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A stochastic approximation procedure and a limit generator of the original problem are
constructed for a system of stochastic differential equations with Markov switching and impulse
perturbation under Levy approximation conditions with control, which is determined by the
condition for the extremum of the quality criterion function.

The control problem using the stochastic optimization procedure is a generalization of the
control problem with the stochastic approximation procedure, which was studied in previous
works of the authors. This generalization is not simple and requires non-trivial approaches to
solving the problem.

In particular we discuss how the behavior of the boundary process depends on the pre-
limiting stochastic evolutionary system in the ergodic Markov environment. The main assumpti-
on is the condition for uniform ergodicity of the Markov switching process, that is, the existence
of a stationary distribution for the switching process over large time intervals. This allows one
to construct explicit algorithms for the analysis of the asymptotic behavior of a controlled
process. An important property of the generator of the Markov switching process is that the
space in which it is defined splits into the direct sum of its zero-subspace and a subspace of
values, followed by the introduction of a projector that acts on the subspace of zeros.

For the first time, a model of the control problem for the diffusion transfer process using
the stochastic optimization procedure for control problem is proposed. A singular expansion in
the small parameter of the generator of the three-component Markov process is obtained, and
the problem of a singular perturbation with the representation of the limiting generator of this
process is solved.

Introduction. Analyzing the state of the art concerning asymptotic properties of stochastic
evolution models reveals that a complete theory is still to be worked out. The models whi-
ch are given by stochastic differential equations with Markov switchings and impulse or
continuous-type perturbations in the classical schemes of averaging or diffusion approximati-
on are well understood ([2]–[4]). Also, the asymptotic behavior was investigated of impulse
processes with Markov switchings under the conditions of Levy approximation ([1], [8]–[11]).
Thus, it seems natural to develop a theory of evolution equations with Markov switchings
and random perturbations in nonclassical approximation schemes. Establishing convergence
of the stochastic optimization procedure is an important puprose of system analysis in the
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uncertainties, which can be modeled using an ergodic Markov environment. The relevance of
determining new properties and generalizations of optimization algorithms that use random-
ness in the process of finding the optimum is evidenced by numerous applications in control
theory, information transfer theory, and also in solving nonparametric problems of mathema-
tical statistics. In the present paper, we focus on the study of the evolutionary system in the
form of a perturbed controlled impulse process with Markov switching under the conditions
of the existence of a single extremum point of the function for assessing the quality of control.
We consider some prelimit evolution models with a small normalization parameter. We fi-
nd the form of the limit generators for the impulse processes and the control of dynamical
system in the schemes of the Levy approximation, and the stochastic optimization. Further,
we provide conditions which ensure weak convergence of a controlled evolution model with
Markov switching and impulse perturbation (assuming uniqueness of the equilibrium poi-
nt for the quality criterion for which the stochastic optimization procedure is given). It is
important that the asymptotic behavior of the limit process is concluded with the help of
the analysis of parameters of the pre-limit system.

1. Problem formulation. We investigate the stochastic evolution system in the ergodic
Markovian environment given by a stochastic evolutionary equation ([7], [8], [10])

dyε(t) = C(yε(t), x(t/ε2)) + dηε(t, uε(t)), (1)

where yε(t) is a solution, x(t), t ≥ 0, is a uniformly ergodic Markov process, that is defined
on a standard phase space (X,X) ([3]) by the generator

Qϕ(x) = q(x)

∫
X

P (x, dy)[ϕ(x)− ϕ(y)]

on the Banach space B(X) of real valued bounded functions with the supremum norm
‖ϕ(x)‖ = supx∈X |ϕ(x)|; uε(x) is a control function. A stochastic kernel P (x,B), x ∈ X,
B ∈ X defines uniformly ergodic embedded Markov chain xn = x(τn), n ≥ 0, that has
stationary distribution ρ(B), B ∈ X. Stationary distribution π(B), B ∈ X for Markov
process x(t), t ≥ 0, is defined by relation ([3])

π(dx)q(x) = qρ(x), q =

∫
X

π(dx)q(x).

The impulse perturbation process ηε(t), t ≥ 0, is given by the relation

ηε(t, uε(t)) =

∫ t

0

ηε(s, uε(s), x(s/ε2))ds, (2)

where a set of processes with independent increments ηε(t, u, x), t ≥ 0, x ∈ X, u ∈ R, is
determined by the generators

Γε(x)ϕ(u,w) = ε−2

∫
R
ϕ(u,w + v)− ϕ(u,w)Γε(dv, x), (3)

where x ∈ X and the following Levy’s approximation conditions are satisfied ([2,3]):
L1. The approximation of averages ([4])∫

R
vΓε(dv, x) = εa1(x) + ε2(a2(x) + θa(x)), θa(x)→ 0, ε→ 0,∫

R
v2Γε(dv, x) = ε(b(x) + θb(x)), θb(x)→ 0, ε→ 0.
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L2. The condition imposed on the distribution function∫
R
g(v)Γε(dv, x) = ε2(Γg(x) + θg(x)), θg(x)→ 0, ε→ 0,

for all g(v) ∈ C2(R) (the space of real-valued bounded functions such that g(v)/|v|2 → 0,
|v| → 0), where measure Γg(x) is bounded for all g(v) ∈ C2(R) and is defined by the relation
(functions from the space C2(R) separate the measures):

Γg(x) =

∫
R
g(v)Γ0(dv, x), g(v) ∈ C3(R).

L3. The uniform quadratic integrability: sup lim
c→∞

∫
|v|>c

v2Γ0(dv, x) = 0.

As a toy example of a random variable that satisfies the conditions of the Levy approxi-
mation, we can cite the following α

P{α = b} = ε2p, P{α = εa1 + ε2b1} = 1− ε2p.

Then we have
Eα = εa1 + ε2(bp+ b1) + o(ε2), Eα2 = ε2(b2p+ a2

1) + o(ε2).

2. Stochastic optimization procedure for control function. We assume that control
function u(t) for equation (1) is defined by the quality criterion G(x, y, u), that has unique
extremum for each value of process y and for each state x of Markov process x(t) on the
interval [τi, τi+1). That is u(t) is the unique extremum point of G(x, y(t), u) for fixed x and
y(t), in particular G(x, y(t), u(t)) = maxuG(x, y(t), u) or G(x, y(t), u(t)) = minuG(x, y(t), u)
for t ∈ [τi, τi+1).

We assume also that G(·, ·, u) ∈ C2(Rd). Then u(t) is completely determined by the
system

∂G(y(t), x(t), u(t))

∂uk
= 0 (k = 1, d). (4)

So we consider a stochastic optimization procedure [9, 12] for the control function u(t)

duε(t) = α(t)∇β(t)G(yε(t), x(t/ε2), uε(t))dt, (5)

where
∇β(t)G(·, ·, u) = (G(·, ·, u+

i )−G(·, ·, u−i ))/2β(t), i = 1, d,

u±i = uiβ(t)ei, ei = (0, ..., 1, 0, ..., 0), i = 1, d.

General initial conditions have a form

y(0) = y0; x(0) = x0; u(0) = u0. (6)

Functions α(t), β(t), t > 0 are satisfying the relations α(t)→ 0, β(t)→ 0 (t→∞).

3. Main results.

Theorem 1. We assume the balance condition
∫
X
π(dx)a1(x) = 0 holds true, C(y, x) ∈

C(Rd,X, α(t) → 0, β(t) → 0 as t → ∞, and quality criterion G(y, u, x) ∈ C(Rd,X,Rd).
Then weak convergence

(yε(t), uε(t), ηε(t))⇒ (ŷ(t), û(t), η̂(t)), ε→ 0, (7)
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holds true, where limit process (ŷ(t), û(t), η̂(t)) is defined by the generator

Mϕ(y, u, w) = Lϕ(y, u, w) + Btϕ(y, u, w) (8)

where

Lϕ(y, u, w) = C(y)ϕ(y, u, w) + Γϕ(y, u, w),C(y)ϕ(y) = Ĉ(y)ϕ′(y), Ĉ(y) =

∫
X

π(dy)C(x, y),

Γϕ(u,w) = â2ϕ
′
w(u,w) +

1

2
σ2ϕ′′ww(u,w) +

∫
R

[ϕ(u,w + v)− ϕ(u,w)]Γ̂0(dv),

â2 =

∫
X

π(dx)(a2(x)− a0(x)), σ2 =

∫
X

π(dx)(b(x)− b0(x)) + 2

∫
X

π(dx)a1(x)R0a1(x),

a0(x) =

∫
R

vΓ0(dv, x), b0(x) =

∫
R

v2Γ0(dv, x), Γ̂0(v) =

∫
X

π(dx)Γ0(v, x),

Btϕ(y, u, w) = α(t)∇β(t)G(y, u)ϕ′u(y, u, w), ∇β(t)G(y, u) =

∫
X

∇β(t)G(y, u, x)π(dx).

Corollary 1. Limit process (ŷ(t), û(t)) for control problem (5), (6), (7), is determined by
stochastic differential equations

dŷ(t) = a(ŷ(t))dt+ dη((ŷ(t), û(t))), dû(t) = α(t)∇β(t)G(ŷ(t), û(t))dt,

under initial conditions (7).

Corollary 2. Assuming that an impulse perturbation process y(t), defined as series scheme
by the stochastic differential equation

dyε(t) = C(yε(t), x(t/ε2), uε(t))dt+ dηε(t, uε(t)),

with control determined by stochastic optimization procedure (5) and
{C(y, x, u), G(y, x, u)} ⊂ C2,0,2(Rd, X,Rd).

Then weak convergence (yε(t), uε(t)) ⇒ (ŷ(t), û(t)), ε → 0, holds true, where ε is small
enough, and the limit process (ŷ(t), û(t)) is determined by generator

A(y, u)ϕ(y, u) = a(y, u)ϕ′y(y, u) + α(t)∇β(t)G(y, u)ϕ′u(y, u), a(y, u) =

∫
X

π(dx)a(y, u, x),

on test functions ϕ(y, u) ∈ C3,2(Rd,Rd).

Lemma 1. Generator Lε(x) of problem (1), (5) under conditions of Theorem 1 has the
asymptotical representation

Lε(x)ϕ(y, u, w, x) = ε−2Qϕ(y, u, w, x) + ε−1Γ1(x)ϕ(y, u, w, x)+

+C(y)ϕ(y, u, w, x) + Bt(x)ϕ(y, u, w, x) + θ̂εw(x)ϕ(y, u, w, x),

where Bt(x)ϕ(y, u, w, x) = α(t)∇β(t)G(y, u, x)ϕ′u(y, u, w, x), and the remainder term θ̂εw sati-
sfies condition ‖θ̂εw(x)ϕ(y, u, w, x)‖ → 0 when ε→ 0.

The proof of Lemma 1 is performed according to the scheme as in [5].
We obtain the result of Theorem 1 as the solution of singular perturbation problem [6]

for generator Lε(x) at test functions [7]
ϕε(y, u, w, x) = ϕ(y, u, w) + εϕ1(y, u, w, x) + ε2ϕ2(y, u, w, x)

under conditions of Theorem 1.
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Theorem 2. We assume that the Lyapunov function V (y, u) of averaged system exists and

it has a form
du

dt
= G∗(y, u), where G∗(·, u) = grad G(·, u) =

{ ∂G
∂u1

, . . . ,
∂G

∂ud

}
for arbitrary

value of the process y and averaged quality function satisfies global Lipschitz condition

Y1: G∗(y, u)V ′(y, u) ≤ −c0V (y, u);

Y2: for β(t) > 0 |∇β(t)G(y, u)−G∗(y, u)| ≤ c2β(t), c2 > 0;

Y3: |∇β(t)G(y, x, u)R0[∇β(t)G̃(y, x, u)V ′(y, u)]′u| ≤ c1(1 + V (y, u)).

We assume further

F1:
∫ ∞

t0

α(t)dt =∞,
∫ ∞

t0

α(t)β(t)dt <∞.

Then for each ε small enough, for solution the control problem (5), (6) and for arbitrary
value of process y relation

P
{

lim
ε→0

uε(t) = u(y)
}

= 1

holds true.

Lemma 2. We have an asymptotical representation for a generator of control Bt(x)

Bt(x)V ε(y, u, w, x) = BtV (y, u) + εθu(x)V (y, u),

where ‖θu(x)V (y, u)‖ ≤M, M > 0, and

V ε(y, u, w, x) = V (y, u) + εV1(y, u, w, x) + ε2V2(y, u, w, x)

is the perturbed Lyapunov function.

Proof of Theorem 2. From Lemma 2 and conditions Y1, Y2 and Y3 we obtain estimation

Bt(x)V ε(y, u, w, x) ≤ −c0α(t)V (y, u) + c∗α(t)β(t)(1 + V (y, u)).

Then from condition F1 and Nevelson-Khasminskiy Theorem [9] we have Theorem 2.

Remark 1. Weak convergence of process (yε(t), uε(t), ηε(t)) ⇒ (ŷ(t), û(t), η̂(t)), ε → 0,
follows from convergence of the corresponding generators under condition of compactness of
pre-limited set of processes (yε(t), uε(t))). In particular, the corresponding theorems on the
compactness of processes with independent increments in Levy approximation scheme have
been proved in [4].

Remark 2. The stochastic optimization procedure for control u gives optimal value yu for
any impulse perturbation process y.

4. Conclusion. Weak convergence of stochastic processes is usually proved by checking the
two conditions: (a) tightness of the distributions of the converging processes which ensures
the existence of a converging subsequence and (b) uniqueness of the weak limit. The passage
to the limit can be done on the semigroups which correspond to the converging processes as
well as on appropriate generators.
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