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We aim at determining existence conditions of single layer potentials for pseudo-differential
equations related to some linear transformations of a rotationally invariant stable stochastic
process in a multidimensional Euclidean space and investigating their properties as well. The
carrier surface of the potential is smooth enough. We consider two main cases: the first,
when this surface is bounded and closed; the second, when it is unbounded, but could be
presented by an explicit equation in some coordinate system. The density of this potential is
a continuous function. It is bounded with respect to the spatial variable and, probably, has
an integrable singularity with respect to the time variable at zero. Classic properties of this
potential, including a jump theorem of the action result of some operator (an analog of the
co-normal differential) at its surface points, considered.

A rotationally invariant a-stable stochastic process in R? is a Lévy process with the characte-
ristic function of its value in the moment of time ¢ > 0 defined by the expression exp{—tc|£|*},
¢ € R where o € (0,2], ¢ > 0 are some constants. If o = 2 and ¢ = 1/2, we get Brownian
motion and classic theory of potential. There are many different results in this case. The
situation of a € (1,2) is considered in this paper. We study constant and invertible linear
transformations of the rotationally invariant a-stable stochastic process. The related pseudo-
differential equation is the parabolic equation of the order a of the “heat” type in which the
operator with respect to the spatial variable is the process generator. The single layer potential
is constructed in the same way as the single layer potential for the heat equation in the classical
theory of potentials. That is, we use the fundamental solution of the equation, which is the
transition probability density of the related process. In our theory, the role of the gradient
operator is performed by some vector pseudo-differential operator of the order a — 1. We have
already studied the following main properties of the single layer potentials: the single layer
potential is a solution of the relating equation outside of the carrier surface and the jump
theorem is held. These properties can be useful to solving initial boundary value problems for
the considered equations.

Introduction. A rotationally invariant a-stable (o € (0;2]) stochastic process in the mul-
tidimensional Euclidean space R?, d > 2 is a standard Markov process (z(t))s>o defined by
its transition probability density

1 . «
go(t, z,y) = oL /R &=t e ¢ > 0,2 e RY, y € R
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Let P be some invertible real d x d-matrix. Consider the Markov process z(t) = Pxo(t),
t > 0. It has got the transition probability density given by the following equality

1 i(&x—y)— 3
olty) = g [ e e 1)

where Q = PPT.
Function (1) is the fundamental solution to the following pseudo-differential equation

ou(t, x)
ot

= Au(t,-)(x), t>0z¢cR? (2)

where A is the pseudo-differential operator defined by its symbol (—(Q¢,£)?) ¢eRd-

In this paper, we consider the case of a € (1;2). If a = 2, the process (x¢(t)):>0 is the
standard Brownian motion and relation (2) is the well-known heat equation. In the case of
a < 1, we have the first order equation, what is a completely different situation.

Let S be some two-sided surface in R? and (¢, ) be some function determined on the
domain (0;+00) x S. We call the function (v(t,2));>0 .ere, defined by the equality

v(t,x) = /Ot dT/Sg(t —1,2,y)Y(T,y)doy, (3)

the single layer potential with the density ¢ on the surface S for the pseudo-differential
equation (2).

The aim of this article is determining of existence conditions of the single layer potentials
and researching their properties. We consider the surface S to be quite smooth, at least it
belong to the class H'™ with some v € (0, 1) (see below). In this paper, two main situations
are considered: the first, when the surface S is bounded and closed; the second, when it is
unbounded, but for every two its points x € S, y € S it holds that cos(m) > po > 0,
where n, € R? is a normal vector to one side of the surface S at the point z € S.

The notation of the simple layer potential for the pseudo-differential equation of the type
(2) (in the case @@ = const -I with the unit matrix I) was introduced in [1], where its main
properties were proved in that case. The usage of the single layer potentials for solving initial
boundary value problems was considered in [1,5,6]. In paper [7], we obtained some results
which were approximately close to ours, but we managed to consider some different analog
of the gradient operator.

1. Some auxiliary results.

1.1. The function g. The function g given by formula (1) above is continuous in the
domain t > 0, z € R, y € R? and it is uniformly continuous on each set like t € [r, +00),
r e R4 yc R for 7 > 0.

The following estimations of the function g and its derivatives (see [3, Ch.4]):

t

ID*g(t,,y) ()] SNk(tl/aHy—az\)dMM’ t>0,7 R,y eRY (4)
~ 1
ID*g(t,-,y)(x)] < N t>0,zeRyeR (5)
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Here D* denotes the differential operator of the degree k = 0,1, 2..., D* denotes the pseudo-
differential operator defined by a homogeneous symbol (Q..(§))ccre of a degree s, which
have all derivatives of degrees 1 <[ < M at points £ # 0, where M > 2d + »+ a + 1, and
satisfies the inequality |D'Q,.(€)| < Cpr|€)*7! for all € # 0, where Cy; > 0 is some constant;
N and N% are some positive constants.

1.2. The operator A. The action of the operator A defined in the introduction at smooth
enough (at least which have Lipschitz continuous gradient) and bounded with its derivatives
functions ¢ (x),cga is defined by the following expression

Ap(o) = i [ (ple+2) = olo) = (Ve@) )@ 122 e (6)

ol (3—a)/2)T((d+)/2)
n(d+1)/2T(2—a)

operator A to the function ¢¢(z) = €'¢*) with some fixed ¢ € R?.

where ¢, = . The value of the constant ¢, can be obtained by using the

1.3. The operator B is an analog of the gradient. Let us define the operator B by
its symbol (i|£]*72€)¢era. The action of the operator B on a bounded Lipschitz continuous
function (¢(x)),cra is defined by the following formula:

Ga [ (p(z+2)—p(z))
B = = d
o) =2 [ B2
where ¢, is the same constant as above.
It is not difficult to obtain (see, for example, [7]) that
1
By(t,y)(x) = —(y —2)g(t,z.y) + f(t,z,y), t>0,xeR)yeR’, (7)

ot

where f(t,2,y) = g fea (|67 %€ — (Q€,€)371QE)eiEr v 1QEO% ge.

Take into consideration that the function f is the action result on the function (¢t > 0,
y € R are fixed) (g(t,7,9))sere of the pseudo-differential operator which is defined by the
symbol (i€ — (Q€,£)2 7 Q€)cepa. The results of the monograph [3, Ch.4] (see also (5))
lead us to the following estimation

C
(t% + o — yl)roT

f(t 2, y)| <

where C' is some positive constant.

Here and below, we denote by the letter C' any positive constant which value does not
matter. Sometimes we equip this letter with an index to indicate which parameter this
constant depends on.

Let v be some fixed vector in RY. We use the notation B, for the operator (v, B) which
is the pseudo-differential operator with the symbol (¢|¢]*72(§, v))ecpa.

1.4. The class H'*7 of surfaces. Let some surface S be given in R%. Suppose that there is
such a constant 9 > 0, that for any point « € S the part of this surface S,,(z) = SN B,,(z)
(here and below the notation Bs(z) means the closed ball in R¢ which has the radius § > 0 and
the center placed in the point z € R?) can be defined by an equation y* = F,(y', %2, ...,y ")
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in some local coordinate system with the origin in the point x. Here F}, is some single-valued
function. Remember (see, for example, [2, Ch.IV, §4|) that S is called a surface of the class
H'7 with some v € (0,1) if for every x € S the corresponded function F} has continuous

partial derivatives gg,f, k=1,2,...,d — 1 in the domain

U

~1
(y")? < /4
1

B
Il

and they are Holder continuous with power v and the constant which does not depend on .

It is clear that there exist the tangent hyperplane and the normal at each point of such
kind of surfaces.

2. The single layer potential.

2.1. Existence conditions and properties. Let the surface S be smooth enough, i.e. it
belongs to the class H'*7 with some fixed v € (0;1), and it separates the set R? into two
open subsets: D_ and D, which satisfy the equality R? = D_USUD,. Above we call them
by “interior” and “exterior” set, respectively.

Consider the following two situations, where the surface S has some additional properties:
(A) S is bounded and closed;

(B) S is unbounded and for any two its points x € S, y € S the exterior normal vectors n,
and n, form an angle ¢,, such that cos g, > py > 0.

Note that a hyperplane satisfies the property (B).

Let us consider some continuous function (¢(¢, x)):>0zes so that the following inequality
[9(t,2)] < Krt=? holds for all 0 < t < T, € S and for each fixed T > 0. There 3 < 1 is
some constant and Kp > 0 is constant that, possibly, depends on 7'.

Next we need the following useful statement.

Lemma 1. Let the surface S satisfy the above formulated conditions. Then for every 6 > —1
there exists a constant C' > 0 such that for all t > 0, x € R? the following inequality

dO'y 0+1
<Ct =
/g (t70 + [y — a])a+? =

holds.

Proof. Let S satistfy condition (A). The statement of the lemma is proved in [1]. Otherwise,
if S satisfies the condition (B), let project the surface S on the tangent hyperplane to S in
the point Z, which is the orthogonal projection of x on S.

Then we obtain inequalities (¢ is the projection of the point y € S on the mentioned
hyperplane)

do cos(nz,mz)  di 1 dz
Y < Y < — _—
s (B ly =)0 T Jgaor (070 4|5 = Z)0 T po Jrar (8 + [2])H0

Farther, the calculation of the last integral in the spherical coordinates leads us to the
statement of lemma. O
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In the classical case (when a = 2) the single layer potential is a continuous function and
it satisfies the corresponding parabolic differential equation in the domain (0; +-00) x (R?\ )
(see |2, Ch.V]). Let us prove the analogous statement in our case.

Theorem 1. Let a surface S in R? belong to the class H'*" with some fixed v € (0;1) and
satisfy one of the conditions (A) or (B). Let a continuous function (¢(t, x))i>0cs satisfy the
inequality |¢(t,x)| < Krt=" on each set of the form (0;T] x S with some constants 3 < 1
and Kp > 0 (the last may depend on T > 0).

Therefore the single layer potential (3) is correctly defined; it is the continuous function
and satisfies the equation

for all (t;x) from the domain (0;00) x (R?\ 9).

Proof. Inequality (4) and the statement of Lemma 1 lead us to the inequalities

do,

t
t,z)| < NoK t— ﬁd/ <
e 2 Mok [ (6= ) | e S

1
< CrB (1 — = 1- ﬁ) t1=a=F
«

valid for all t € (0;7], € R? and each T > 0. This yields to the fact that the function
(v(t,2))¢>0zere 1s is correctly defined and continuous.

Now, let the point z € R?\ S be selected and fixed. It is obvious that

0 ! 0 :
grota) = [ [ ot —raotrado, + i [ ateo)iin i,

In the case (A), we have the equality lim._os [, g(e, z,y)¢(t,y)do, = 0, where t > 0,
r € R?\ S. This relation follows from estimate (4) for k = 0 and the next inequality

5] L
< Nope——m——— K1t
R P S

where | S| is area of the surface S, p(x, S) is the distance from the point x to the surface S.

If the condition (B) is fulfilled for the surface S we take into account the fact that the
following property (see |2, Ch.IV, §4]) 0 < 3¢ < B:il < 5, Is true, where s are some
positive constants, y € S, y is the projection of the point y on the tangent hyperplane to .S

at the point & (Z is the projection of z on S). Then we get the following chain of relations:

/ g(g, z, y)¢(t7 y)dO'y
S

do
g, T, t,y)do,| < NoK t‘ﬁe/ Y <
/Sg( y)w( y) Yyl = oA T s <€l/a + ’flf _y|>d+a —

<o (cos(irmg) My _
it (7 1 50/ + pla, S0

dz
<C t‘ﬁep_l/ —
U e (2 4 pla, 5)2)

%Q_(d+a)—>0, e—0+.
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Thus, the equality 2v(t,z) fo dr [ 29(t — 7,2,y)¢(7, y)do, holds in each case.

Now, we prove an admissibility of changing the order of integration in the integral

1:/0th/3¢(7,y)dayx

x /R gt — T2+ w,y) — gt —72,y) — (Vag(t — 7,2,), 0)] (Q \u,u) ™ "5 du,

using representation (6) of the operator A. Divide this integral by the sum of two integrals
I; and Iy of the same integrand: the inner integral in the first of them by the ball Bs(0),
and in the second by the set R\ B;(0) (remember that Bs;(0) = u € R? : |u| < 9)

For small enough § > 0 and all u € Bs(0), € R4\ S, y € S, t > 0 the following
inequality

1

1 g(t, 2, y)
2

g(tam +U,y) - g(t,az‘,y) - (vl”g(t 'y y) ) 02:0%.;
0%

holds, where 8 = 6(t;y) € (0;1), then the absolute value of the integrand of the integral I
is estimated above by the expression

t—T1
(=) + Ty = )7

CTT—B

|u|—d—a+2'

This expression is integrable with respect to (7,y,u) by (0,t) x S x Bs(0) for small enough
0 > 0. So, the integral I; is absolutely convergent.

The absolute value of the integrand of I5 is estimated above by the expression

OT_ﬂ( t—T1 N t—T N
N R T (e

(£ = 7)|ul i
((t =)o+ |z — y|)d+a+1) Jul ™

Taking into account the estimate from Lemma 1 and the fact that |z —y| > p(z,S) > 0,
we obtain the integrability of the second and third terms in this expression with respect to
(7,y,u) by (0,) x S x (R?\ Bs(0)). Consider the integral of the first term and change the
variable u by using the equality = +u —y = (¢t — 7)"/*v. We have

—x+ (t — 1)Yu|"dy
BdT/ do / y—= ,
/ " Jpiry) (1 + Juf)dte
where D(7,y) = {v € R?: |y — x — (t — 7)Y/*v| > §}. Obviously, this integral is convergent.

Thus, in the integral [ it is possible to arbitrarily change the order of integration. That is,
for all t > 0, € R\ S we have the relation

+

Aw,x:/m/m T ) (@) (r, y) do,

Since the function (g(t,z,y))is0, zere for each fixed y € R? satisfies the equality
2g(t,x,y) = Ag(t,-, y)(z) throughout its domain, the statement is proved. O
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2.2. The jump theorem. The jump theorem takes the central place in the classical theory
(for @ = 2) of the single layer potential. This theorem defines the jump of the conormal
derivative of the single layer potential at the points of its carrier surface. This section is
dedicated to the analogous theorem in our case (1 < o < 2).

Lemma 2. Let a surface S and a function (¢ (t, x))i>0zes satisty the conditions of Theorem
1. Then for every t > 0, x € S the following integral (v(x) = Q™ 'n,)

Bd’(’ / dT/ — 7, y)(x)Y(T,y)do, (8)
is finite.

Proof. Use the next representation (see formula (7))

Bg(tv K y)(l‘) = é(y - m)Q(ta Z, y)

(2;)d /Rd(|§|a_2 — (Q&,€)271QE) e )~ Qg’g)%df-

Divide the integral from the right-hand side of (8) by the sum of the following integrals

/ t— T (t_Tvxuy)¢(Tv y)dO'y,

dT

/m“ - (@691 QE ifw)elen e g

We use estimate (4) and properties of the surface S to estimate the expressions I; and Is.
At first, let us divide the inner integral in I; by the sum of two integrals by S, »(x) and
S\ Sy 2(x)and prove that for each 7' > 0 and all t € (0,77, z € S the following inequalities

t
L] < Cy / B — )V L (= ) ) g <
0
t
< CT/ TPt — ) dr = CrB (1 — 3, 1) thtale
0 (6%

are true. Therefore, I; is finite.

In order to show that the I is finite, let us divide the integral by S in I by the sum of
two ones: the fist one by S, /2(x) and the second one by S\ S;,/2(x). The second integral is
convergent because it can be absolutely estimated from above by the expression

do
CT/ ﬁdT/ . <
S\S (= 7)o+ [y — af)dtet

r0/2

1
< OT/ —ﬂ(t ) +l/ag CrB (1 — 8, a) B+ /e
0

In order to prove that the first integral convergent we absolutely estimate it above by
the expression

t
Cr / doy / T Bdr
S, a() 0

/R d(l&l“”é —(Q€,6)371Q¢, i(x))e e t-DQEO? g

ro/2
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In the inner integral, we use the substitution of the variable & by the rule § C(t—7)"'*. Ob-
viously, such integral is the Fourier transform calculated at the point = 1 ——4= of the absolutely

integrable function (remind that x is fixed) (e~(Q%¢)* (|C|°‘ 2 - (QC,C)a 'QC, 0(x))) cerd,
which is monotonically decreasing at the infinity. From the general theory of Fourier inte-
grals (see, for example, [4, §3 |) it follows that there exists a constant M > 0 such that the
absolute value of the integral of the function mentioned above can be estimated above by the
expression M|z — |~ where 0 < 6 < 1. Therefore, our first integral is absolutely estimated
above by the expression (here py > 0 is a constant)

CT/ ﬂdT/ (t—T) 1+ <
Sro/2() ‘y - 1;‘9

7 142 po’ 1 —p+2
SCT/O T—ed'f‘/o (t—T) O‘dT_CTﬁ <1—ﬂ, )t a,

So, I, is convergent and, as a consequence, the value Bg’(’x)v(t, )(x) is finite. O

Remark. Integral (8) is named by the direct value of the action of the operator By, on
single layer potential (3) at the point x € S.

The next statement is the jump theorem that has been already mentioned above.

Theorem 2. Let S be a two-sided surface in R? from the class H'*7 with some v € (0;1),
which separates the set R¢ into two open sets and for which one of the conditions (A) or (B)
is fulfilled. Let a continuous function ((t,x))i>0.es satisfy the inequality

[W(t,z)| < Kpt™P, 0<t<T,xzeS

for each T' > 0 with some constants 3 < 1 and Kt > 0 (the latter may depend to T'). Then
for allt > 0, x € S the following equality (v(z) = Qng, U(x) = Q" 'n,)

lim BV(I)U( )(z) = ZF%w(t, x)+ Bg’(’x)v(t, )(z),

z—axt

holds true, where z — x+ means z = x + ov(z) and § — 0=+.

Proof. Using equality (7), we get the presentation B,)v(t,-)(2) = I + I2 + I3 + 14, where

/t—T/ —x,0(x))g(t — 7, 2,y)¢(7, y)do,+

o tT T,y)ao o2& D(x)) — 51 )i ET—9)—(E—1)(QET g —
+@ﬂaﬁféw<ymyAya (6,5(2)) — (Q€.€)5 1 (QE, la))) dé
B%w@)@%

2 [ [ o)lte = r + 0(e).0) = ot — o),
———/ t—T/ (t — 7,2+ dv(x),y)(r, y)doy,
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dT

/ (P(EvE) _ 1) gittan—(-r)@e0)F

Iéla 2 (€, v(2)) — (Q€,€)2H(Q€, v(x))) d&.

First, consider the expression I, submitting it as the sum of integrals J; i Jy of the
same function: J; with respect to (7,v,&) € (t — p,t) x S x R? and J, with respect to
(1,9,€) € (0,t —p) x S x RY where 0 < p < t is some constant (¢ is fixed). Since the
function (e?¢*(®) — 1), ga is bounded and the integral

/ df/wyday/ i6a-u==nQEO T (ej=2(¢ p(x)) — (Q€, €)1 (QE. p(x))) de

is convergent, the integral J; can be made arbitrary small by the choice of p .

The integral J5 is uniformly convergent with respect to d on each segment [0; do], dp > 0.
Then Jy — 0 for 6 — 0. Hence, I, — 0 for § — 0.

Now, investigate the behavior of Iy for 6 — 0. Get the integral I, by the sum of the
integrals of the same function over the sets (0, — p) x S, (t — p,t) X Syy/2(x), and (t —
p,t) X (S'\ Sry/2(x)) with some 0 < p < ¢ (remind that ¢ > 0 is fixed and r( is the constant
mentioned above in Section 1.4). We denote them by Ji, Jo, J3, respectively.

Let us estimate each of these terms starting with Js.

| Jo| =

bod
L e ot = ). 5) — gt )y <
t—p S, /2
- (g — . 2(2)ldo,
<KfN0/ ﬁ/s/m t—Tl/a+|y—x—au<x>|>d+a+

dr y—x,0(z))|do
+KN/ / v
Vo 5o ol T)e 4 |y — z])tre

Let ¢ be the orthogonal projection of y € S, 2(x) on the tangent hyperplane to S at the

point z. It is obviously that |y —z| > |g—x|. Moreover, the inequalities 0 < const; < B:Z} <
consty are fulfilled for all y € S, /2(z) and z = x + (n,, where ¢ € [—[6];|d]] (see [2, Ch.V,
§1|). Therefore, using a local coordinate system with the origin at the point z, and the fact
that |(y — z, 7(z)| < const |z|'™ (z is the local coordinate of the point %), some non-difficult
calculations lead us to the relations | J;| < Cy (7972 — (t — p)™#+2) — 0 (p — 0+).

Farther, using inequalities (4) again, we get

|| =

[ [ @)t~ o+ ovta) o) — gl — 7,0,y <
t S\Srq/2(

_pt—T

)
ly — z|do
<C No/ / Y +
t S\rte) (VT Ty~ — S5

ly — z|do,
+CtN0/ / .
$\Sy () (£ =TIV + |y — w|)dte

Let us consider the fulfillment of conditions (A) and (B) separately. Let condition (A) be
fulfilled: S is bounded and closed. Then, since |y — x| > Jy (for constant dy see Section 1.4),
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ly —ax —dv(z)| > |y — x| — |§]|v(x)] > 6o — |0]|v(z)| for each y € S\ S, 2(x), taking the
number § such that |v(z)]|d] < &y, we get |J3| < Cy (7 — (t — p)*=#) — 0 for p — 0.

If condition (B) is fulfilled, we write

_alde / / ]z|dz
J3| < C
| Js| < t/t /T |z| 10]) d+a d+a

where B,(0) C R%! is a ball with some radius 7 > 0 centered at the origin. Choosing some
number § € (—r,7), we get |J5| < C, (87 — (t — p)*=) — 0 for p — 0.

Now, let us choose and fix a constant p > 0 such as to make the sum J, and J; small
enough and consider J;. Since the function g(t¢,x,y) is uniformly continuous on sets of the
form [p, +00) x K; x K3, where K; and K, are any compacts in R¢, we have J; — 0 for
d — 0 when condition (A) is fulfilled. If condition (B) holds, then we use the differentiability
with respect to x of the function g. We get

9t =72+ ov(x),y) = g(t —7,2,9)| = [(Vg(t = 7,-,y)(0-0v(x) + 2),ov(2))] <

t—T1
<N
=N =)oty — ] - 97y|l/<x>H§Dd+a+1‘I/(x)Hélv

where 6., € (0,1) is some constant, which depends on 7 and y.

So, we have

rdr ly — x|do,
il Mo |55 | ey Sl s S

t—p dr ‘y-—-x‘dO'
< N\K,|v , '
1Ky |v ||5|/ / p/e + ly — x| — Oy |v(x)||d])dTort

Let us choose § such that |v(x)||d] < §pE. Then |J;| — 0 for § — 0.
Hence, we get that I, — 0 for 6 — 0.

Now, let us consider I3 and rewrite it by the sum of the following terms:

) tod
J, = —aw(t, x) / T / g(t — 7,2+ ov(x),y)doy,
()

Bl / T [ gt b)) le) — (),

5 [P dr
Js = __/ / gt — 1,z + ov(x), y)(r, y)day,
Se

()
:__/ g(t — 7,2+ ov(z), )w(ﬂy)d%
t—7 S\Ss(x)

where € > 0, 0 < p < t are some constants, which we are going to choose.

First, consider the term Jy. We have |y — x — dv(x)| > »|j — x| > £ > 0, where 7 is
the project of y € S\ S:(x) on the tangent hyperplane of S at the point z, £ > 0 is some
constant (it depends on ), » > 0 is a constant which is dependent on the matrix P. Then
the inequality

|5| / / day
Jyl < KN
14 o oo (o ol —al)ire
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is valid. If the surface S is bounded (condition (A)), then we get that

9]

|| < KN0|S|A‘d o 0, §—0.

If condition (B) is fulfilled, then we have the following (remind that B:(0) is a ball in R4"1)

9] / / dz
Jy| < KN K <
e " i =7

S [% ],

Here we assume that the function VF, is bounded and /1 + |V F,|?> < K with some constant
K >0.

The next step is the consideration of J;3. We can write the following expressions

9] /t_p dT/ do,
Jal < —C, N, — <
e A I AN (s Yy oy sy el

) _dta 5 1
< L—lCtNo|Sa|P St - p)! Bm —0, d—0.

Farther, we prove the limit existence of J; for all fixed p and e.

—0, 6—0.

Let us denote the tangent hyperplane to S at the point x € S by II, and consider the

expression
o [Pd
R= ——/ —T/ g(1,x + év(z), y)do,.

It can be established (see [1]) that
P d 1 1 [ o Sin o 1
R = T/ T cos(67)dr = — = sign § + —/ e 20T g ¥,
2 T Jo r 2

for 6 — =£0.
Let us prove that hm(J @) _ (¢, z)R) = 0. In order to do this we consider

L] Yo
A LE (] e

6 [Pd
——/ —T/ g(r,x + dv(z),y)do, = J + J",
(0% o T 2\Ie ()

where II.(z) is the set S.(z) projection on II,.

Taking into account the properties of the surface S, it is easy to understand that there
exists a constant # > 0 such that for each y € II, \ Il. ( ) we have the inequality |y — z| >
0. Then, choosing 0 such that the inequality |0] < holds we get (we use spherical

coordinates)

21/

e’} d—2d
o [
0/lsllu(a) (r— 1)
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with some constant C' > 0. From here, using L’Héspital’s rule, we get that J” — 0 for
0 — 0.

For the estimating of J' we move to the local coordinate system with the origin at the
point x and the vector n, as the unit vector of the last axis. Then we have

S.(x) = {u € R : u’ = F,(u~"),u~" € D.(x) c R},

I.(r) = {u e R : u? = 0,u~* € D.(x) Cc R},

where D.(x) is some bounded and closed set, which depends only of the surface S shape,
u<% = (uy, uy, ..., ug_1). Taking into account estimate (4) it is easy to obtain the inequalities

|J/| SC"d'_/pd_T/ T|U|7(1+|U| )dv SC{|5’/Pd7—/~50 d=2+7 - |
@Jo T I (T /o + 82yt o Ty et kviE T )i

where k > 0, g9 > 0 are some constants. By the changing the order of integration and taking
into account the equality

o dr —d
/0 (Tl/a + a)dJra - OéB(d, Oé)CL ’

which is corrected for all a > 0, we get

d 2+7d 00 d72+'yd
¥4 <0|5y/ ’ gc/ A s
ViZ + %) (72 L 52)d o (VrZ+1)d
Then J" — 0 for 6 — 0.

So, we reach to the conclusion that J; — Ri(t,z) — 0 for § — 0. Hence, lims_ o+ J; =
i%w(t,x). From here, it follows that (since (¢, ) is continuous and, consequently, it is
uniformly continuous on each compact set) the value lims_g|J5| can be made arbitrary
small by the choice of p and e.

Finally, we have the equality

lim, Bogayolt,)(2) = F 0t 7) + Bifyu(t, (o).

z—rt
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