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In this paper, we obtain two results on n-th power of a meromorphic function and its shift
operator sharing a small function together with a value which improve and complement some
earlier results. In particular, more or less we have improved and extended two results of Qi-
Yang [Meromorphic functions that share values with their shifts or their n-th order differences,
Analysis Math., 46(4)2020, 843-865] by dispelling the superfluous conclusions in them.

1. Introduction and definitions. Throughout the paper, a meromorphic function will
always mean meromorphic in the whole complex plane C. We will use the standard notati-
ons in Nevanlinna theory of meromorphic functions such as m(r, f), N(r, f) (N(r,∞; f)),
N(r, 1

f−a) (N(r, a; f)), T (r, f). By S(r, f) we mean a quantity satisfying S(r, f) = o(T (r, f))

as r −→ ∞ outside of a possible exceptional set E of finite linear measure. (see [4], [10]).
With the help of the standard notations we also would like to recall some important terms
namely order and hyper-order of f respectively defined as follows

ρ(f) = lim sup
r−→∞

log T (r, f)

log r
, ρ2(f) = lim sup

r−→∞

log log T (r, f)

log r
.

We say that a(z) is a small function of f(z) if T (r, a) = S(r, f). We denote by S(f) the
set of all small functions compared to f(z). Now we recall the following definition. For a
non-constant meromorphic function f and a ∈ C, let

Ef (a) = {(z, p) ∈ C× N : f(z) = a with multiplicity p}(
Ef (a) = {(z, 1) ∈ C× N : f(z) = a}

)
.

Then we say f , g share the value a CM (IM) if Ef (a) = Eg(a)
(
Ef (a) = Eg(a)

)
. For a =∞,

we define Ef (∞) := E1/f (0)
(
Ef (∞) := E1/f (0)

)
.

Especially, for a(z) ∈ S(f), if f − a(z) and g − a(z) share 0 IM, then we denote by
N

(k1,k2)
(r, 0, f − a(z); g − a(z)), the reduced counting function of common zeros of f − a(z)

and g − a(z) with multiplicities k1 and k2 respectively. Letting c ∈ C \ {0}, we define the
shift of f(z) by f(z + c).

2. Auxiliary and main results. In 2010, concerning set sharing for a finite order meromor-
phic function with its shift operator, Qi et al. [7] investigated the following theorem:
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Theorem A ([7]). Let f(z) be a non-constant meromorphic function of finite order, n ≥ 7
be an integer and let F = fn. If F (z) and F (z+ c) share a(z) ∈ S(f) \ {0} and∞ CM, then
f(z) = tf(z + c), for a constant t that satisfies tn = 1.

Two years later, Qi et al. [8] were able to reduce the cardinality of n in Theorem A from
7 to 4. In [8] the following result was proved.

Theorem B ([8]). Let f(z) be a non-constant meromorphic function of finite order, a(z) ∈
S(f) \ {0} be a periodic function with period c, n ≥ 4 be an integer, and let F = fn. If F (z)
and F (z + c) share a(z) and ∞ CM, then f(z) = tf(z + c), for a constant t that satisfies
tn = 1.

In 2017, using another method, Lu-Han [6] further reduced the cardinality of n up to 3.

Theorem C ([6]). Let f(z) be a non-constant meromorphic function of finite order. If f 3(z)
and f 3(z + c) share 1, ∞ CM, then f(z) = t1f(z + c), where t1 satisfy t31 = 1.

Recently, adopting the same procedure as in Theorem C, for meromorphic function of
ρ2 < 1, Qi-Yang [9] obtained the following theorem:

Theorem D ([9]). Let f(z) be a non-constant meromorphic function of ρ2(f) < 1, n ≥ 3 be
an integer and a (6= 0) ∈ C. If fn(z) and fn(z+c) share a and∞ CM, then f(z) = t1f(z+c)
or f(z) = t2f(z + 2c), where t1 and t2 satisfy tni = 1 (i = 1, 2).

Considering ρ2 < 1, using similar method as used in Theorem B, it is easy to prove the
following result, which actually shows that for n ≥ 4, only first conclusion of Theorem D
occurs.

Theorem 1. Let f(z) be a non-constant meromorphic function of ρ2(f) < 1, a(z) ∈ S(f) \
{0} be a periodic function with period c ( 6= 0), n ≥ 4 be an integer. If fn − a(z) and
fn(z + c)− a(z) share 0 CM and f(z), f(z + c) share ∞ CM, then f(z) ≡ t1f(z + c), where
t1 satisfies tn1 = 1.

The following corollary immediately holds.

Corollary 1. Let f(z) be a non-constant entire function of ρ2(f) < 1, a(z) ∈ S(f) \ {0} be
a periodic function with period c (6= 0), n ≥ 3 be an integer. If fn and fn(z + c) share a(z)
CM, then f(z) ≡ t1f(z + c), where t1 satisfies tn1 = 1.

As our prime motto is to get the uniqueness result and discard the more conclusions,
thereby we investigated about the nature of conclusions in Theorem D.

Remark 1. Suppose, conclusion 1 : f(z) = t1f(z + c) where t1 satisfy tn1 = 1,
conclusion 2 : f(z) = t2f(z + 2c) where t2 satisfy tn2 = 1.

We can easily show that conclusion 1 implies conclusion 2 for all n ≥ 1. Suppose conclusi-
on 1 holds. Then f(z + c) = t1f(z + 2c) =⇒ f(z) = t21f(z + 2c) where t1 satisfies tn1 = 1.
Obviously f(z) = t2f(z + 2c) where t21 = t2 which satisfies (t21)

n = 1. Hence conclusion 2
holds.

For n = 1, conclusion 2 implies conclusion 1 only if f(z) is a function of period c.
Next we consider the case n = 2. Let f(z) =

√
2 sin(πz

2c
). Then f(z + c) =

√
2 cos(πz

2c
) and

f(z+2c) = −
√

2 sin(πz
2c

). Though f and f(z+ c) share the set {1,−1} CM and conclusion 2
holds but conclusion 1 does not hold.
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In view of Remark 1 we know that the second conclusion of Theorem D is enough to
concede but it remains an open question about the validity of Theorem 1 for the case n = 3
under the same conclusion. But unfortunately we could not succeed.

Regarding sharing a set of two small functions, by a finite order entire function with its
shift operator, we recall a result of [5].

Theorem E ([5]). Let f(z) be a transcendental entire function of finite order, c ∈ C\{0}, and
let a(z) ∈ S(f) be a non-vanishing periodic entire function with period c. If f(z) and f(z+c)
share the set {a(z),−a(z)} CM, then f(z) must be take one of the following conclusions:
1. f(z + c) = ±f(z); 2. f(z) = h1(z)+h2(z)

2
, where h1(z+c)

h1(z)
= −eγ, h2(z+c)

h2(z)
= eγ, h1(z)h2(z) =

(a(z))2 (1− e−2γ) and γ is a polynomial.

For an entire function with ρ2(f) < 1 sharing set with its shift operator Qi-Yang [9]
investigated the following theorem:

Theorem F ([9]). Let f(z) be a non-constant entire function of ρ2(f) < 1, n ≥ 2 be an
integer and a (6= 0) ∈ C. If fn(z) and fn(z + c) share a CM, then f(z) = t1f(z + c) or
f(z) = t2f(z + 2c), where t1 and t2 satisfy tni = 1 (i = 1, 2).

Remark 2. Using two basic lemmas [see Lemmas 1, 3] related to ρ2(f) < 1 one can easily
prove that for ρ2(f) < 1, Theorem E is also valid, the only difference is γ, will be an entire
function with ρ(γ) < 1. For the case n = 2 in Theorem F, by a simple calculation, we can
show that the conclusions of Theorem E are same as in Theorem F. For sake of convenience
we explain it. Since f is entire function of ρ2(f) < 1 and f , f(z+c) share the set {a(z),−a(z)}
CM, so

(f(z + c)− a(z))(f(z + c) + a(z))

(f − a(z))(f + a(z))
= e2γ(z),

γ being an entire function with ρ(γ) < 1. From conclusion (2) of Theorem E we have h1(z+
c)h2(z+c) = −e2γ(z)h1(z)h2(z). i.e., a2(z+c)(1−e−2γ(z+c)) = −e2γ(z)a2(z)(1−e−2γ(z)). Since
a(z) is non-vanishing periodic function with period c, so the above implies e2γ(z)+2γ(z+c) = 1,
that yields 2γ(z + c) + 2γ(z) = 2kπi, where k is an integer. If γ is transcendental, so by
Lemma 5, stated afterwards, ρ(γ) ≥ 1, which is not possible. Therefore γ must be constant
and so e4γ = 1. i.e., e2γ = ±1. So when e2γ = 1 we get the first conclusion of Theorem F,
where as when e2γ = −1 we can have f 2(z + c) = 2a2(z) − f 2(z), i.e., f 2(z + 2c) = f 2(z),
which gives the second conclusion of the same theorem.

When n ≥ 3, in view of Remark 1 from Theorems F and Corollary 1, for entire function
of hyper-order < 1, it is clear that conclusion 1 and conclusion 2 are equivalent. As in
Corollary 1 we obtain conclusion 1 under the more generalized sharing structure, so it is an
improvement of Theorem F for n ≥ 3. Also from the discussion in Remark 1, we know that
in Theorem F, for n = 2, conclusion 1 is no longer required where as from Remark 2 we
know this case can be obtained from Theorem E under some manipulations of the previous
results.

We also observe that the first conclusion in Theorem F is more specific as it indicates
the straight forward relation between one function and its shift operator, natural questions
appear:

i) Is it possible to omit the second conclusion?

ii) What happens when the CM sharing is changed to IM sharing?
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In connection to these two questions we will show that at the expense of allowing the
sharing of the set 0 IM the relaxation of sharing from CM to IM in Theorems E, F is
achievable. With regard to this we have the following theorem:

Theorem 2. Let n ≥ 2, f be an entire function. If fn and fn(z + c) share a(z), 0 IM, then
f(z) ≡ t1f(z + c), where t1 satisfies tn1 = 1.

By a well-known example, for n = 2 we can show that 0 sharing in Theorem 2 can not
be removed.

Example 1. Let f(z) = sin(πz
2c

). Then f(z + c) = cos(πz
2c

). We know that f and f(z + c)
share the set { 1√

2
,− 1√

2
} CM but not share the value 0 and f(z + c) 6= ±f(z).

3. Lemmas. Now we need the following lemmas to proceed further.

Lemma 1 ([3]). Let f(z) be a meromorphic function of ρ2(f) < 1 and c ∈ C \ {0}. Then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f).

Lemma 2 ([3]). Let T : [0,+∞) → [0,+∞) be a non-decreasing continuous function, and
let s ∈ (0,+∞). If the hyper-order of T is strictly less than 1, i.e.,

lim sup
r−→∞

log log T (r)

log r
= ρ2 < 1,

and δ ∈ (0, 1 − ρ2), then T (r + s) = T (r) + o(T (r)
rδ

), as r → ∞ outside of a set of finite
logarithmic measures.

Using this lemma by a simple alteration of the result for finite order meromorphic functi-
ons in [2], one can have the following lemma.

Lemma 3. Let f(z) be a meromorphic function of ρ2(f) < 1, then we have
N(r, f(z + c)) = N(r, f) + S(r, f), T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 4 ([11]). Let f(z) be a non constant meromorphic function in the complex plane, and
let R(f) = P (f)

Q(f)
, where P (f) =

∑p
k=0 ak(z)f

k, Q(f) =
∑q

j=0 bj(z)f
j are two mutually prime

polynomials in f . If the coefficients ak(z) for k ∈ {0, 1, . . . , p} and bj(z) for j ∈ {0, 1, . . . , q}
are small functions of f with ap(z) 6≡ 0 and bq(z) 6≡ 0, then

T (r, R(f)) = max{p, q}T (r, f) + S(r, f).

Lemma 5 ([1]). Let h2(z) (6≡ 0), h1(z), F (z) be polynomials, c2, c1 ( 6= c2) be constants.
Suppose that f(z) be a transcendental meromorphic solution of the difference equation

h2(z)f(z + c2) + h1(z)f(z + c1) = F (z).
Then, ρ(f) ≥ 1.

4. Proofs of the theorems.

Proof of Theorem 1. Let F = fn. As ρ2(f) < 1, so obviously ρ2(F ) < 1 and by Lemma 3,
ρ2(F (z + c)) < 1. Again since F and F (z + c) share a(z) CM and ∞ CM, therefore

F (z + c)− a(z)
F − a(z)

= eδ(z), (1)
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where δ(z) is an entire function. Now, by Lemma 1 we obtain that

T (r, eδ(z)) = m(r, eδ(z)) = m

(
r,
F (z + c)− a(z + c)

F − a(z)

)
= S(r, F ).

Rewriting (1) we have F (z+ c) = eδ(z)[F −a(z)(1− e−δ(z))]. If possible let eδ(z) 6≡ 1. Then by
the Second Fundamental Theorem for small functions and using Lemma 3 we deduce that

nT (r, f) = T (r, F ) ≤ N(r, F ) +N

(
r,

1

F

)
+N

(
r,

1

F − a(z)(1− e−δ(z))

)
+ S(r, F ) ≤

≤ N(r, F ) +N

(
r,

1

F

)
+N

(
r,

1

F (z + c)

)
+ S(r, F ) ≤ N(r, f) +N

(
r,

1

f

)
+

+N

(
r,

1

f(z + c)

)
+ S(r, f) ≤ 2T (r, f) + T (r, f(z + c)) + S(r, f) ≤ 3T (r, f) + S(r, f),

which contradicts to n ≥ 4. Therefore eδ(z) ≡ 1, which yields F (z + c) ≡ F . i.e., f(z) ≡
t1f(z + c), where t1 satisfies tn1 = 1.

Proof of Corollary 1. Proceeding in a similar way as used to prove Theorem 1, we have

nT (r, f) ≤ N(r, f) +N

(
r,

1

f

)
+N

(
r,

1

f(z + c)

)
+ S(r, f).

Since f is entire, so here nT (r, f) ≤ 2T (r, f) + S(r, f), that contradicts to n ≥ 3. Hence the
conclusion holds.

Proof of Theorem 2. For n ≥ 2, suppose F = fn and F (z + c) 6≡ F . Take

α(z) =
P1(F )[(F (z + c))− F ]

F (F − a(z))
, β(z) =

P1(F (z + c))[(F (z + c))− F ]

F (z + c)(F (z + c)− a(z))
,

where P1(F ) = a(z)F ′ − a′(z)F and P1(F (z + c)) is defined similarly. Clearly α(z) 6≡ 0 as
well as β(z) 6≡ 0 as P (F ) and P (F (z + c)) are not equivalent to 0. On the contrary, if they
are equivalent to zero then by a simple integration we can show that T (r, f) = S(r, f) and
T (r, f(z + c)) = S(r, f), which is not possible.

Now by Lemma 1, we obtain

m(r, α(z)) = m

(
r,
P1(F )[(F (z + c))− F ]

F (F − a(z))

)
≤ m

(
r,

P1(F )

F − a(z)

)
+

+m

(
r,
F (z + c)

F
− 1

)
+O(1) ≤ m

(
r,
F ′a(z)− Fa′(z)

F − a(z)

)
+ S(r, F ) =

= m

(
r,
a(z)(F ′ − a′(z))

F − a(z)
− a′(z)

)
+ S(r, F ) = S(r, F ). (2)

Similarly we can obtain

m(r, β(z)) = S(r, F ). (3)

Let z0 be a zero of F with multiplicity k1 such that a(z0) 6= 0. Since F and F (z + c) share
the set {0} IM, so z0 is also a zero of F (z + c) with multiplicity k2 (say). Then as n ≥ 2,
z0 is zero of α(z) as well as β(z) with multiplicity at least min{k1, k2} − 1 (≥ 1). So we can
write

N
(
r,

1

F

)
≤ N

(
r,

1

α(z)

)
+N

(
r,

1

a(z)

)
≤ N

(
r,

1

α(z)

)
+ S(r, F ). (4)
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Now, let z1 be a zero of F − a(z) with multiplicity l1 such that a(z1) 6= 0. Since F and
F (z+ c) share a(z) IM, so z1 is also a zero of F (z+ c)−a(z) with some multiplicity l2 (say).
Then clearly z1 is zero of α(z) as well as zero of β(z) with multiplicity at least min{l1, l2}−1
and

α(z1) = l1

[
(F (z + c))− F

z − z1

]
z=z1

and β(z1) = l2

[
(F (z + c))− F

z − z1

]
z=z1

. (5)

Thus no zeros of F and F − a(z) are poles of α(z) as well as β(z) as long as they are not
zeros of a(z). So we have

N(r, α(z)) ≤ N
(
r,

1

a(z)

)
= S(r, F ) and similarly N(r, β(z)) = S(r, F ). (6)

Therefore by (2), (3) and (6) we get

T (r, α(z)) = S(r, F ) and T (r, β(z)) = S(r, F ). (7)

So from (4) and (7) we have

N
(
r,

1

F

)
= S(r, F ). (8)

By the Second Fundamental Theorem, it follows that, T (r, F ) ≤ N(r, F ) + N(r, 1
F
) +

N(r, 1
F−a(z)) + S(r, F ) ≤ N(r, 1

F−a(z)) + S(r, F ) ≤ T (r, F ) + S(r, F ), i.e.,

N
(
r,

1

F − a(z)

)
= T (r, F ) + S(r, F ). (9)

First suppose, for two positive integers l1 and l2, l2α(z)− l1β(z) 6= 0. From (5) it can be
written that

N (l1,l2)(r, 0, F − a(z);F (z + c)− a(z)) + S(r, F ) ≤

≤ N
(
r,

1

l2α(z)− l1β(z)

)
≤ T (r, α(z)) + T (r, β(z)) + S(r, F ) = S(r, F )

and so from (7) and (9) we have

T (r, F ) = N
(
r,

1

F − a(z)

)
+ S(r, F ) =

∑
l1+l2≥3

N (l1,l2)(r, 0, F − a(z);F (z + c)− a(z))+

+S(r, F ) ≤ 1

2

∑
l1+l2≥3

[ 1

l1
N
(
r, 0;F − a(z) |≥ l1

)
+

1

l2
N (r, 0;F (z + c)− a(z) |≥ l2)

]
+

+S(r, F ) ≤ 3

4
T (r, F ) + S(r, F ),

a contradiction, where by N (r, 0;F − a(z) |≥ n) we mean the counting function of zeros of
F − a(z) with multiplicity ≥ n.

Next suppose l2α(z) = l1β(z). If l1 = l2 = 0, then F − a(z) and F (z + c) − a(z) has no
zeros, and then (9) yields T (r, F ) = S(r, F ), a contradiction. So let l1, l2 6= 0. Integrating
we have (F−a(z)

F
)l2 = A(F (z+c)−a(z)

F (z+c)
)l1 , where A( 6= 0) is an integrating constant. By Lemma 3

and Lemma 4, it is obvious that l1 = l2, which follows that there exists a nonzero constant
B such that F−a(z)

F
= B F (z+c)−a(z)

F (z+c)
.
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Since F (z + c) 6= F , so B 6= 1. Therefore a(z)
1−B 6= 0. Rewriting the above equation we get

(F (z + c)− a(z))
(
F − a(z)

1−B

)
+

a(z)

1−B
(F − a(z)) = 0,

i.e., F − a(z)
1−B = a(z)

B−1
F−a(z)

F (z+c)−a(z) , which yields zeros of F − a(z)
1−B come from either zeros of

a(z) or zeros of F − a(z). The second case is possible if a(z)
1−B is Picard’s exceptional value.

Therefore N
(
r, 1

F− a(z)
1−B

)
= S(r, F ). By the Second Fundamental Theorem of small functions

we get

2T (r, F ) ≤ N(r, F ) +N
(
r,

1

F

)
+N

(
r,

1

F − a(z)

)
+N

(
r,

1

F − a(z)
1−B

)
+ S(r, f) ≤

≤ N
(
r,

1

F

)
+N

(
r,

1

F − a(z)

)
+ S(r, F ),

which in view of (8) and (9) is a contradiction. Therefore we must have F (z+c) ≡ F (z).
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