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We have obtained a description of structure of the sets of Picard and Borel exceptional
vectors for transcendental entire curve in some sense. We consider only p-dimensional entire
curves with linearly independent components without common zeros. In particular, the set of
Borel exceptional vectors together with the zero vector is a finite union of subspaces in Cp

of dimension at most p − 1. Moreover, the sum of their dimensions does not exceed p if any
pairwise intersection of the subspaces contains only the zero vector. A similar result is also
valid for the set of Picard exceptional vectors. Another result shows that the structure of the
set of Borel exceptional vectors for an entire curve of integer order differs somewhat from the
structure of such a set for an entire curve of non-integer order. For a transcendental entire
curve G⃗ : C → Cp with linearly independent components and without common zeros having
non-integer or zero order the set of Borel exceptional vectors together with the zero vector is
a subspace in Cp of dimension at most p− 1.

However, the set of Picard exceptional vectors does not possess this property. We propose
two examples of entire curves. The first example shows the set of Borel exceptional vectors
together with the zero vector for p-dimensional entire curve of integer order is union of subspaces
of dimension at most p − 1 such that the total sum of these dimensions does not exceed p
and intersection of any pair of these subspaces contains only zero vector. The set of Picard
exceptional vectors for the curve has the same property. In the second example, we construct
a q-dimensional entire curve of non-integer order for which the set of Borel exceptional vectors
together with the zero vector is a subspace in Cq of dimension at most q − 1 and the set of
Picard exceptional vectors together with the zero vector do not have the property. This set is
a union of some subspaces.

Recently, we introduced [1] the concept of a Borel exceptional vector for an entire curve
G⃗ : C → Cp. In a discussion on this paper A. Eremenko (Purdue University, USA) suggested
that the structure of the set of Picard exceptional vectors is similar to the structure of the
set of Borel exceptional vectors as well as the possibility to solve an inverse problem. The
present paper is devoted to this problem posed by Prof. A.E. Eremenko.

In this paper, we use main results of the theory of entire curves and notation from [3]
and [7]. Let us remind this notation.

Denote an entire curve G⃗ : C → Cp as G⃗(z) = (g1(z), g2(z), . . . , gp(z)), where gk(z) are
entire functions, k ∈ {1, 2, . . . , p}. Let us consider entire curves with linearly independent
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components and has no common zeros. In other words, we assume that an entire curve
G⃗ : C → Cp has linearly independent components gk(z) and has not common zeros for all
gk(z), k ∈ {1, 2, . . . , p}.

For a⃗ = (a1, a2, . . . , ap) ∈ Cp and b⃗ = (b1, b2, . . . , bp) ∈ Cp the notation a⃗⃗b means the dot
product of these vectors, that is a⃗⃗b =

∑p
j=1 ajbj, where bj is complex conjugate to bj.

For every p-dimensional vector a⃗ = (a1, a2, . . . , ap) ̸= 0⃗ the dot product G⃗(z)⃗a =∑p
k=1 gk(z)ak is an entire function. Denote by n(t, a⃗, G⃗) a number of zeros of the dot product

G⃗(z)⃗a in the disc {z : |z| ≤ t}, where each zero is counted according to its multiplicity. Every
zero of the function G⃗(z)⃗a is called a-point of entire curve G⃗(z). Let us denote

N(r, a⃗, G⃗) =

∫ r

0

n(t, a⃗, G⃗)− n(0, a⃗, G⃗)

t
dt+ n(0, a⃗, G⃗) ln r,

where n(0, a⃗, G⃗) stands for the multiplicity of zero of the dot product G⃗(z)⃗a at the point
z = 0.

The growth characteristic T (r, G⃗) is defined as following

T (r, G⃗) =
1

2π

∫ 2π

0

ln ∥G⃗(reiφ)∥dφ =
1

2π

∫ 2π

0

ln

√√√√ p∑
k=1

|gk(reiφ)|2dφ.

We will use the definition of the growth category from [4, p.44]. Let α(r) be a function
defined for r > 0, which is non-negative and non-decreasing for sufficiently large r (if α(r)
satisfies this condition, we write α(r) ∈ Λ).

The number ρ = ρ[α] = lim
r→+∞

ln+ α(r)
ln r

is called the order of α(r). The number σ = σ[α] =

lim
r→+∞

α(r)
rρ

is called the magnitude of type of the function α(r). If σ = 0, we say that α(r)

has minimal type; if 0 < σ < ∞, we say that α(r) has normal (or mean) type; if σ = ∞, we
say that α(r) has maximal type.

Let α(r) be a function of finite order ρ. We say that α(r) belongs to the convergence
class or to the divergence class depending on whether the integral

∫∞
1

α(r)
rρ+1dr converges or

diverges.
We say that functions α1(r), α2(r) ∈ Λ are of the same growth category if they have

the same order, and, if the order is finite, have the same type and either both belong to
the convergence class, or both belong to the divergence class. We say that α2(r) is of higher
growth category than α1(r) if one of the following conditions is satisfied:

1. ρ[α2] > ρ[α1].

2. ρ[α1] = ρ[α2] < ∞, α1(r) is of minimal type, and α2(r) is of normal or maximal type.

3. ρ[α1] = ρ[α2] < ∞, α1(r) is of normal type, and α2(r) is of maximal type.

4. ρ[α1]=ρ[α2] < ∞, α1(r) and α2(r) are of minimal type, α1(r) belongs to the convergence
class, and α2(r) belongs to the divergence class.

By analogy with the definition of Picard exceptional value of a meromorphic function
(see [4, p. 49]) a vector a⃗ ∈ Cp \ {⃗0} is called a Picard exceptional vector of an entire curve
G⃗ : C → Cp, if the function G⃗ (z) a⃗ has a finite number of zeros.
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Let us remind a definition of a Borel exceptional vector of entire curve from [1]. A vector
a⃗ ∈ Cp \ {⃗0} is called a Borel exceptional vector of entire curve G⃗ : C → Cp, if the growth
category of N(r, a⃗, G⃗) is lower than the growth category of T (r, G⃗).

Other kinds of exceptional and deficient vectors for entire curves were considered in [11,12]
(Valiron deficient vectors), [8, 9] (Nevanlinna deficient vectors), [5] (averaged deficiency).
Moreover, there is a recent paper [2] on Picard values of p-adic meromorphic functions,
with investigations of Picard-Hayman behavior of derivatives of meromorphic functions on
an algebraically closed field K, complete with respect to a non-trivial ultrametric absolute
value. More modern bibliography on this topic is listed in a review paper of S. Mori [6].

The set of Picard exceptional vectors for an entire curve G⃗ we denote by P(G⃗). Obviously
P(G⃗) ⊂ B(G⃗) for any transcendetal entire curve G⃗, where B(G⃗) is the set of Borel exceptional
vectors of the entire curve G⃗ (see [1]). Therefore, Theorems 1 and 3 from [1] are valid for
Picard exceptional vectors.

In [1] we described the structure of the set of Borel exceptional vectors for a transcendental
entire curve G⃗. The following results were proved

Theorem 1 ([1]). For any transcendental entire curve G⃗ : C → Cp with linearly independent
components and without common zeros any admissible system of Borel exceptional vectors
cannot have more than p vectors.

Theorem 2 ([1]). For any transcendental entire curve G⃗ : C → Cp with linearly independent
components and without common zeros the set B(G⃗) ∪ {⃗0} is a finite union of subspaces
Aj ⊂ Cp of dimension not greater than p − 1. There exist at most p linearly independent
vectors such that every Aj is spanned by some of these vectors.

Theorem 3 ([1]). Any transcendental entire curve G⃗ : C → Cp of non-integer or zero order
with linearly independent components and without common zeros has at most (p−1) linearly
independent Borel exceptional vectors.

Now we improve these results.

Theorem 4. For any transcendental entire curve G⃗ : C → Cp with linearly independent
components and without common zeros the set B(G⃗) ∪ {⃗0} is a finite union of subspaces
A1, A2, . . . , Am of Cp of dimension at most p−1. Moreover, dimA1+dimA2+. . .+dimAm ≤ p
and Ai ∩ Aj = {⃗0} for any i, j = 1,m, i ̸= j.

The theorem easily follows from the next lemma.

Lemma 1. Let G⃗ : C → Cp be a transcendental entire curve with linearly independent
components and without common zeros, B1 and B2 be subspaces in Cp such that B1 ⊂
B(G⃗) ∪ {⃗0} and B2 ⊂ B(G⃗) ∪ {⃗0}. If B1 ∩ B2 contains a non-zero vector. Then the linear
span B of B1 and B2 is contained in B(G) ∪ {0}.

Proof. Let us consider the case when B1 ̸⊂ B2 and B2 ̸⊂ B1, otherwise the statement is
obvious. Clearly, B1∩B2 is a subspace in Cp of dimension at least 1. Denote dim (B1 ∩B2) =
q0, dimB1 = q1, dimB2 = q2, dimB = q. Obviously, that q1 + q2 − q0 = q.

Let b⃗1, b⃗2, . . . , b⃗q0 be a basis in B1 ∩ B2. We supplement these vectors in the subspace
B1 by the vectors b⃗

(1)
q0+1, b⃗

(1)
q0+2, . . . , b⃗

(1)
q1 such that the set b⃗1, b⃗2, . . . , b⃗q0 , b⃗

(1)
q0+1, b⃗

(1)
q0+2, . . . , b⃗

(1)
q1 is

a basis in B1. Also we supplement the vectors b⃗1, b⃗2, . . . , b⃗q0 in the subspace B2 by the
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vectors b⃗(2)q0+1, b⃗
(2)
q0+2, . . . , b⃗

(2)
q2 such that a set b⃗1, b⃗2, . . . , b⃗q0 , b⃗

(2)
q0+1, b⃗

(2)
q0+2, . . . , b⃗

(2)
q2 is a basis in B2.

Clearly, b⃗1, b⃗2, . . . , b⃗q0 , b⃗
(1)
q0+1, b⃗

(1)
q0+2, . . . , b⃗

(1)
q1 , b⃗

(2)
q0+1, b⃗

(2)
q0+2, . . . , b⃗

(2)
q2 is a basis in B. Let us construct

a vector-valued function

⃗̃G (z) =
(
G⃗ (z) b⃗1, . . . , G⃗ (z) b⃗q0 , G⃗ (z) b⃗

(1)
q0+1, . . . , G⃗ (z) b⃗(1)q1

, G⃗ (z) b⃗
(2)
q0+1, . . . , G⃗ (z) b⃗(2)q2

)
· Φ (z) ,

where Φ (z) is a some meromorphic function in C without zeros and for which its poles are
common zeros of the functions

G⃗ (z) b⃗1, . . . , G⃗ (z) b⃗q0 , G⃗ (z) b⃗
(1)
q0+1, . . . , G⃗ (z) b⃗(1)q1

, G⃗ (z) b⃗
(2)
q0+1, . . . , G⃗ (z) b⃗(2)q2

.

Then the function ⃗̃G (z) is q-dimensional entire curve.
Let us consider a q1-dimensional entire curve

G⃗1 (z) =
(
G⃗ (z) b⃗1, . . . , G⃗ (z) b⃗q0 , G⃗ (z) b⃗

(1)
q0+1, . . . , G⃗ (z) b⃗(1)q1

)
· Φ1 (z) ,

where Φ1 (z) is a meromorphic function in C without zeros and for which its poles are
common zeros of the functions

G⃗ (z) b⃗1, . . . , G⃗ (z) b⃗q0 , G⃗ (z) b⃗
(1)
q0+1, . . . , G⃗ (z) b⃗(1)q1

.

For any vector λ⃗ = (λ̄1, . . . , λ̄q1) ∈ Cq1\{⃗0} and the vector b⃗ = λ1⃗b1 + . . .+ λq1 b⃗q1 ∈ B1 ⊂
B(G⃗) ∪ {⃗0} corresponding to it one has G⃗(z)⃗b = G⃗1(z)λ⃗/Φ1(z). Therefore,

N
(
r, b⃗, G⃗

)
= N

(
r, λ⃗, G⃗1

)
+N (r,Φ1) .

Thus, the growth category of N(r, λ⃗, G⃗1) is lower that the growth category of T (r, G⃗).
Therefore, the growth category of T (r, G⃗1) is also lower than that of T (r, G⃗). Hence, (see [7,
p.7]) all functions

T

(
r,
G⃗ (z) b⃗2

G⃗ (z) b⃗1

)
, T

(
r,
G⃗ (z) b⃗3

G⃗ (z) b⃗1

)
, . . ., T

(
r,
G⃗ (z) b⃗q0

G⃗ (z) b⃗1

)
,

T

(
r,
G⃗ (z) b⃗

(1)
q0+1

G⃗ (z) b⃗1

)
, ..., T

(
r,
G⃗ (z) b⃗

(1)
q1

G⃗ (z) b⃗1

)

also have lower growth category than the growth category of T
(
r, G⃗

)
.

Let us denote by Φ2 (z) a meromorphic function in C without zeros and for which its poles
are common zeros of the functions G⃗ (z) b⃗1, . . . , G⃗ (z) b⃗q0 , G⃗ (z) b⃗

(2)
q0+1, . . . , G⃗ (z) b⃗

(2)
q2 . Similarly

we obtain that the q2-dimensional entire curve

G⃗2 (z) =
(
G⃗ (z) b⃗1, . . . , G⃗ (z) b⃗q0 , G⃗ (z) b⃗

(2)
q0+1, . . . , G⃗ (z) b⃗(2)q2

)
· Φ2 (z)

has lower growth category than the growth category of T (r, G⃗). Therefore, the functions

T

(
r,

G⃗(z)⃗b
(2)
q0+1

G⃗(z)⃗b1

)
, . . . , T

(
r,

G⃗(z)⃗b
(2)
q2

G⃗(z)⃗b1

)
have lower growth category than that of T (r, G⃗).
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Thus, we show that the quotient of every component of the entire curve ⃗̃G(z) by G⃗(z)⃗b1
has lower growth category than the lower growth category of T (r, G⃗). Therefore, (see proof
of Theorem 3 in [1]) the growth category of T (r, ⃗̃G) is lower than that of T (r, G⃗). Then
B ⊂ B(G⃗) ∪ {⃗0} (see the considerations in the proof of lemma in [1]). Obviously, B1 ⊂ B
and B2 ⊂ B.

Let L be some q-dimensional subspace in Cp. We call [8] the system of vectors M of
L admissible in L, if for cardM ≤ q all vectors of M are linearly independent and if for
cardM > q any q vectors of M are linearly independent.

Let a set S lay in a q-dimensional subspace of the space Cp and contain q linearly
independent vectors. We call [8] the subset M ⊂ S maximally admissible in S, if: a) any
q vectors of M are linearly independent; b) any vector of S \M is a linear combination of
some q − 1 vectors of M.

We need the following lemma from [8].

Lemma 2 ([8], Lemma 1). For any set S ⊂ Cp there exists a maximally admissible subset
M of S.

Proof of Theorem 4. In view of Lemma 2, we choose a maximally admissible in Cp system
of vectors a⃗1, a⃗2, . . . , a⃗k from B(G⃗). By Theorem 2 the set B(G⃗) ∪ {⃗0} is a finite union of
the subspaces Aj ⊂ Cp of dimension ≤ p − 1. Every such a subspace has a basis generated
by some vectors from a⃗1, a⃗2, . . . , a⃗k. Obviously, the set

∪
j Aj is not changed if we remove all

sets Aj, for which there exist As ̸= Aj such that Aj ⊂ As. After this removal and relettering
we obtain B(G⃗) ∪ {⃗0} =

∪
j Aj, where Aj ̸⊂ As, if j ̸= s. Then Aj ∩ As = {⃗0} for j ̸= s,

otherwise by Lemma 1 there exists a subspace A ⊂ B(G⃗) ∪ {⃗0} such that Aj ⊂ A, As ⊂ A,
Aj ̸= A and As ̸= A. By Theorem 1 one has k ≤ p. Clearly, every vector a⃗i belongs only to
one subspace from Aj. Hence, dimA1 + dimA2 + . . .+ dimAm ≤ p.

Note that the structure of the set of Nevanlinna deficient vectors is similar to the structure
B(G⃗) (see also [8], [9]), though the condition Aj∩As = {⃗0} for j ̸= s does not hold in general.

An analog of Theorem 4 can be proved for Picard exceptional vectors.

Theorem 5. For any transcendental entire curve G⃗ : C → Cp with linearly independent
components and without common zeros the set P(G⃗) ∪ {⃗0} is a finite union of subspaces
A1, A2, . . . , Am of dimension ≤ p − 1 from Cp, where dimA1 + dimA2 + . . . + dimAm ≤ p
and Ai ∩ Aj = {⃗0} for all i, j ∈ {1, . . . ,m}, i ̸= j.

To prove this theorem, it suffices to repeat arguments similar to the arguments in the
proof of Lemma 1 and Theorem 2 in [1], and also in the proof of Theorem 4 in the present
paper. We formulate and prove, for example, a lemma which is similar to Lemma 1 from [1].

Lemma 3. Let G⃗ : C → Cp be a transcendental entire curve with linearly independent
components and without common zeros, b⃗1, b⃗2, . . . , b⃗q be a system of linearly independent
vectors of P(G⃗), B be a linear span of vectors b⃗1, b⃗2, . . . , b⃗q and B1, B2, . . . , Bq be linear spans
of vector systems b⃗2, b⃗3, . . . , b⃗q, b⃗1, b⃗3, b⃗4, . . . , b⃗q, ... , b⃗1, b⃗2, . . . , b⃗q−1. Then one has one of the
following cases:

1. B ⊂ P(G⃗) ∪ {⃗0};
2. B ∩P(G⃗) ⊂

∪q
j=1 Bj.
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Proof. Let us consider a vector-valued function in Cq

G⃗1(z) = (G⃗(z)⃗b1 , G⃗(z)⃗b2 , . . . , G⃗(z)⃗bq) · Φ(z),

where Φ(z) is some meromorphic function in C without zeros and whose poles are common
zeros of these functions G⃗(z)⃗b1 , G⃗(z)⃗b2 , . . . , G⃗(z)⃗bq. Since the vectors b⃗1, b⃗2, . . . , b⃗q are li-
nearly independent, the function G⃗1(z) is q-dimensional entire curve.

Clearly, that n(r,Φ) = O(1), that is N(r,Φ) = O(ln r).
Obviously, for any vector λ⃗ = (λ̄1, . . . , λ̄q) ∈ Cq\{⃗0} and the vector b⃗ = λ1⃗b1 + . . .+ λq⃗bq

corresponding to it one has G⃗(z)⃗b = G⃗1(z)λ⃗/Φ(z). It follows that

N(r, b⃗, G⃗) = N(r, λ⃗, G⃗1) +N(r,Φ). (1)

Obviously, two cases are possible

1. T (r, G⃗1) = O(ln r);

2. G⃗1(z) is a transcendental entire curve, i.e. ln r = o(T (r, G⃗1)).

We will consider each case separately.
1) Obviously, b⃗1, b⃗2, . . . , b⃗q is a basis in B. Therefore any vector b⃗ ∈ B\{⃗0} can be

represented as b⃗ = λ1⃗b1 + . . . + λq⃗bq. We choose λ⃗ = (λ̄1, . . . , λ̄q). Then from (1) it follows
that N(r, b⃗, G⃗) = O(ln r), because N(r, λ⃗, G⃗1) ≤ T (r, G⃗1) +O(1). Hence, B ⊂ P(G⃗) ∪ {⃗0}.

2) Suppose that there exists b⃗0 = λ01⃗b1 + . . . + λ0q⃗bq ∈ B ∩ P(G⃗), b⃗0 /∈
∪q

j=1 Bj.
it is obvious that the system of vectors λ⃗(0) = (λ̄01, . . . , λ̄0q), λ⃗(1) = (1, 0, . . . , 0), λ⃗(2) =

(0, 1, 0, . . . , 0), . . . , λ⃗(q) = (0, . . . , 0, 1) is admissible in Cq. Taking into account (1), we have
N(r, b⃗j, G⃗) = N(r, λ⃗(j), G⃗1) + N(r,Φ), j = 0, 1, . . . q. Hence, N(r, λ⃗(j), G⃗1) = O(ln r). Since
G⃗1(z) is the transcendental entire curve, all vectors λ⃗(0), λ⃗(1),. . . , λ⃗(q) are Picard exceptional
for q-dimensional entire curve G⃗1, but it is impossible. The obtained contradiction proves
Lemma 3.

In view of Theorem 3 from [1], a stronger version of Theorem 5 holds in the case of
non-integer or zero order. If a transcendental entire curve has non-integer or zero order
then the inequality dimA1 + dimA2 + . . . + dimAm ≤ p can be replaced by the inequality
dimA1 + dimA2 + . . .+ dimAm ≤ p− 1. Theorem 4 is clarified more significantly.

Theorem 6. If a transcendental entire curve G⃗ : C → Cp with linearly independent compo-
nents and without common zeros has non-integer or zero order then B(G⃗)∪{⃗0} is a subspace
in Cp of dimension at most p− 1.

Proof. Let a⃗1, a⃗2, . . . , a⃗k be a maximally admissible in Cp system of vectors from B(G⃗) and
L be the linear span of these vectors. Obviously, L is a subspace of dimension k in Cp and

B(G⃗) ∪ {⃗0} ⊂ L. (2)

By Theorem 3 we have k ≤ p − 1. Let us consider the entire functions f1(z) = G⃗(z)⃗a1,
f2(z) = G⃗(z)⃗a2, . . . , fk(z) = G⃗(z)⃗ak. Clearly, the growth category of each function does not
exceed that of T (r, G⃗). We will show that this growth category cannot be the same as the
growth category of T (r, G⃗). Suppose that for some j the function fj(z) has the same growth
category as T (r, G⃗). Thus, fj is a transcendental entire function and it has non-integer or
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zero order. Therefore, the function has no finite Borel exceptional values (see [4, p. 114,
Th.1.1]) because any transcendental meromorphic function of non-integer or zero order can
have at most one Borel exceptional value.

By hypothesis of the theorem the vector a⃗j is Borel exceptional vector for G⃗(z), i.e.
N(r, a⃗j, G⃗) = N(r, 0, fj) has lower growth category than that of T (r, G⃗), аnd of fj(z). It
means that the number 0 is a Borel exceptional value for the function fj(z), but it is impossi-
ble. Thus, all functions f1(z), f2(z), . . . , fk(z) have lower growth categories than the growth
category of T (r, G⃗).

Let us consider an arbitrary non-zero vector a⃗ ∈ L. Obviously, we can represent the vector
as a⃗ = α1a⃗1+α2a⃗2+ . . .+αka⃗k. Then the entire function f(z) = G⃗(z)⃗a = α1f1(z)+α2f2(z)+

. . .+αkfk(z) has lower growth category than that of T (r, G⃗) because it is a linear combination
of functions of lower growth category. From the inequality N(r, a⃗, G⃗) = N(r, 0, f) ≤ T (r, f)

we conclude that the vector a⃗ is a Borel exceptional for the curve G⃗(z).
Thus, in view of (2) we proved that B(G⃗) ∪ {⃗0} = L.

Theorem 6 is not valid for the set P(G⃗) ∪ {⃗0}. Below we will demonstrate this fact.
Example 1 also shows that Theorem 6 does not hold for functions of integral order.

Example 1. Let us consider an entire curve (n ∈ N)

G⃗(z) = (1, z, ..., zp1−1, ez
n

, zez
n

, ..., zp2−1ez
n

, ..., e(m−1)zn , ze(m−1)zn , ..., zpm−1e(m−1)zn), (3)
p1 + p2 + . . .+ pm = p, m ≥ 2.

Obviously, the curve G⃗(z) has no common zeros, its components are linearly independent
and has order n, normal type.

Denote by e⃗js a vector from Cp, whose component with number p1+p2+. . .+pj−1+s equals
1, and all other components equal zero. Clearly, G⃗(z)e⃗js = gjs(z). Let Aj be the subspace
from Cp, which is the linear span of the vectors e⃗j1, e⃗j2, . . . , e⃗jpj . Obviously, dimAj = pj and

dimA1 + dimA2 + . . .+ dimAm = p.

For any non-zero vector a⃗j = α1e⃗j1 + α2e⃗j2 + . . .+ αpj e⃗jpj ∈ Aj one has

G⃗(z)⃗aj = α1gj1(z) + α2gj2(z) + . . .+ αpjgjpj = (α1 + α2z + . . .+ αpjz
pj−1)ejz

n ̸≡ 0.

Hence, n(r, a⃗j, G⃗) ≤ pj, and a⃗j is a Picard and, moreover, a Borel exceptional vector for the
considered entire curve.

Thus, we show that
m∪
j=1

Aj ⊂ P(G⃗) ∪ {⃗0}. (4)

Let us consider an arbitrary vector a⃗ ∈ Cp, a⃗ /∈
∪m

j=1 Aj. All collection of vectors e⃗js is a
basis in Cp. Therefore, a⃗ can be represented as a linear combination of these vectors. In this
linear combination we only leave non-zero summands. We obtain a⃗ = β1e⃗j1s1 +β2e⃗j2s2 + . . .+
βke⃗jksk , where all βl ̸= 0, k ≤ p, 1 ≤ j1 ≤ j2 ≤ . . . ≤ jk ≤ m, and j1 < jk, otherwise a⃗ ∈ Aj1 .

Obviously, for linearly independent functions gj1s1(z), gj2s2(z), . . . , gjksk(z) only 0 can be
a common zero. Denote by r its multiplicity. Then the vector-valued function G⃗k(z) =
(gj1s1(z), gj2s2(z), . . . , gjksk(z))z

−r is a k-dimensional entire curve without common zeros.
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Clearly its order and type do not exceed order and type of the entire curve G⃗(z). Also, they
are not lower than the order and type of the meromorphic function

gjksk(z)

gj1s1(z)
=

zsk−1e(jk−1)zn

zs1−1e(j1−1)zn
= zsk−s1e(jk−j1)zn .

This meromorphic function is of order n and of normal type. Thus, G⃗k(z) is an entire curve
of order n and of normal type.

The vectors e⃗1 = (1, 0, . . . , 0), e⃗2 = (0, 1, 0, . . . , 0), . . . , e⃗k = (0, 0, . . . , 0, 1) and b⃗ =
(β1, β2, . . . , βk) form an admissible system of vectors in Ck, because all βl ̸= 0. Clearly
every vector e⃗l is the Picard and, moreover, Borel exceptional vector for G⃗k(z), because
G⃗k(z)e⃗l = z−rgjlsl(z) = zsl−r−1e(jl−1)zn . According to Theorem 1 the vector b⃗ cannot be
Borel exceptional for G⃗k. Thus, N(r, b⃗, G⃗k) has the same growth category as T (r, G⃗k), i.e. it
has order n of normal type. Since G⃗k(z)⃗b = z−rG⃗(z)⃗a we deduce that the vector a⃗ /∈

∪m
j=1 Aj

cannot be Borel and, moreover, Picard exceptional for G⃗.
Taking into account (4), we have proved that for the entire curve of form (3) the following

equality holds

P(G⃗) ∪ {⃗0} = B(G⃗) ∪ {⃗0} =
m∪
j=1

Aj.

Example 2. Let us consider an entire curve G⃗q : C → Cq, q > p, in which the first p
components are same as in the entire curve of form (3), and the next q−p = pm+1 components
have the form:

gm+1,s(z) = zs−1φ(z), s = 1, 2, . . . , pm+1,

where φ(z) is an entire function of non-integer order ρ > n. Thus,

G⃗q(z)=(1, z, . . . , zp1−1, . . ., e(m−1)zn, ze(m−1)zn , . . . , zpm−1e(m−1)zn, φ(z), zφ(z), . . ., zpm+1−1φ(z)),
(5)

Let us consider the vectors

e⃗js, j = 1, 2, . . . ,m+ 1, s = 1, 2, . . . , pj. (6)

Let Aj be the linear span of the vectors e⃗j1, e⃗j2, . . . , e⃗jpj .
It is easy to check that the entire curve has order ρ and the same growth category as

φ(z). Any linear combination of the first p components of this curve is a polynomial or
an entire function of order n. Hence, the combination has lower growth category than the
growth category G⃗q. Therefore, A ⊂ B(G⃗q) ∪ {⃗0}, where A is a linear combination of the
vectors e⃗js, j = 1, 2, . . . ,m, s = 1, 2, . . . , pj. Arbitrary vector a⃗ ∈ Cq\A can be expanded
by orthonormal basis (6): a⃗ =

∑m+1
j=1

∑pj
s=1 αjse⃗js. In this expansion one of the coefficients

αm+1,1, αm+1,2, . . . , αm+1,pm+1 must be non-zero, otherwise a⃗ ∈ A. Then

G⃗q(z)⃗a =
m∑
j=1

e(j−1)zn
pj∑
s=1

αjsz
s−1 + φ(z)

pm+1∑
s=1

αm+1,sz
s−1 = h(z)

is an entire function of order ρ. The function has the same growth category as G⃗q, because∑pm+1

s=1 αm+1,sz
s−1 ̸≡ 0 is a polynomial. We have mentioned above that an entire function
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of non-integer order cannot have finite Borel exceptional values. Therefore, N(r, a⃗, G⃗q) =

N(r, 0, h) has the same growth category as h and G⃗q. Hence, a⃗ /∈ B(G⃗q).
We proved that B(G⃗q) ∪ {⃗0} = A. Using arguments from Example 1, it is easy to check

that P(G⃗q) ∪ {⃗0} =
m∪
j=1

Aj.

Examples 1 and 2 confirm the sufficiency of Theorems 4-6 in some sense.
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