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The Laguerre transform is applied to the convolution product of functions of a real argument
(over the time axis) with values in Hilbert spaces. The main results have been obtained by
establishing a relationship between the Laguerre and Laplace transforms over the time variable
with respect to the elements of Lebesgue weight spaces. This relationship is built using a special
generating function. The obtained dependence makes it possible to extend the known properties
of the Laplace transform to the case of the Laguerre transform. In particular, this approach
concerns the transform of a convolution of functions.

The Laguerre transform is determined by a system of Laguerre functions, which forms
an orthonormal basis in the weighted Lebesgue space. The inverse Laguerre transform is
constructed as a Laguerre series. It is proven that the direct and the inverse Laguerre transforms
are mutually inverse operators that implement an isomorphism of square-integrable functions
and infinite squares-summable sequences.

The concept of a q-convolution in spaces of sequences is introduced as a discrete analogue of
the convolution products of functions. Sufficient conditions for the existence of convolutions in
the weighted Lebesgue spaces and in the corresponding spaces of sequences are investigated. For
this purpose, analogues of Young’s inequality for such spaces are proven. The obtained results
can be used to construct solutions of evolutionary problems and time-dependent boundary
integral equations.

1. Introduction. Convolution products are widely used in representation formulas for soluti-
ons of problems for differential equations (see, for example, [4, 21, 24]). Convolutions are
also dealt with in integral equations of various kinds. Therefore, the development of efficient
approaches to performing operations on the convolution products is an actual problem in
applied researches. In particular, this concerns of the convolution products of vector-valued
functions of a real variable in the evolution problems.

Recall that the convolution product of integrable scalar functions f : R → C and g : R →
C is defined as follows:

u(t) = (f ∗ g)(t) :=
∫
R

f(t− s)g(s)ds, t ∈ R. (1)

If f(t) = 0 and g(t) = 0 for t < 0, then we have (f ∗ g)(t) = 0 for t ≤ 0 and

(f ∗ g)(t) =
t∫

0

f(t− s)g(s)ds, t > 0. (2)
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In practical computations, especially in the case of vector-valued functions, the integral (2)
requires special methods (for comprehensive reviews of this issue, see [9, 17, 21]). One of such
approaches is based on integral transforms over the time variable and leads to expressions
with algebraic operations on the corresponding images of functions. In particular, in the case
of the Laplace transform, we deal with the product of images. However, the use of the Laplace
transform is limited due to the computational complexity of the inverse transform. In this
respect, the Laguerre transform [11, 12] is seen more constructive, since its inverse transform
consists in summing a series with orthonormal functions. As a result, this transform may
serve as the foundation of efficient algorithms for calculating convolutions.

The first examples [3, 19] (known to the author), where the Laguerre transform was
applied to the convolutions of the functions of several variables, were related to the retarded
single layer potentials. In the works [13, 14] this approach was also extended to the retarded
double layer potentials, and the convergence of the Laguerre series, related to the Laguerre
transform, was investigated in the corresponding spaces of vector-valued functions. We also
note here other applications of the Laguerre transform that are not related to the direct
use of the convolution product of functions. In particular, it was used to reduce evolution
problems to boundary value problems for infinite systems of elliptic equations (for details,
see [2, 6, 7, 10, 15, 22] and references therein).

This paper is concerned with new properties of the Laguerre transform. We generalize
the Laguerre transform using an orthonormal base composed of the Laguerre functions, and
establish a relation between this transform and the Laplace transform. As a result, some
known properties of the Laplace transform are extended to the Laguerre transform.

The aim of this paper is to obtain and to prove the representation formula for the coeffi-
cients of the Laguerre series, which is an expansion of the convolution product of the vector-
valued functions. The definitions of required functional spaces and the integral transforms
of their elements are given in Section 2. In Section 3 the relation between the Laguerre
transform and the Laplace transform is established. In Section 4 the sufficient conditions for
existence of the convolution in the Lebesgue spaces are considered and here our main results
are stated and proved about the Laguerre transform of the convolution of the vector-valued
functions.

2. Definitions of Laguerre and Laplace transforms of elements of the space
L2
α(R+;X). Let X be a complex Hilbert space equipped with the inner product (·, ·)X and the

induced norm ∥·∥X :=
√

(·, ·)X , and let α ≥ 0 be an arbitrary fixed number, R+ := (0,+∞).

2.1. Definitions of the space L2
α(R+;X) and Laplace transform of its elements. By

L2
α(R+;X) we mean the Hilbert space of measurable functions f : R → X such that f(t) = 0

for t < 0 and ∫
R+

∥f(t)∥2X e−αtdt < ∞,

with the inner product

(f, g)L2
α(R+;X) =

∫
R+

(
f(t), g(t)

)
X
e−αtdt, f, g ∈ L2

α(R+;X), (3)

and the induced norm

∥f∥L2
α(R+;X) =

√
(f, f)L2

α(R+;X), f ∈ L2
α(R+;X). (4)
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The Laplace transform of f ∈ L2
α(R+;X) is a function of a complex variable

(Lf)(p) ≡ f̂(p) :=

∫
R+

e−iηt
(
e−ξtf(t)

)
dt =

∫
R+

e−ptf(t)dt, p = ξ+ iη ∈ C, Re p = ξ > α/2, (5)

obtained as a result of the composition of operations of multiplication of this function by
e−ξ· and the Fourier transform (with η variable).

Let Π := {p ∈ C
∣∣Re p > α/2} be an open complex half-plane and Π := {p ∈ C

∣∣Re p ≥
α/2} be the closure of Π. By L2

α(Π;X) := L
(
L2

α(R+;X)
)

we denote the image of the Laplace
transform of the space L2

α(R+;X). As known, the set L2
α(Π;X) consists of functions p →

f̂(p), which are holomorphic in Π and are continuous on Π, and, moreover, satisfy some
growth conditions at infinity.

For any function f ∈ L2
α(R+;X) and for each ξ > α/2 the function η 7→ f̂(ξ+ iη) belongs

to the space L2(R;X), so the inverse Fourier transform is available

e−ξtf(t) =
1

2π

+∞∫
−∞

eiηt
[ +∞∫

0

e−iηse−ξsf(s)ds

]
dη, t ∈ R+.

Hence

f(t) =
1

2π

+∞∫
−∞

e(ξ+iη)t

[ +∞∫
0

e−(ξ+iη)sf(s)ds

]
dη =

1

2πi

∫
ξ+iR

ept f̂(p) dp, t ∈ R+.

It follows that the inverse Laplace transform can be defined on the set L2
α(Π;X):

f(t) ≡ (L−1f̂)(t) :=
1

2πi

∫
ξ+iR

ept f̂(p) dp, t ∈ R+, ξ > α/2. (6)

Note that the inverse Laplace transform does not depend on the choice of the value of ξ,
which determines the line along which integrate by the formula (6).

It is known (see, for example [8, formula (49)] ), that the Parseval-Plancherel equality
holds for arbitrary f, g ∈ L2

α(R+;X):

1

2π

∫
γ/2+iR

(
f̂(p), ĝ(p)

)
X
dp =

∫
R+

e−γt
(
f(t), g(t)

)
X
dt, γ > α. (7)

In particular, from this we have

1

2π

∫
γ/2+iR

∥f̂(p)∥2X dp =

∫
R+

e−γt∥f(t)∥2Xdt, γ > α. (8)

Hence it follows that for each f, g ∈ L2
α(R+;X) we have

(f, g)L2
α(R+;X) =

1

2π

∫
α/2+iR

(
f̂(p), ĝ(p)

)
X
dp, ∥f∥L2

α(R+;X) =

[
1

2π

∫
α/2+iR

∥f̂(p)∥2X dp

]1/2
.
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For any m ∈ N we define the weighted Sobolev space:

Hm
α (R+;X) :={f ∈ L2

α(R+;X)| f (k) ∈ L2
α(R+;X), k = 1,m}, (9)

with standard norm

∥f∥Hm
α (R+;X) =

[ m∑
k=0

||f (k)||2L2
α(R+;X)

]1/2
, f ∈ Hm

α (R+;X). (10)

Here and in what follows, f (k) denotes the k-order derivative of the function f ∈ L2
α(R+;X)

in the sense of the space D′(R;X) of X-values distributions over R. It is known, that for
any function f ∈ Hm

α (R+;X) and any point t0 ∈ [0,+∞) there exist the traces f(t0) ∈
X, ..., f (m−1)(t0) ∈ X, moreover f(0) = 0, ..., f (m−1)(0) = 0. In the space Hm

α (R+;X) we
consider, in addition to the standard norm, another one

|f |α,m,X =

[
1

2π

∫
α/2+iR

(1 + |p|2)m∥f̂(p)∥2X dp

]1/2
, f ∈ Hm

α (R+;X). (11)

Lemma 1. For any m ∈ N the norms | · |α,m,X and ∥ · ∥Hm
α (R+;X) are equivalent in the space

Hm
α (R+;X), that is, the following inequality holds

2−m/2|u|α,m,X ≤ ∥u∥Hm
α (R+;X) ≤ |u|α,m,X , u ∈ Hm

α (R+;X). (12)

Proof. Let k ∈ {1, ...,m}. Taking into account the well-known property of the Laplace
transform û(k)(p) = pkû(p), we can write

∥u(k)∥L2
α(R+;X) =

[
1

2π

∫
α/2+iR

∥pkû(p)∥2X dp

]1/2
=

[
1

2π

∫
α/2+iR

|p|2k∥û(p)∥2X dp

]1/2
.

This leads to the new representation of the standard norm

∥u∥2Hm
α (R+;X) =

1

2π

∫
α/2+iR

[
1 +

m∑
k=1

|p|2k
]
∥û(p)∥2X dp. (13)

Using the binomial formula and the equality
∑m

j=0 C
j
m = 2m it is easy to check that the

following inequality holds for an arbitrary a ≥ 0

2−m(1 + a)m ≤
m∑
k=0

ak ≤ (1 + a)m. (14)

Provided a = |p|2 in (14), we obtain

2−m

2π

∫
α/2+iR

(1 + |p|2)m∥û(p)∥2Xdp ≤ 1

2π

∫
α/2+iR

[ m∑
k=0

|p|2k
]
∥û(p)∥2Xdp ≤ (15)

≤ 1

2π

∫
α/2+iR

(1 + |p|2)m∥û(p)∥2Xdp,

whence the inequality (12) follows directly.
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Lemma 2. For f ∈ L2
α(R+;X) and δ > 0 the following inequality holds

∥f̂(p)∥X ≤ 1√
2δ

∥f∥L2
α(R+;X), Re p ≥ α/2 + δ. (16)

Proof. Let f ∈ L2
α(R+;X) and p = ξ + iη, where ξ, η ∈ R, ξ > α/2 + δ. Using the

Cauchy–Bunyakovsky inequality and the equality |e−iη| = 1 leads to the required estimate:

∥f̂(p)∥X =

∥∥∥∥∫
R+

e−iηte−ξtf(t)dt

∥∥∥∥
X

6
∫
R+

|e−iηt| e−(ξ−α
2
)te−

α
2
t∥f(t)∥X dt 6

≤
[ ∫
R+

e−2δtdt

]1/2[ ∫
R+

e−αt∥f(t)∥2X dt

]1/2
=

1√
2δ

∥f∥L2
α(R+;X).

2.2. Vector sequences and their convolutions. Let X, Y , Z be complex Hilbert spaces
and let q : X×Y → Z be a continuous sesquilinear map, namely, there exists constant K > 0
such that

∥q(u, v)∥Z ≤ K∥u∥X∥v∥Y ∀u ∈ X, ∀v ∈ Y. (17)

Let N0 := N ∪ {0}. Consider a space of the vector sequences

l2(X) :=

{
f = (f0, f1, ..., fk, ... )

⊤ ∈ XN0 |
∞∑
k=0

∥fk∥2X < ∞

}
,

with the inner product and the induced norm

(f ,g) =
∞∑
k=0

(fk, gk)X , ∥f∥l2(X) :=

[ ∞∑
k=0

∥fk∥2X
]1/2

, f ,g ∈ l2(X).

Definition 1 ([16]). By a q-convolution of the sequences f ∈ XN0 and g ∈ Y N0 we mean
a sequence h := (h0, h1, ..., hj, ...)

⊤ ∈ ZN0 , where

hj :=

j∑
i=0

q (fj−i, gi) ≡
j∑

i=0

q (fi, gj−i) , j ∈ N0. (18)

To shorten notation, the q-convolution of the sequences f and g is written in the form

h = f ◦
q
g.

Lemma 3. Let f ∈ XN0 and g ∈ Y N0 . Then following equalities hold

Θn :=
n∑

j=0

j∑
i=0

q(fj−i, gi) =
n∑

j=0

q

(
fn−j,

j∑
i=0

gi

)
=

n∑
j=0

q

( j∑
i=0

fi, gn−j

)
, n ∈ N0. (19)
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Proof. We begin by proving the first equality. By making the substitution m = j − i and
then reversing the order of summation, one finds that

Θn =
n∑

j=0

j∑
m=0

q(fm, gj−m) =
n∑

m=0

n∑
j=m

q(fm, gj−m) =
n∑

m=0

q

(
fm,

n∑
j=m

gj−m

)
, n ∈ N0.

Sequential substituting i = j −m and j = n−m yields

Θn =
n∑

m=0

q

(
fm,

n−m∑
i=0

gi

)
=

n∑
j=0

q

(
fn−j,

j∑
i=0

gi

)
, n ∈ N0.

The proof of the second equality

Θn =
n∑

j=0

q

( j∑
i=0

fi, gn−j

)
, n ∈ N0,

is similar.

2.3. Definition of Laguerre transform based on Laguerre functions. We recall that
Laguerre polynomials can be written in the form [11, 23]

Ln(t) =
n∑

k=0

(−1)k
n! tk

(k!)2(n− k)!
, t ∈ R+, n ∈ N0. (20)

This polynomials form an orthonormal basis in L2
1(R+;C).

Let us define the Laguerre functions through the Laguerre polynomials by the formula

ln(t) =
√
σLn(σt) e

−β
2
t, t ∈ R+, n ∈ N0, (21)

where β > 0 is an arbitrary constant and σ := α+ β.

Proposition 1 ([18]). The system of Laguerre functions forms an orthonormal basis in the
space L2

α(R+;C).

Consider the Laguerre transform of vector-valued functions, based on the Laguerre functi-
ons.

Theorem 1. The following assertions are true:

1◦. A mapping L : L2
α(R+;X) → XN0 , that matches any function f ∈ L2

α(R+;X) to the
sequence f = (f0, f1, ..., fk, ... )

⊤ ∈ XN0 by the formula

fk ≡
(
Lf
)
k
:=

∫
R+

f(t) lk(t) e
−αtdt, k ∈ N0, (22)

is injective and has the space l2(X) as an image. Moreover,

∥f∥L2
α(R+;X) = ∥f∥l2(X), (23)

namely, the mapping L : L2
α(R+;X) → l2(X) is isometric.
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2◦. A mapping L−1 : l2(X) → L2
α(R+;X), that matches any sequence h = (h0, h1, ...,

hk, ... )
⊤ ∈ l2(X) to the function h ∈ L2

α(R+;X) by the formula

h(t) ≡ (L−1h)(t) :=
∞∑
k=0

hk lk(t), t ∈ R+, (24)

is injective and has the space L2
α(R+;X) as an image. Moreover,

∥h∥l2(X) = ∥h∥L2
α(R+;X), (25)

namely, the mapping L−1 : L2
α(R+;X) → l2(X) is isometric.

3◦. Let f ∈ L2
α(R+;X). Then

L−1Lf = f, (26)

namely, mappings L and L−1 are mutually inverse operators.

Proof. The proof of this theorem completely repeats the path of the proof of Theorem 2 in
[13]. In this case the only difference is in the use of an orthonormal basis formed not from
the Laguerre polynomials, but from the Laguerre functions.

Definition 2. The mappings

L : L2
α(R+;X) → l2(X) and L−1 : l2(X) → L2

α(R+;X),

referred to in the Theorem 1, we call the direct and inverse Laguerre transform respectively,
and (25) is referred to as the Parseval equality.

3. The relationship between the Laguerre and Laplace transforms.
Let f ∈ L2

α(R+;X) and f := Lf . Then we define a sequence f∗ by the rule

f∗
0 =

f0√
σ
, f ∗

n =
fn − fn−1√

σ
, n ∈ N. (27)

Since f ∈ l2(X), we have f∗ ∈ l2(X).
Consider the vector-valued function of a complex variable

Gf (z) :=
∞∑
n=0

f ∗
nz

n, z ∈ C, |z| < 1. (28)

Note that it is holomorphic in the unit disk D := {z : |z| < 1}, because the sequence
(∥f0∥X , ∥f1∥X , ..., ∥fk∥X , ... )⊤ is bounded. The following lemma is a standard exercise.

Lemma 4. The linear fractional transformation

p =
α+ β

2
(1 + z)

1− z
, (29)

maps the disk D on to the half-plane Re p > α/2 conformally.

Theorem 2. For any f ∈ L2
α(R+;X) the following equality holds

Gf (z) = f̂(p), |z| < 1, Re p > α/2, (30)

where variables p and z are related by the formula (29).
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Proof. Here we generalize the method of proof that was used in [11] in the case of simpler
basic functions. Consider the function

d(z, t) := eζ(z)t, |z| < 1, t ≥ 0, (31)

where

ζ(z) := −
γz + β

2

1− z
, γ := α+ β/2. (32)

Notice that

Re ζ(z) =
α(|z|2 − Re z) + β

2
(|z|2 − 1)

|z|2 − 2Re z + 1
.

We first prove that the following equality holds in L2
α(R+;C)

∞∑
n=0

ln(·)zn =

√
σ

1− z
d(z, ·), |z| < 1. (33)

It is easy to compute that

2Re ζ(z)− α =
(α+ β)(|z|2 − 1)

|z|2 − 2Re z + 1
< 0, |z| < 1.

So that, taking into account the equality |ez|2 = e2Re z, for any z, |z| < 1, we obtain∫
R+

|d(z, t)|2 e−αtdt =

∫
R+

e(2Re ζ(z)−α)tdt < ∞, |z| < 1. (34)

That means d(z, ·) ∈ L2
α(R+;C), therefore the Laguerre transform is applicable to this fun-

ction. Since ζ(z)− β
2
− α = − σ

1−z
, we obtain(

Ld(z, ·)
)
n
:=

∫
R+

d(z, t) ln(t) e
−αtdt =

√
σ

∫
R+

e−
σt
1−zLn(σt)dt, n ∈ N0.

By making the substitution τ = σt and then using the formula [1, 4.11.25]∫
R+

e−bτLn(τ)dτ =
(b− 1)n

bn+1
, Re b > 0, n ∈ N0,

with b = 1
1−z

(note that Re b = 1−Re z
|z|2−2Re z+1

> 0) we deduce that

(
Ld(z, ·)

)
n
=

1√
σ

∫
R+

e−
τ

1−zLn(τ)dτ =
1√
σ

zn(1− z)n+1

(1− z)n
=

1− z√
σ

zn, |z| < 1, n ∈ N0.

So, for an arbitrary point z from the disk D the expression in the left hand side of equation
(33) is the Laguerre expansion of the function

√
σ

1−z
d(z, ·).

Let GN
f denote the particular sun of expansion (28) with N+1 terms. Taking into account

(27) we can write

GN
f (z) =

N∑
n=0

f∗
nz

n =
1− z√

σ

N−1∑
n=0

fnz
n +

1√
σ
fNz

N , |z| < 1. (35)
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Let as substitute the representation (22) of Laguerre coefficients fn, n ∈ {0, 1, ..., N − 1},
into (35) and swap the operations of summation and integration:

GN
f (z) =

1− z√
σ

N−1∑
n=0

zn
∫
R+

f(t) ln(t) e
−αtdt+

1√
σ
fNz

N =

=
1− z√

σ

∫
R+

f(t)

[N−1∑
n=0

zn ln(t)

]
e−αt dt+

1√
σ
fNz

N , |z| < 1. (36)

Let N → ∞. Due to the limit ∥fN∥X →
N→∞

0, using of formula (33) gives

GN
f (z) →

N→∞
F (z) :=

∫
R+

f(t)e(ζ(z)−α)t dt, |z| < 1, (37)

whence, since ζ(z)− α = −α+β
2
(1+z)

1−z
, the equality (30) follows at once.

4. Laguerre transform of convolution of vector-valued functions. Consider the
convolution of the functions f ∈ L2

α(R+;X) and g ∈ L2
α(R+;Y ) in the form

(f ∗
q
g)(t) :=

t∫
0

q
(
f(t− s), g(s)

)
ds, t ∈ R+. (38)

Theorem 3. Suppose that

f ∈ L2
α(R+;X), g ∈ L2

α(R+;Y ), and f ∗
q
g ∈ L2

α(R+;Z).

Then the following equality holds

L(f ∗
q
g) = f∗ ◦

q
g ∈ l2(Z), (39)

where f := Lf and g := Lg, and the sequence f∗ is created from elements of the sequence f
by the rule (27).

Proof. By the formula [5, (2.25)] the following equality holds

(̂f ∗
q
g)(p) = q

(
f̂(p), ĝ(p)

)
, Re p > α/2. (40)

Hence, using (30), we get

Gf ∗
q
g(z) = q

(
Gf (z), Gg(z)

)
, |z| < 1, (41)

therefore
∞∑

m=0

(f ∗
q
g)∗m zm = q

( ∞∑
i=0

f ∗
i z

i ,
∞∑
j=0

g∗j z
j

)
, |z| < 1.
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Let us rewrite the expression in the right-hand side of this equality in the form of a power
series and equate the coefficients with equal powers of variable z in the left and right parts
of the obtained equality. In result we come to the sequence of such equations

(f ∗
q
g)∗m =

m∑
j=0

q(f ∗
m−j, g

∗
j ), m ∈ N0. (42)

From the system of equations (27), rewritten for this convolution, we have the expression

(f ∗
q
g)n =

√
σ

n∑
m=0

(f ∗
q
g)∗m, n ∈ N0, (43)

which may be transformed by substitution (42) to the following form

(f ∗
q
g)n =

√
σ

n∑
m=0

m∑
k=0

q(f ∗
m−k, g

∗
k), n ∈ N0. (44)

Applying the formula (19) to the expression in the right-hand side of (44), it takes the form

(f ∗
q
g)n =

√
σ

n∑
k=0

q

(
f ∗
n−k,

k∑
m=0

g∗m

)
, n ∈ N0. (45)

From (27), we deduce

gk =
√
σ

k∑
m=0

g∗m, k ∈ N0, (46)

therefore reducing the sum in (45) by (46) leads to the representation

(f ∗
q
g)n =

n∑
k=0

q(f ∗
n−k, gk), n ∈ N0, (47)

which completes the proof.

Further we show that the condition f ∗
q
g ∈ L2

α(R+;Z) in Theorem 3 will be fulfilled if the

convolution components have some additional properties, namely, belonging this functions
to certain Lebesgue spaces.

For p ∈ [1,∞] we will consider Lebesgue spaces Lp(R+;X) of measurable functions
v : R → X such that v(t) = 0 when t < 0 and we assume

∫
R+

∥v(t)∥pXdt < ∞ if 1 ≤ p < ∞
and ∥v∥pX are essentially bounded on R in the case p = ∞. The norms are given by

∥v∥Lp(R+;X) =

[ ∫
R+

∥v(t)∥pX dt

]1/p
for p ∈ [1,∞), ∥v∥L∞(R+;X) = ess sup

t∈R

(
∥v(t)∥X

)
.

Hence Lp(R+;X) is the Banach space for any p ∈ [1,∞].
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Lemma 5. Given p, c, d ∈ [1,∞] such that

1

c
+

1

d
= 1 +

1

p
. (48)

Suppose, that e−
α
p
·f ∈ Lc(R+;X) and e−

α
p
·g ∈ Ld(R+;Y ). Then e−

α
p
·(f ∗

q
g) ∈ Lp(R+;Z)

and the inequality holds:

∥e−
α
p
·(f ∗

q
g)∥Lp(R+;Z) ≤ K ∥e−

α
p
·f∥Lc(R+;X) · ∥e−

α
p
·g∥Ld(R+;Y ). (49)

Proof. By Young’s inequality (see, for example, [20, IX.4]), using (48), we have∥∥ (e−α
p
· ∥f(·)∥X

)
∗
(
e−

α
p
· ∥g(·)∥Y

) ∥∥
Lp(R+)

≤
∥∥e−α

p
· ∥f(·)∥X

∥∥
Lc(R+)

·
∥∥e−α

p
· ∥g(·)∥Y

∥∥
Ld(R+)

.

From here, taking into account following relations

∥∥ e−
α
p
· (f ∗

q
g)
∥∥p
Lp(R+;Z)

=

∫
R+

∥∥∥∥
t∫

0

q
(
f(t− s), g(s)

)
ds

∥∥∥∥p
Z

e−αtdt ≤

≤
∫
R+

[ t∫
0

∥∥q(f(t− s), g(s)
)∥∥

Z
ds
]p

e−αtdt ≤ Kp

∫
R+

[ t∫
0

∥∥f(t− s)
∥∥
X

∥∥g(s)∥∥
Y
ds
]p

e−αtdt ≤

≤ Kp

∫
R+

[ t∫
0

e−
α
p
(t−s)

∥∥f(t− s)
∥∥
X
· e−

α
p
s
∥∥g(s)∥∥

Y
ds
]p
dt =

= Kp
∥∥ ( e−α

p
· ∥f(·)∥X

)
∗
(
e−

α
p
· ∥g(·)∥Y

) ∥∥p
Lp(R+;R) ≤

≤ Kp
∥∥ e−

α
p
· ∥f(·)∥X

∥∥p
Lc(R+)

·
∥∥ e−

α
p
· ∥g(·)∥Y

∥∥p
Ld(R+)

=

= Kp
∥∥ e−

α
p
· f
∥∥p
Lc(R+;X)

·
∥∥ e−

α
p
· g
∥∥p
Ld(R+;Y )

,

we get desired inequality (49), which can be considered as an analogue of Young’s inequality
in the corresponding Lebesgue spaces.

Theorem 4. Suppose f ∈ L2
α(R+;X) and g ∈ L2

α(R+;Y ) and, moreover, e−
α
2
·f ∈ Lc(R+;X)

and e−
α
2
·g ∈ Ld(R+;Y ) provided (48) holds. Then f ∗

q
g ∈ L2

α(R+;Z) with

∥f ∗
q
g∥L2

α(R+;Z) ≤ K ∥e−
α
2
·f∥Lc(R+;X) · ∥e−

α
2
·g∥Ld(R+;Y ) (50)

and the assertion of Theorem 3 is true.

Proof. This assertion follows directly from the Lemma 5 provided p = 2.

For p ∈ [1,∞] we will consider linear spaces lp(X) that are composed of sequences
f = (f0, f1, ..., fn, ... )

⊤ ∈ XN0 such that
∑∞

n=0 ∥fn∥
p
X < ∞ if p ∈ [1,∞) and sup

n∈N0

∥fn∥X < ∞

in the case p = ∞. This spaces are equipped by norms

∥f∥lp(X) :=

[ ∞∑
n=0

∥fn∥pX
]1/p

for p ∈ [1,∞), and ∥f∥l∞(X) := sup
n∈N0

∥fn∥X . (51)



LAGUERRE TRANSFORM OF CONVOLUTION PRODUCT 157

It easily seen that
l1(X) ⊂ lp(X), p ∈ (1,∞].

Indeed, if f ∈ l1(X), that is
∑∞

n=0 ∥fn∥X < ∞, then lim
n→∞

∥fn∥X = 0. Hence there exists
n0 ∈ N0 such that ∥fn∥X ≤ 1 if n ≥ n0. But then ∥fn∥pX ≤ ∥fn∥X for every n ≥ n0, that
means the series

∑∞
n=0 ∥fn∥

p
X is convergent, if p ∈ (1,∞), and sup

n
∥fn∥X < ∞ in the case

p = ∞.

Lemma 6. Suppose that f ∈ l2(X) and g ∈ l1(Y ) ⊂ l2(Y ). Then f ◦
q
g ∈ l2(Z) and

∥f ◦
q
g∥l2(Z) ≤ K∥f∥l2(X)∥g∥l1(Y ). (52)

Proof. Let N ∈ N. By (17) and the Cauchy–Bunyakovsky inequality we deduce that

N∑
n=0

∥∥(f ◦
q
g)n
∥∥2
Z
=

N∑
n=0

∥∥∥∥∥
n∑

k=0

q(fk, gn−k)

∥∥∥∥∥
2

Z

≤

≤ K2

N∑
n=0

[ n∑
k=0

∥fk∥X∥gn−k∥Y
]2

= K2

N∑
n=0

[ n∑
k=0

∥fk∥X∥gn−k∥1/2Y ∥gn−k∥1/2Y

]2
≤

≤ K2

N∑
n=0

[ n∑
k=0

∥fk∥2X∥gn−k∥Y
][ n∑

k=0

∥gn−k∥Y
]
≤ K2

[ ∞∑
k=0

∥gk∥Y
] N∑

n=0

n∑
k=0

∥fk∥2X∥gn−k∥Y .

(53)

Changing the summation order gives

N∑
n=0

n∑
k=0

∥fk∥2X∥gn−k∥Y =
N∑
k=0

∥fk∥2X
N∑

n=k

∥gn−k∥Y ≤
[ ∞∑

k=0

∥fk∥2X
][ ∞∑

k=0

∥gk∥Y
]
. (54)

Combining (53) and (54) we obtain

N∑
n=0

∥(f ◦
q
g)n∥2Z ≤ K2∥f∥2l2(X)

(
∥g∥l1(Y )

)2
,

whence (52) directly follows.

Theorem 5. Suppose f ∈ l2(X) and g ∈ l1(Y ) ⊂ l2(Y ). Then

h = f ∗
q
g ∈ L2

α(R+;Z), (55)

where
f := L−1f , g := L−1g, h := L−1(f∗ ◦

q
g), (56)

and f∗ is obtained from f by the rule (27) (by Lemma 6 we have f∗ ◦
q
g ∈ l2(Z)).
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Proof. Given any m ∈ N define

f ⟨m⟩ := (f0, f1, ..., fm, 0, ... )
⊤, g⟨m⟩ := (g0, g1, ..., gm, 0, ... )

⊤.

Then
f ⟨m⟩,∗ =

1√
σ
(f0, f1 − f0, ..., fm − fm−1,−fm, 0, ... )

⊤.

It is easy to check that

f ⟨m⟩ →
m→∞

f in l2(X), f ⟨m⟩,∗ →
m→∞

f∗ in l2(X), g⟨m⟩ →
m→∞

g in l1(Y ) ⊂ l2(Y ). (57)

Let us show that
f ⟨m⟩,∗ ◦

q
g⟨m⟩ →

m→∞
f∗ ◦

q
g in l2(Z). (58)

Indeed, by Lemma 6 we have

f∗ ◦
q
g ∈ l2(Z), f ⟨m⟩,∗ ◦

q
g⟨m⟩ ∈ l2(Z), m ∈ N. (59)

Then, using (52), we deduce that

∥f∗ ◦
q
g − f ⟨m⟩,∗ ◦

q
g⟨m⟩∥l2(Z) = ∥f∗ ◦

q
g − f ⟨m⟩,∗ ◦

q
g + f ⟨m⟩,∗ ◦

q
g − f ⟨m⟩,∗ ◦

q
g⟨m⟩∥l2(Z) ≤

≤ ∥(f∗ − f ⟨m⟩,∗) ◦
q
g∥l2(Z) + ∥f ⟨m⟩,∗ ◦

q
(g − g⟨m⟩)∥l2(Z) ≤

≤ K∥f∗ − f ⟨m⟩,∗∥l2(X)∥g∥l1(Y ) +K∥f ⟨m⟩,∗∥l2(X)∥g − g⟨m⟩∥l1(Y ), (60)

whence (58) follows due to the limits (57).
Let us denote

f ⟨m⟩ := L−1(f ⟨m⟩) ∈ L2(R+;X) ⊂ L2
α(R+;X), g⟨m⟩ := L−1(g⟨m⟩) ∈ L1(R+;Y ) ∩ L2

α(R+;Y ),

h⟨m⟩ := L−1(f ⟨m⟩,∗ ◦
q
g⟨m⟩) ∈ L2(R+;X) ⊂ L2

α(R+;Z). (61)

The inclusions mentioned here follow from the fact that ln ∈ Lp(R+) for each n ∈ N0, p ∈
[1,∞], and functions f ⟨m⟩, g⟨m⟩, h⟨m⟩ are finite linear combinations of functions ln ∈ Lp(R),
n ∈ N0, in particular, f ⟨m⟩(t) =

∑m
j=0 fjlj(t), t ∈ R+. Since operator L is isometric, taking

into account (57), we obtain

f ⟨m⟩ →
m→∞

f in L2
α(R+;X), g⟨m⟩ →

m→∞
g in L2

α(R+;Y ), h⟨m⟩ →
m→∞

h in L2
α(R+;Z). (62)

By Lemma 5, using the definitions (61), we have

f ⟨m⟩ ∗
q
g⟨m⟩ ∈ L2(R+;Z) ⊂ L2

α(R+;Z), (63)

whence by Theorem 3 it follows that

L(f ⟨m⟩ ∗
q
g⟨m⟩) = f ⟨m⟩,∗ ◦

q
g⟨m⟩,

therefore
f ⟨m⟩ ∗

q
g⟨m⟩ = L−1(f ⟨m⟩,∗ ◦

q
g⟨m⟩).



LAGUERRE TRANSFORM OF CONVOLUTION PRODUCT 159

Whence, taking into account the definition of h⟨m⟩ (see (61)), we have

h⟨m⟩ = f ⟨m⟩ ∗
q
g⟨m⟩, m ∈ N. (64)

Now we prove equality (55). Let T > 0 be an arbitrary number. Since (f ∗
q
g)(t) =

t∫
0

q
(
f(t− s), g(s)

)
ds, t ∈ R+, we have f ∗

q
g ∈ L2(0, T ;Z). Consider

T∫
0

∥h(t)− (f ∗
q
g)(t)∥2Zdt =

T∫
0

∥h(t)− h⟨m⟩(t) + h⟨m⟩(t)− (f ∗
q
g)(t)∥2Zdt ≤

≤ 2

[ T∫
0

∥h(t)− h⟨m⟩(t)∥2Zdt+
T∫

0

∥h⟨m⟩(t)− (f ∗
q
g)(t)∥2Zdt

]
. (65)

By (64) we deduce that

T∫
0

∥h⟨m⟩(t)− (f ∗
q
g)(t)∥2Z dt =

T∫
0

∥(f ⟨m⟩ ∗
q
g⟨m⟩)(t)− (f ∗

q
g)(t)∥2Z dt =

=

T∫
0

∥(f ⟨m⟩ ∗
q
g⟨m⟩)(t)− (f ⟨m⟩ ∗

q
g)(t) + (f ⟨m⟩ ∗

q
g)(t)− (f ∗

q
g)(t)∥2Z dt ≤

≤ 2

[ T∫
0

∥(f ⟨m⟩ ∗
q
{g⟨m⟩ − g})(t)∥2Z dt+

T∫
0

∥({f ⟨m⟩ − f} ∗
q
g)(t)∥2Z dt

]
. (66)

Using the Cauchy–Bunyakovsky inequality, we obtain

T∫
0

∥(f ⟨m⟩ ∗
q
{g⟨m⟩ − g})(t)∥2Z dt =

T∫
0

∥∥∥∥
t∫

0

q
(
f ⟨m⟩(t− s), g⟨m⟩(s)− g(s)

)
ds

∥∥∥∥2
Z

dt ≤

≤ K2

T∫
0

[ t∫
0

∥f ⟨m⟩(t− s)∥X · ∥g⟨m⟩(s)− g(s)∥Y ds

]2
dt ≤

≤ K2

T∫
0

[ t∫
0

∥f ⟨m⟩(t− s)∥2X ds

][ t∫
0

∥g⟨m⟩(s)− g(s)∥2Y ds

]
dt ≤

≤ K2T

[ T∫
0

∥f ⟨m⟩(s)∥2X ds

][ T∫
0

∥g⟨m⟩(s)− g(s)∥2Y ds

]
→

m→∞
0, (67)

where K is the constant from the inequality (17).
In the same manner we can see that

T∫
0

∥∥ ({f ⟨m⟩ − f} ∗
q
g)(t)

∥∥2
Z
dt →

m→∞
0. (68)
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So, if we go to the limit provided m → ∞ in the inequality (65), then, using (62), (66)–(68),
we get

h(t) = (f ∗
q
g)(t), t ∈ [0, T ],

whence (55) directly follows due to the arbitrariness of T . The proof is complete.

5. Conclusions. The obtained results make it possible to efficiently apply the Laguerre
transform to the convolution of vector-valued functions in applied research. In particular,
these results may serve as the mathematical foundation in numerical analysis of the evoluti-
onary problems of mathematical physics, as well as time-dependent boundary integral equati-
ons.
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