)d+θ
.

Farther, the calculation of the last integral in the spherical coordinates leads us to the
statement of lemma.



98 Kh. V. MAMALYHA, M. M. OSYPCHUK

In the classical case (when α = 2) the single layer potential is a continuous function and
it satisfies the corresponding parabolic differential equation in the domain (0; +∞)×(Rd\S)
(see [2, Ch.V]). Let us prove the analogous statement in our case.

Theorem 1. Let a surface S in Rd belong to the class H1+γ with some fixed γ ∈ (0; 1) and
satisfy one of the conditions (A) or (B). Let a continuous function (ψ(t, x))t≥0,x∈S satisfy the
inequality |ψ(t, x)| ≤ KT t

−β on each set of the form (0;T ] × S with some constants β < 1
and KT > 0 (the last may depend on T > 0).

Therefore the single layer potential (3) is correctly defined; it is the continuous function
and satisfies the equation

∂v(t, x)

∂t
= Av(t, ·)(x)

for all (t;x) from the domain (0;∞)× (Rd \ S).

Proof. Inequality (4) and the statement of Lemma 1 lead us to the inequalities

|v(t, x)| ≤ N0KT

∫ t

0

(t− τ)τ−β dτ

∫
S

dσy
((t− τ)1/α + |x− y|)d+α

≤

≤ CTB

(
1− 1

α
, 1− β

)
t1−

1
α
−β

valid for all t ∈ (0;T ], x ∈ Rd and each T > 0. This yields to the fact that the function
(v(t, x))t>0,x∈Rd is is correctly defined and continuous.

Now, let the point x ∈ Rd \ S be selected and fixed. It is obvious that

∂

∂t
v(t, x) =

∫ t

0

dτ

∫
S

∂

∂t
g(t− τ, x, y)ψ(τ, y)dσy + lim

ε→0+

∫
S

g(ε, x, y)ψ(τ, y)dσy.

In the case (A), we have the equality limε→0+

∫
S
g(ε, x, y)ψ(t, y)dσy = 0, where t > 0,

x ∈ Rd \ S. This relation follows from estimate (4) for k = 0 and the next inequality∣∣∣∣∫
S

g(ε, x, y)ψ(t, y)dσy

∣∣∣∣ ≤ N0ε
|S|

(ρ(x, S))d+α
KT t

−β,

where |S| is area of the surface S, ρ(x, S) is the distance from the point x to the surface S.
If the condition (B) is fulfilled for the surface S we take into account the fact that the

following property (see [2, Ch.IV, §4]) 0 < κ1 ≤ |y−x|
|ỹ−x| ≤ κ2, is true, where κi are some

positive constants, y ∈ S, ỹ is the projection of the point y on the tangent hyperplane to S
at the point x̃ (x̃ is the projection of x on S). Then we get the following chain of relations:∣∣∣∣∫

S

g(ε, x, y)ψ(t, y)dσy

∣∣∣∣ ≤ N0KT t
−βε

∫
S

dσy
(ε1/α + |x− y|)d+α

≤

≤ CT t
−βε

∫
Rd−1

(cos(n̂x̃, nỹ))
−1dỹ

(ε1/α + κ2

√
ỹ2 + ρ(x, S)2)d+α

≤

≤ CT t
−βερ−1

0

∫
Rd−1

dz

(z2 + ρ(x, S)2)
d+α

2

κ−(d+α)
2 → 0, ε→ 0 + .
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Thus, the equality ∂
∂t
v(t, x) =

∫ t
0
dτ
∫
S
∂
∂t
g(t− τ, x, y)ψ(τ, y)dσy holds in each case.

Now, we prove an admissibility of changing the order of integration in the integral

I =

∫ t

0

dτ

∫
S

ψ(τ, y)dσy×

×
∫

Rd
[g(t− τ, x+ u, y)− g(t− τ, x, y)− (∇xg(t− τ, x, y), u)] (Q−1u, u)−

d+α
2 du,

using representation (6) of the operator A. Divide this integral by the sum of two integrals
I1 and I2 of the same integrand: the inner integral in the first of them by the ball Bδ(0),
and in the second by the set Rd \Bδ(0) (remember that Bδ(0) = u ∈ Rd : |u| ≤ δ)

For small enough δ > 0 and all u ∈ Bδ(0), x ∈ Rd \ S, y ∈ S, t > 0 the following
inequality

g(t, x+ u, y)− g(t, x, y)− (∇xg(t, x, y), u) ≤ 1

2

d∑
i,j=1

∣∣∣∣∂2g(t, z, y)

∂zi∂zj

∣∣∣∣
z=x+θ(t,y)u

|u|2,

holds, where θ = θ(t; y) ∈ (0; 1), then the absolute value of the integrand of the integral I1

is estimated above by the expression

CT τ
−β t− τ

((t− τ)1/α + |y − x| − δ)d+α+2
|u|−d−α+2.

This expression is integrable with respect to (τ, y, u) by (0, t)× S × Bδ(0) for small enough
δ > 0. So, the integral I1 is absolutely convergent.

The absolute value of the integrand of I2 is estimated above by the expression

CT τ
−β
(

t− τ
((t− τ)1/α + |x+ u− y|)d+α

+
t− τ

((t− τ)1/α + |x− y|)d+α
+

+
(t− τ)|u|

((t− τ)1/α + |x− y|)d+α+1

)
|u|−d−α.

Taking into account the estimate from Lemma 1 and the fact that |x − y| ≥ ρ(x, S) > 0,
we obtain the integrability of the second and third terms in this expression with respect to
(τ, y, u) by (0, t)× S × (Rd \ Bδ(0)). Consider the integral of the first term and change the
variable u by using the equality x+ u− y = (t− τ)1/αv. We have∫ t

0

τ−βdτ

∫
S

dσy

∫
D(τ,y)

|y − x+ (t− τ)1/αv|−d−αdv
(1 + |v|)d+α

,

where D(τ, y) = {v ∈ Rd : |y − x− (t− τ)1/αv| > δ}. Obviously, this integral is convergent.
Thus, in the integral I it is possible to arbitrarily change the order of integration. That is,
for all t > 0, x ∈ Rd \ S we have the relation

Av(t, ·)(x) =

∫ t

0

dτ

∫
S

Ag(t− τ, ·, y)(x)ψ(τ, y) dσy.

Since the function (g(t, x, y))t>0, x∈Rd for each fixed y ∈ Rd satisfies the equality
∂
∂t
g(t, x, y) = Ag(t, ·, y)(x) throughout its domain, the statement is proved.
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2.2. The jump theorem. The jump theorem takes the central place in the classical theory
(for α = 2) of the single layer potential. This theorem defines the jump of the conormal
derivative of the single layer potential at the points of its carrier surface. This section is
dedicated to the analogous theorem in our case (1 < α < 2).

Lemma 2. Let a surface S and a function (ψ(t, x))t≥0,x∈S satisfy the conditions of Theorem
1. Then for every t > 0, x ∈ S the following integral (ν̂(x) = Q−1nx)

Bdv
ν̂(x)v(t, ·)(x) :=

∫ t

0

dτ

∫
S

Bν̂(x)g(t− τ, ·, y)(x)ψ(τ, y)dσy (8)

is finite.

Proof. Use the next representation (see formula (7))

Bg(t, ·, y)(x) =
1

αt
(y − x)g(t, x, y) +

i

(2π)d

∫
Rd

(|ξ|α−2ξ − (Qξ, ξ)
α
2
−1Qξ)ei(ξ,x−y)−t(Qξ,ξ)

α
2 dξ.

Divide the integral from the right-hand side of (8) by the sum of the following integrals

I1 =
1

α

∫ t

0

dτ

t− τ

∫
S

(y − x, ν̂(x))g(t− τ, x, y)ψ(τ, y)dσy,

I2 =
i

(2π)d

∫ t

0

dτ

∫
S

ψ(τ, y)dσy

∫
Rd

(|ξ|α−2ξ − (Qξ, ξ)
α
2
−1Qξ, ν̂(x))ei(ξ,x−y)−t(Qξ,ξ)

α
2 dξ.

We use estimate (4) and properties of the surface S to estimate the expressions I1 and I2.
At first, let us divide the inner integral in I1 by the sum of two integrals by Sr0/2(x) and
S \ Sr0/2(x)and prove that for each T > 0 and all t ∈ (0, T ], x ∈ S the following inequalities

|I1| ≤ CT

∫ t

0

τ−β((t− τ)−1+γ/α + (t− τ)−1+1/α)dτ ≤

≤ CT

∫ t

0

τ−β(t− τ)−1+γ/αdτ = CTB
(

1− β, γ
α

)
t−β+γ/α

are true. Therefore, I1 is finite.
In order to show that the I2 is finite, let us divide the integral by S in I2 by the sum of

two ones: the fist one by Sr0/2(x) and the second one by S \ Sr0/2(x). The second integral is
convergent because it can be absolutely estimated from above by the expression

CT

∫ t

0

τ−βdτ

∫
S\Sr0/2(x)

dσy
((t− τ)1/α + |y − x|)d+α−1

≤

≤ CT

∫ t

0

τ−β(t− τ)−1+1/αdτ = CTB

(
1− β, 1

α

)
t−β+1/α.

In order to prove that the first integral convergent we absolutely estimate it above by
the expression

CT

∫
Sr0/2(x)

dσy

∫ t

0

τ−βdτ

∣∣∣∣∫
Rd

(|ξ|α−2ξ − (Qξ, ξ)
α
2
−1Qξ, ν̂(x))ei(ξ,x−y)−(t−τ)(Qξ,ξ)

α
2 dξ

∣∣∣∣ .
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In the inner integral, we use the substitution of the variable ξ by the rule ξ = ζ(t−τ)−1/α. Ob-
viously, such integral is the Fourier transform calculated at the point x−y

(t−τ)1/α
of the absolutely

integrable function (remind that x is fixed) (e−(Qζ,ζ)
α
2 (|ζ|α−2ζ − (Qζ, ζ)

α
2
−1Qζ, ν̂(x)))ζ∈Rd ,

which is monotonically decreasing at the infinity. From the general theory of Fourier inte-
grals (see, for example, [4, §3 ]) it follows that there exists a constant M > 0 such that the
absolute value of the integral of the function mentioned above can be estimated above by the
expression M |x− y|−θ, where 0 < θ < 1. Therefore, our first integral is absolutely estimated
above by the expression (here ρ0 > 0 is a constant)

CT

∫ t

0

τ−βdτ

∫
Sr0/2(x)

dσy
|y − x|θ

(t− τ)−1+ θ
α ≤

≤ CT

∫ ρ0

0

rd−2

rθ
dr

∫ t

0

τ−β(t− τ)−1+ θ
αdτ = CT

ρ0
d−1−θ

d− 1− θ
B

(
1− β, θ

α

)
t−β+ θ

α .

So, I2 is convergent and, as a consequence, the value Bdv
ν̂(x)v(t, ·)(x) is finite.

Remark. Integral (8) is named by the direct value of the action of the operator Bν̂(x) on
single layer potential (3) at the point x ∈ S.

The next statement is the jump theorem that has been already mentioned above.

Theorem 2. Let S be a two-sided surface in Rd from the class H1+γ with some γ ∈ (0; 1),
which separates the set Rd into two open sets and for which one of the conditions (A) or (B)
is fulfilled. Let a continuous function (ψ(t, x))t≥0,x∈S satisfy the inequality

|ψ(t, x)| ≤ KT t
−β, 0 < t ≤ T, x ∈ S

for each T > 0 with some constants β < 1 and KT > 0 (the latter may depend to T ). Then
for all t ≥ 0, x ∈ S the following equality (ν(x) = Qnx, ν̂(x) = Q−1nx)

lim
z→x±

Bν̂(x)v(t, ·)(z) = ∓1

2
ψ(t, x) + Bdv

ν̂(x)v(t, ·)(x),

holds true, where z → x± means z = x+ δν(x) and δ → 0±.

Proof. Using equality (7), we get the presentation Bν(x)v(t, ·)(z) = I1 + I2 + I3 + I4, where

I1 =
1

α

∫ t

0

dτ

t− τ

∫
S

(y − x, ν̂(x))g(t− τ, x, y)ψ(τ, y)dσy+

+
i

(2π)d

∫ t

0

dτ

∫
S

ψ(τ, y)dσy

∫
Rd

(|ξ|α−2(ξ, ν̂(x))− (Qξ, ξ)
α
2
−1(Qξ, ν̂(x)))ei(ξ,x−y)−(t−τ)(Qξ,ξ)

α
2 dξ =

Bdv
ν̂(x)v(t, ·)(x),

I2 =
1

α

∫ t

0

dτ

t− τ

∫
S

(y − x, ν̂(x))[g(t− τ, x+ δν(x), y)− g(t− τ, x, y)]ψ(τ, y)dσy,

I3 = − δ
α

∫ t

0

dτ

t− τ

∫
S

g(t− τ, x+ δν(x), y)ψ(τ, y)dσy,
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I4 =
i

(2π)d

∫ t

0

dτ

∫
S

ψ(τ, y)dσy

∫
Rd

(eiδ(ξ,ν(x)) − 1)ei(ξ,x−y)−(t−τ)(Qξ,ξ)
α
2×

×(|ξ|α−2(ξ, ν(x))− (Qξ, ξ)
α
2
−1(Qξ, ν(x))) dξ.

First, consider the expression I4, submitting it as the sum of integrals J1 i J2 of the
same function: J1 with respect to (τ, y, ξ) ∈ (t − ρ, t) × S × Rd and J2 with respect to
(τ, y, ξ) ∈ (0, t − ρ) × S × Rd, where 0 < ρ < t is some constant (t is fixed). Since the
function (eiδ(ξ,ν(x)) − 1)ξ∈Rd is bounded and the integral∫ t

t−ρ
dτ

∫
S

ψ(τ, y)dσy

∫
Rd
ei(ξ,x−y)−(t−τ)(Qξ,ξ)

α
2 (|ξ|α−2(ξ, ν̂(x))− (Qξ, ξ)

α
2
−1(Qξ, ν̂(x))) dξ

is convergent, the integral J1 can be made arbitrary small by the choice of ρ .
The integral J2 is uniformly convergent with respect to δ on each segment [0; δ0], δ0 > 0.

Then J2 → 0 for δ → 0. Hence, I4 → 0 for δ → 0.
Now, investigate the behavior of I2 for δ → 0. Get the integral I2 by the sum of the

integrals of the same function over the sets (0, t − ρ) × S, (t − ρ, t) × Sr0/2(x), and (t −
ρ, t)× (S \ Sr0/2(x)) with some 0 < ρ < t (remind that t > 0 is fixed and r0 is the constant
mentioned above in Section 1.4). We denote them by J1, J2, J3, respectively.

Let us estimate each of these terms starting with J2.

|J2| =

∣∣∣∣∣
∫ t

t−ρ

dτ

t− τ

∫
Sr0/2(x)

(y − x, ν̂(x))ψ(τ, y)(g(t− τ, x+ δν(x), y)− g(t− τ, x, y))dσy

∣∣∣∣∣ ≤
≤ KtN0

∫ t

t−ρ

dτ

τβ

∫
Sr0/2(x)

|(y − x, ν̂(x))|dσy
((t− τ)1/α + |y − x− δν(x)|)d+α

+

+KtN0

∫ t

t−ρ

dτ

τβ

∫
Sr0/2(x)

|(y − x, ν̂(x))|dσy
((t− τ)1/α + |y − x|)d+α

.

Let ỹ be the orthogonal projection of y ∈ Sr0/2(x) on the tangent hyperplane to S at the
point x. It is obviously that |y−x| ≥ |ỹ−x|. Moreover, the inequalities 0 < const1 ≤ |y−z|

|ỹ−z| ≤
const2 are fulfilled for all y ∈ Sr0/2(x) and z = x + ζnx, where ζ ∈ [−|δ|; |δ|] (see [2, Ch.V,
§1]). Therefore, using a local coordinate system with the origin at the point x, and the fact
that |(y−x, ν̂(x)| ≤ const |z|1+γ (z is the local coordinate of the point ỹ), some non-difficult
calculations lead us to the relations |J2| ≤ Ct

(
t−β+ γ

α − (t− ρ)−β+ γ
α

)
→ 0 (ρ→ 0+).

Farther, using inequalities (4) again, we get

|J3| =

∣∣∣∣∣
∫ t

t−ρ

dτ

t− τ

∫
S\Sr0/2(x)

(y − x, ν̂(x))ψ(τ, y)(g(t− ρ, x+ δν(x), y)− g(t− τ, x, y))dσy

∣∣∣∣∣ ≤
≤ CtN0

∫ t

t−ρ

dτ

τβ

∫
S\Sr0/2(x)

|y − x|dσy
((t− τ)1/α + |y − x− δν(x)|)d+α

+

+CtN0

∫ t

t−ρ

dτ

τβ

∫
S\Sr0/2(x)

|y − x|dσy
((t− τ)1/α + |y − x|)d+α

.

Let us consider the fulfillment of conditions (A) and (B) separately. Let condition (A) be
fulfilled: S is bounded and closed. Then, since |y− x| ≥ δ0 (for constant δ0 see Section 1.4),
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|y − x − δν(x)| ≥ |y − x| − |δ‖ν(x)| ≥ δ0 − |δ‖ν(x)| for each y ∈ S \ Sr0/2(x), taking the
number δ such that |ν(x)‖δ| < δ0, we get |J3| ≤ Ct

(
t1−β − (t− ρ)1−β)→ 0 for ρ→ 0.

If condition (B) is fulfilled, we write

|J3| ≤ Ct

∫ t

t−ρ

dτ

tβ

∫
Br(0)

|z|dz
(|z| − |δ|)d+α

+ Ct

∫ t

t−ρ

dτ

tβ

∫
Br(0)

|z|dz
(|z|)d+α

,

where Br(0) ⊂ Rd−1 is a ball with some radius r > 0 centered at the origin. Choosing some
number δ ∈ (−r, r), we get |J3| ≤ Ct

(
t1−β − (t− ρ)1−β)→ 0 for ρ→ 0.

Now, let us choose and fix a constant ρ > 0 such as to make the sum J2 and J3 small
enough and consider J1. Since the function g(t, x, y) is uniformly continuous on sets of the
form [ρ,+∞) × K1 × K2, where K1 and K2 are any compacts in Rd, we have J1 → 0 for
δ → 0 when condition (A) is fulfilled. If condition (B) holds, then we use the differentiability
with respect to x of the function g. We get

|g(t− τ, x+ δν(x), y)− g(t− τ, x, y)| = |(∇g(t− τ, ·, y)(θτyδν(x) + x), δν(x))| ≤

≤ N1
t− τ

((t− τ)1/α + |y − x| − θτy|ν(x)‖δ|)d+α+1
|ν(x)‖δ|,

where θτy ∈ (0, 1) is some constant, which depends on τ and y.
So, we have

|J1| ≤ N1Kt|ν(x)‖δ|
∫ t−ρ

0

dτ

τβ

∫
S

|y − x|dσy
((t− τ)1/α + |y − x| − θτy|ν(x)‖δ|)d+α+1

≤

≤ N1Kt|ν(x)‖δ|
∫ t−ρ

0

dτ

τβ

∫
S

|y − x|dσy
(ρ1/α + |y − x| − θτy|ν(x)‖δ|)d+α+1

.

Let us choose δ such that |ν(x)‖δ| < 1
2
ρ

1
α . Then |J1| → 0 for δ → 0.

Hence, we get that I2 → 0 for δ → 0.
Now, let us consider I3 and rewrite it by the sum of the following terms:

J1 = − δ
α
ψ(t, x)

∫ t

t−ρ

dτ

t− τ

∫
Sε(x)

g(t− τ, x+ δν(x), y)dσy,

J2 =
δ

α

∫ t

t−ρ

dτ

t− τ

∫
Sε(x)

g(t− τ, x+ δν(x), y)(ψ(t, x)− ψ(τ, y))dσy,

J3 = − δ
α

∫ t−ρ

0

dτ

t− τ

∫
Sε(x)

g(t− τ, x+ δν(x), y)ψ(τ, y)dσy,

J4 = − δ
α

∫ t

0

dτ

t− τ

∫
S\Sε(x)

g(t− τ, x+ δν(x), y)ψ(τ, y)dσy,

where ε > 0, 0 < ρ < t are some constants, which we are going to choose.
First, consider the term J4. We have |y − x − δν(x)| ≥ κ|ỹ − x| ≥ κε̂ > 0, where ỹ is

the project of y ∈ S \ Sε(x) on the tangent hyperplane of S at the point x, ε̂ > 0 is some
constant (it depends on ε), κ > 0 is a constant which is dependent on the matrix P . Then
the inequality

|J4| ≤
|δ|
α
KtN0

∫ t

0

dτ

tβ

∫
S\Sε(x)

dσy
((t− τ)1/α + κ|ỹ − x|)d+α

.
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is valid. If the surface S is bounded (condition (A)), then we get that

|J4| ≤
|δ|
α
KtN0|S|ε̂−d−αt1+β → 0, δ → 0.

If condition (B) is fulfilled, then we have the following (remind that Bε̂(0) is a ball in Rd−1)

|J4| ≤
|δ|
α
KtN0K

∫ t

0

dτ

tβ

∫
Bε̂(0)

dz

((t− τ)1/α + κ|z|)d+α
≤

≤ |δ|
α
Ct

∫ t

0

dτ

tβ

∫
Bε̂(0)

dz

|z|d+α
→ 0, δ → 0.

Here we assume that the function∇Fx is bounded and
√

1 + |∇Fx|2 ≤ K with some constant
K > 0.

The next step is the consideration of J3. We can write the following expressions

|J3| ≤
|δ|
α
CtN0

∫ t−ρ

0

dτ

tβ

∫
Sε(x)

dσy
((t− τ)1/α + |y − x− δν(x)|)d+α

≤

≤ |δ|
α
CtN0|Sε|ρ−

d+α
α (t− ρ)1−β 1

1− β
→ 0, δ → 0.

Farther, we prove the limit existence of J1 for all fixed ρ and ε.
Let us denote the tangent hyperplane to S at the point x ∈ S by Πx and consider the

expression

R = − δ
α

∫ ρ

0

dτ

τ

∫
Πx

g(τ, x+ δν(x), y)dσy.

It can be established (see [1]) that

R = − δ

απ

∫ ρ

0

dτ

τ

∫ ∞
0

e−τr
α

cos(δr)dr = −1

2
sign δ +

1

π

∫ ∞
0

e−ρr
α sin δr

r
dr → ∓1

2
,

for δ → ±0.
Let us prove that lim

δ→0
(J1

(2) − ψ(t, x)R) = 0. In order to do this we consider

δ

α

∫ ρ

0

dτ

τ

(∫
Sε(x)

−
∫

Πx

)
g(τ, x+ δν(x), y)dσy =

=
δ

α

∫ ρ

0

dτ

τ

(∫
Sε(x)

−
∫

Πε(x)

)
g(τ, x+ δν(x), y)dσy−

− δ
α

∫ ρ

0

dτ

τ

∫
Πx\Πε(x)

g(τ, x+ δν(x), y)dσy = J ′ + J ′′,

where Πε(x) is the set Sε(x) projection on Πx.
Taking into account the properties of the surface S, it is easy to understand that there

exists a constant θ > 0 such that for each y ∈ Πx \ Πε(x) we have the inequality |y − x| ≥
θ. Then, choosing δ such that the inequality |δ| < θ

2|ν(x)| holds, we get (we use spherical
coordinates)

|J ′′| ≤ C|δ|−α
∫ ∞
θ/|δ‖ν(x)|

rd−2dr

(r − 1)d+α
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with some constant C > 0. From here, using L’Hôspital’s rule, we get that J ′′ → 0 for
δ → 0.

For the estimating of J ′ we move to the local coordinate system with the origin at the
point x and the vector nx as the unit vector of the last axis. Then we have

Sε(x) = {u ∈ Rd : ud = Fx(u
<d>), u<d> ∈ Dε(x) ⊂ Rd−1},

Πε(x) = {u ∈ Rd : ud = 0, u<d> ∈ Dε(x) ⊂ Rd−1},

where Dε(x) is some bounded and closed set, which depends only of the surface S shape,
u<d> = (u1, u2, ..., ud−1). Taking into account estimate (4) it is easy to obtain the inequalities

|J ′| ≤ C|δ| 1
α

∫ ρ

0

dτ

τ

∫
Dε(x)

τ |v|γ(1 + |v|γ)dv
(τ 1/α + k

√
|v|2 + δ2)d+α

≤ C|δ|
∫ ρ

0

dτ

∫ ε0

0

rd−2+γdr

(τ 1/α + k
√
r2 + δ2)d+α

,

where k > 0, ε0 > 0 are some constants. By the changing the order of integration and taking
into account the equality ∫ ∞

0

dτ

(τ 1/α + a)d+α
= αB(d, α)a−d,

which is corrected for all a > 0, we get

|J ′| ≤ C|δ|
∫ ε0

0

rd−2+γdr

(
√
r2 + δ2)d

≤ C

∫ ∞
0

rd−2+γdr

(
√
r2 + 1)d

|δ|γ.

Then J ′ → 0 for δ → 0.
So, we reach to the conclusion that J1 − Rψ(t, x) → 0 for δ → 0. Hence, limδ→0± J1 =

±1
2
ψ(t, x). From here, it follows that (since ψ(t, x) is continuous and, consequently, it is

uniformly continuous on each compact set) the value limδ→0 |J2| can be made arbitrary
small by the choice of ρ and ε.

Finally, we have the equality

lim
z→x±

Bν̂(x)v(t, ·)(z) = ∓1

2
ψ(t, x) + Bdv

ν̂(x)v(t, ·)(x).
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