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We consider structural, integral, differential properties of function defined by equality

I(∆Q∗
2

α1α2...αn...) = ∆Q∗
2

[1−α1][1−α2]...[1−αn]..., αn ∈ A ≡ {0, 1}

for two-symbol polybasic non-self-similar representation of numbers of closed interval [0; 1] that
is a generalization of classic binary representation and self-similar two-base Q2-representation.
For additional conditions on the sequence of bases, singularity of the function and self-affinity
of the graph are proved. Namely, the derivative is equal to zero almost everywhere in the sense
of Lebesgue measure. The integral of the function is calculated.

Introduction. According to the well-known Lebesgue theorem every function of bounded
variation is either purely discrete, or absolutely continuous, or singular, or is a mixture
(a linear combination of two or three functions of these types). Now the class of the sin-
gular functions is studied insufficiently [10, 13]. Today an arsenal of effective tools to define
and study of the singular functions is relatively poor. The search for its expansion conti-
nues [1, 10, 13]. Each new case of their natural representation has some scientific interest.
Recently a new way of defining them by inverting the digits of the representation in one or
another system of encoding (representation) of the number is initiated. The inversors of di-
gits of Q2-representation [9], Q3-representation [6], A2-continued fraction representation [2],
G2-representation [7] and others are studied. Almost all of them are singular functions (except
for the last one).

The singular functions [5], continuous nowhere monotonic and non-differentiable functi-
ons [3] are bright representatives of functions with locally complicated topological, metric
and fractal properties. The various systems of encoding of numbers are widely used for their
construction and description of properties [1, 4, 10].

In the paper, we consider inversor of digits of polybasic Q∗2-representation that is a
generalization of Q2-representation and study its differential, integral and others properties.
Thus we introduce a new continuous class of functions with locally complicated differential
properties.
1. Basic objects and facts. Let A = {0, 1} be an alphabet, let L = A × A × ... be a
space of sequences of zeros and ones, and let ‖qik‖ be an infinite stochastic matrix with two
rows and an infinite number of columns, which has the properties qik > 0, q0k + q1k = 1,
∞∏
k=1

max{q0k, q1k} = 0. Put β0k ≡ 0, β1k ≡ q0k, β2k ≡ 1 for any k ∈ N.
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Theorem 1 ([12]). For any number x ∈ [0; 1], there exists a sequence (αn) ∈ L of zeros and
ones such that

x = βα11 +
∞∑
k=2

(βαkk

k−1∏
j=1

qαjj) ≡ ∆Q∗2
α1α2...αk...

. (1)

Definition 1. An expansion of number x in series (1) is called its Q∗2-expansion and
abbreviated (symbolic) notation ∆

Q∗2
α1α2...αk... is called its Q∗2-representation. At the same time

αk = αk(x) is called k-th digit of this representation.

Remark 1. Q∗2-representation is a two-symbol encoding of numbers of the unit interval, in
particular the fractional part of a real number.

If qik = qi for any k ∈ N then Q∗2-representation is Q2-representation. Thus,
Q∗2-representation is a generalization of Q2-representation, and therefore of classic binary
representation. For any m ∈ N , the matrix ‖qin‖∞n=m that formed from a matrix ‖qin‖ satis-
fies the above-mentioned requirements and generates its own Q∗2(m)-representation.

One of the simplest problem which leads to the concept of Q∗2-representation of numbers
is a problem about analytical expression of the probability distribution function of a random
variable with independent (but, generally speaking, not identically distributed) digits of its
binary representation [13].

The following statements provide a comprehensive answer to the question of identification
and comparison of numbers.

Theorem 2 ([12]). For any set (α1, ..., αm) of zeros and ones the following equality is sati-
sfied:

∆
Q∗2
α1α2...αm1(0) = ∆

Q∗2
α1α2...αm0(1). (2)

Numbers x1 = ∆
Q∗2
c1...cm0d1d2...

and x2 = ∆
Q∗2
c1...cm1d′1d

′
2...

satisfy the non-strict inequality
x1 ≤ x2 and the strict inequality x1 < x2 if there exist dn, d′n such that dn − d′n 6= 1.

Corollary 1. If ∆
Q∗2
α1α2...αn... = x1 < x2 = ∆

Q∗2
α′1α

′
2...α

′
n...

, then there exists m such that 0 =

αm 6= α′m = 1 and αi = α′i for i < m.

Corollary 2. There is a countable set of numbers that have two Q∗2-representations (these
are the numbers of the form (2)). All other numbers of the closed interval [0; 1] have the
unique Q∗2-representation.

Definition 2. Numbers of the interval [0; 1] having two Q∗2-representations (∆Q∗2
c1...cm1(0) =

∆
Q∗2
c1...cm0(1)) are called Q∗2-binary numbers. The rest of the numbers in this interval having

only one Q∗2-representation are called Q∗2-unary numbers.

The set of Q∗2-binary numbers is countable.

Definition 3. A Q∗2-cylinder of rank m with base c1c2...cm is a set ∆
Q∗2
c1c2...cm of numbers x

from [0; 1] such that they have Q∗2-representation x = ∆
Q∗2
c1c2...cmα1α2... where (αn) ∈ L.

The Q∗2-cylinders have the following properties:

1) ∆
Q∗2
c1...cm = ∆

Q∗2
c1...cm0 ∪∆

Q∗2
c1...cm1; [0; 1] =

⋃
c1∈A

...
⋃

cm∈A
∆
Q∗2
c1...cm ;
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2) max ∆
Q∗2
c1c2...cm0 = min ∆

Q∗2
c1c2...cm1;

3) The cylinder ∆
Q∗2
c1c2...cm is a closed interval [a; b]: a =

m∑
k=1

βαkk

( k−1∏
j=1

qαjj

)
, b = a+

m∏
j=1

qαjj;

4) |∆Q∗2
c1c2...cm | =

m∏
i=1

qcii;
|∆Q∗2
c1c2...cmi

|

|∆
Q∗2
c1c2...cm

|
= qi,m+1;

5) For any (cm),
∞⋂
m=1

∆
Q∗2
c1...cm = ∆

Q∗2
c1...cm....

The following statement is obvious: every Q∗2-binary number is the endpoint of an infinite
number of cylinders of different ranks, starting with someone. The least rank of such a
cylinder is called the rank of Q∗2-binary number (point). Remark that there are two sequences
of cylinders such that one of its endpoints is a given Q∗2-binary number.

Definition 4. The Q∗2-representation (Q
∗
2 = ‖{qin‖) is called symmetric to Q∗2-representa-

tion (Q∗2 = ‖qin‖) if q0n = q1n.

Theorem 3. For any number x ∈ [0; 1], the following equality is true:

∆
Q∗2
α1(x)α2(x)...αn(x)... + ∆

Q
∗
2

[1−α1(x)][1−α2(x)]...[1−αn(x)]... = 1. (3)

Proof. For numbers 0 and 1, the statement is obvious. Its general truth is proved by examples
for Q∗2-binary numbers (of 1st and 2nd rank).

In fact, for numbers x = ∆
Q∗2
1(0) = q01 and x′ = ∆

Q
∗
2

0(1) = ∆
Q
∗
2

1(0) = q01 = q11, we have
x+ x′ = q01 + q11 = 1.

Similarly, for x = ∆
Q∗2
01(0) and x

′ = ∆
Q
∗
2

10(1) = ∆
Q
∗
2

11(0),

∆
Q∗2
01(0) + ∆

Q
∗
2

11(0) = q01q02 + (q01 + q11q02) = q01q02 + q11 + q01q12 = q01(q02 + q12) + q11 = 1.

For numbers x = ∆
Q∗2
11(0) and x

′ = ∆
Q
∗
2

00(1) = ∆
Q
∗
2

01(0),

∆
Q∗2
11(0) + ∆

Q
∗
2

01(0) = (q01 + q11q02) + q01q02 = q01 + q11q02 + q11q12 = 1.
For Q∗2-binary numbers of the 3rd rank, we have

∆
Q∗2
001(0) + ∆

Q
∗
2

111(0) = q01q02q03 + (q11 + q01q12 + q01q02q13) = q11 + q01q12 + q01q02 = 1;

∆
Q∗2
011(0) + ∆

Q
∗
2

101(0) = (q01q02 + q01q12q03) + (q11 + q01q12q13) = 1;

∆
Q∗2
101(0) + ∆

Q
∗
2

011(0) = (q01 + q11q02q03) + (q11q12 + q11q02q13) = 1;

∆
Q∗2
111(0) + ∆

Q
∗
2

001(0) = (q01 + q11q02 + q11q12q03) + q11q12q13 = 1.
Similarly, we can check the equality (3) for any Q∗2-binary number.
For a general case, we recode the cylinders ∆

Q∗2
c1c2...cm = ∆[1−c1][1−c2]...[1−cm] and number

x = ∆
Q∗2
α1α2...αn... = ∆[1−α1][1−α2]...[1−αn].... Let us pose the question: how a number

x′ = ∆
Q
∗
2

[1−α1][1−α2]...[1−αn]...

is related to a number x? It is clear that x′ = 1− x. In fact, by giving the number x in the
form x = ∆

Q∗2
0...0︸︷︷︸
a1

1 0...0︸︷︷︸
a2

1...0...0︸︷︷︸
am

1...
, we have x′ = ∆

Q
∗
2

1...1︸︷︷︸
a1

0 1...1︸︷︷︸
a2

0...1...1︸︷︷︸
am

0...
. Whence it is obvious

that x′ + x = 1 = ∆
Q
∗
2

(1), since |∆
Q∗2
c1...cm| =

m∏
i=1

qci,i = |∆Q
∗
2

[1−c1][1−c2]...[1−cm]|.

Thus, x+ x′ = 1, which is equivalent to the equality (3).
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2. Object of study: inversor of digits.

Definition 5. An inversor of digits of Q∗2-representation of numbers of closed interval [0; 1]
is a function y = I(x) defined by equality

y = I(x = ∆Q∗2
α1α2...αn...

) = ∆
Q∗2
[1−α1][1−α2]...[1−αn]....

Since I(∆
Q∗2
c1c2...cn0(1)) = I(∆

Q∗2
c1c2...cn1(0)), this function is well-defined.

If q0k = 1
2
for any k ∈ N , i.e., Q∗2-representation is a classic binary representation then

I(x) = 1− x.

Theorem 4. A function I(x) is a continuous, strictly decreasing function with I(0) = 1,
I(1) = 0.

Proof. The following equalities are obvious: I(0) = I(∆
Q∗2
(0)) = ∆

Q∗2
(1) = 1, I(1) = I(∆

Q∗2
(1)) =

∆
Q∗2
(0) = 0.

Let x1 < x2. Then according to Corollary 1 x1 = ∆
Q∗2
c1...cm−10d1d2...

, x2 = ∆
Q∗2
c1...cm−11d′1d

′
2...

and there is m ∈ N such that dm − d′m 6= 1. According to Theorem 2 we have

I(x1)− I(x2) = ∆
Q∗2
[1−c1]...[1−cm]1[1−d1]... −∆

Q∗2
[1−c1]...[1−cm]0[1−d′1]... > 0.

Therefore, the function I(x) is strictly decreasing.
Let x0 = ∆

Q∗2
c1...cn... be any Q∗2-unary point from (0; 1), and let x0 6= x = ∆

Q∗2
α1...αn.... Then

there is m such that αi = ci for i < m and αm 6= cm. The condition x→ x0 is equivalent to
m→∞.

We consider an expression

|I(x)− I(x0)| = (
m−1∏
i=1

qcii)|(β1−αm,m + β1−αm+1,m+1q1−αm,m + ...)−

(−β1−cm,m + β1−cm+1,m+1q1−cm,m + ...)|.
Since the absolute value in the right-hand side of the equation does not exceed 1 as the

difference of two numbers from an interval [0; 1], we have |I(x) − I(x0)| → 0 as n → ∞.
Therefore, the function I(x) is continuous at the point x0.

For Q∗2-binary point x0 = ∆
Q∗2
c1...cm0(1) = ∆

Q∗2
c1...cm1(0), the continuity of the function is proved

similarly, but for the proof of the left-hand continuity of the function one need to use the first
representation. It is also necessary to use the second representation for right-hand continuity
of function. Therefore, I(x) is continuous at each point of the interval [0; 1].

Definition 6. If a matrix ‖qik‖ satisfies the condition lim
k→∞

q0k = q0 then we say that it has
an asymptotic property.

Theorem 5. If for almost all numbers x = ∆
Q∗2
α1(x)α2(x)...αn(x)... of closed interval [0; 1] the

sequence q1−αn(x)n

qαn(x)
is either divergent or its limit is not equal to 1 then the function I(x) is a

singular function, i.e., it is a continuous function such that its derivative is equal to 0 almost
everywhere (in the sense of Lebesgue measure).
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Proof. Since the function I is continuous and monotonic, we see that according to the
well-known Lebesgue Theorem it has a finite derivative almost everywhere (in the sense
of Lebesgue measure). We consider Q∗2-unary point x0 = ∆

Q∗2
c1...cn... such that there exists a

finite derivative I ′(x0). Then the derivative is calculated by the formula

−I ′(x0) = lim
n→∞

I(∆
Q∗2
c1...cn(0))− I(∆

Q∗2
c1...cn(1))

|∆Q∗2
[1−c1]...[1−cn]|

=
∞∏
n=1

q1−cn,n

qcnn
. (4)

Under the conditions of the theorem, the last product is divergent on the set of full
Lebesgue measure. Being finite, it diverges to zero. Therefore, I(x) is a singular function.

When the conditions of the theorem are satisfied, the multipliers of the last infinite
product are separated from zero, and therefore the necessary condition of its convergence is
not satisfied. Therefore, according to the Lebesgue Theorem, the derivative of the function
I is zero at the point x0. This proves the singularity of the inversor.

Corollary 3. If a matrix ‖qik‖ has an asymptotic property with 0 < lim
k→∞

q0k = q0 < 1 and

q0 6= 1
2
, then function I(x) is a singular function.

Proof. If the matrix ‖qik‖ has an asymptotic property and q0 6= 1
2
then multipliers of

product (4) are separated from 1. Therefore, the necessary condition for its convergence
is not fulfilled. Thus, the infinite product diverges to zero. And this proves the singularity
of the function I(x).

Lemma 1. If a matrix ‖qik‖ has an asymptotic property and q0 = 1
2
then the function I has

not derivative (neither finite nor infinite) at every Q2-binary point.

Proof. Let x0 = ∆
Q∗2
c1c2...cm0(1) = ∆

Q∗2
c1c2...cm1(0) be any Q∗2-binary point of interval (0; 1). The

proof is by reductio ad absurdum. Suppose that there exists a derivative I ′(x0). Then it is
equal to the cylindrical derivative, namely, it can be calculated by formulas:

−I ′(x0) =
( m∏
i=1

q1−ci,i

qci

)q1,m+1

q0,m+1

∞∏
i=m+2

q1i

q0i

; I ′(x0) =
( m∏
i=1

q1−ci,i

qci

)q0,m+1

q1,m+1

∞∏
i=m+2

q0i

q1i

.

If q0 6= 1
2
then members of sequences (( q0i

q1i
) and ( q1i

q0i
)) are separated from 1. Therefore, one

of the last multipliers in the different expressions of the derivative is zero, and the other is
infinity. That is why these expressions of derivative do not acquire a common value. The
resulting contradiction proves the statement.

3. Self-affine and integral properties of inversor of digit of Q2-representation of
numbers.

Lemma 2. A graph Γ of function I that is the following union Γ = Γ0 ∪ Γ1, where Γi =
= {M(x; y) : x = ∆Q2

iα2α3...
, y = I(x)} is a self-affine set of space R2. Moreover, Γi = ϕi(Γ),

where ϕi :

{
x′ = ∆Q2

iα1(x)α2(x)...αn(x)... = βi + qix,

y′ = ∆Q2

[1−i][1−α1]...[1−αn]... = β1−i + q1−iI(x).
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Proof. 1. First of all we prove the inclusion Γi ⊂ ϕi(Γ). Let M ∗ (x∗; y∗) ∈ Γi, i.e., x∗ =
∆Q2

iα2...αn...
and y∗ = ∆Q2

[1−α2]...[1−αn]..., y∗ = I(x∗). We consider a point M(x; y), where x =

∆Q2
α2...αn...

, y = ∆Q2

[1−α2][1−α3]...[1−αn].... It is clear that I(x) = y. And soM∗ ∈ Γ andM∗ ∈ ϕi(Γ),
i.e., Γi ⊂ $i(Γ).

2. To prove inclusion $i(Γ) = Γi we consider a pointM(x; y) ∈ Γ and its imageM ′(x′; y′)
under affine transformation ϕi. Obviously that I(x′) = y′ and since the first digit of Q2-
representative of number x′ is a digit i, we have M ′ ∈ Γi. So ϕi(Γ) ⊂ Γi and ϕi(Γ) = Γi.
This completes the proof of the lemma.

Corollary 4. The self-affine dimension of the graph Γ of the function I is equal to the

number
−2

log2 (q0q1)
, which is a fractional number if q0 6= 1

2
.

Indeed, given the self-affinity structure of the graph (expressions ϕ0 and ϕ1), the equation
for determining the self-affine dimension has the form∣∣∣∣q0 0

0 q1

∣∣∣∣x2 +

∣∣∣∣q1 0
0 q0

∣∣∣∣x2 = 1.

Its solution is the dimension of the graph Γ.

Theorem 6. For the inversor I of digits of Q2-representation of numbers,∫ 1

0

I(x)dx =
q2

0

1− 2q0q1

. (5)

The following equality is true:∫ 1

∆
Q2
c1...cm

I(x)dx = AP + (q0q1)m
∫ 1

0

I(x)dx = AP +
qm+2

0 qm1
1− 2q0q1

, (6)

where P = |∆Q2
c1...cm

| =
m∏
i=1

qci , A = I(∆Q2

c1...cm(1)) = ∆Q2

[1−c1]...[1−cm](0).

Proof. Since
∫ 1

0
I(x)dx =

∫ q0
0
I(x)dx+

∫ 1

q0
I(x)dx, taking into account

I(x = ∆Q2
α1α2...αk...

) = β1−α1 +
∞∑
k=2

(β1−αk

k−1∏
i=1

q1−αi),

I(x = ∆Q2

0α2...αk...
) = q0 + q1(β1−α2 +

∞∑
k=3

(β1−αk

k−1∏
i=1

q1−αi)),

I(x = ∆Q2

1α2...αk...
) = 0 + q0(β1−α2 +

∞∑
k=3

(β1−αk

k−1∏
i=1

q1−αi))

and self-affine property of graph of function (see previous lemma) we obtain∫ q0

0

I(x)dx =

∫
∆
Q2
0

I(x)dx =

∫ 1

0

(q0 + q1y)d(q0x) = q2
0 + q0q1

∫ 1

0

I(x)dx,∫ 1

q0

I(x)dx =

∫
∆
Q2
1

I(x)dx =

∫ 1

0

(q0y)d(q0 + q1x) = q0q1

∫ 1

0

I(x)dx.
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Hence,
∫ 1

0
I(x)dx = q2

0 + 2q0q1

∫ 1

0
I(x)dx, and therefore we have equality (5). Taking into

account that 1) the integral expresses the area of the corresponding curvilinear trapezoid;
2) the area has additive property; 3) the graph is a self-affine figure; 4) the function I is
strictly decreasing, we have∫ 1

∆
Q2
c1...cm

I(x)d = |∆Q2
c1...cm

|I(∆Q2

c1...cm(1)) + |∆Q2
c1...cm

‖∆Q2

[1−c1]...[1−cm]|
∫ 1

0

I(x)dx.

However, |∆Q2
c1...cm

‖∆Q2

[1−c1]...[1−cm]| = (q0q1)m. Then, according to the previous lemma, we
obtain equality (6).

Remark 2. Theorem 6 allow us to calculate the integral f(t) =
∫ t

0
I(x)dx as the sum of the

integrals over all the cylinders preceding t.
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