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The paper is devoted to approximation of functionals on a continual set of nodes. A frame
of this set is arbitrary and we fix elements from the space of piecewise continuous functions
on the segment [0, 1] with a finite number of jump discontinuity points. At first, a number of
approaches to the construction of interpolation rational approximations with arbitrary multipli-
city of interpolation nodes are analyzed. Such rational Hermitian interpolants are obtained by
means of a limit transition from a suitable interpolating fraction. An integral rational Hermitian
interpolant of the third order on a continual set of nodes is constructed and investigated. This
interpolant is the ratio of a functional polynomial of the first degree to a functional polynomi-
al of the second degree. An integral equation is obtained from interpolation conditions. This
equation is reduced by elementary transformations to the standard form of integral Volterra
equation of the second kind.

The lemma on the existence of a unique continuous solution of this equation is proved.
We also prove the theorem that the constructed rational fraction is interpolating. To obtain a
functional interpolation rational interpolant with two double interpolation nodes, it is not possi-
ble to use the above technique via limit transition. Therefore, we use continual interpolation
conditions of the Hermite type. The resulting interpolant is one that retains any rational functi-
onal of the resulting form. Therefore, this interpolant is the ratio of a functional polynomial of
the first degree to a functional polynomial of the second degree.

The number of publications (see for example [1]–[7]) are devoted to approximation of
functionals F : L1(0, 1)→ R1 on a continual set of nodes

xn(z, ξn) = x0(z) +
n∑
i=1

H(z − ξi)
[
xi(z)− xi−1(z)

]
,

ξn = (ξ1, ξ2, . . . , ξn) ∈ Ωzn = {zn : 0 ≤ z1 ≤ . . . ≤ zn ≤ 1}.
(1)

Let xi(z) ∈ Q[0, 1], i = 0, 1, . . . , be arbitrary fixed elements of the space Q[0, 1] of
piecewise continuous functions on a segment [0, 1] with a finite number of jump discontinuity
points. The set of such functions is called the interpolant frame and H(t) is the Heaviside
function.

In the papers [1]–[2] the constructions of functional Newton type polynomials of the third
and fourth degrees are substantiated on the continual set of nodes (1), which do not require
the substitution rule. In [3] we consider a functional polynomial of Newton type, which is
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built on a continual set of nodes (1). A sufficient condition for the interpolation of this
polynomial is the fulfillment of the substitution rule. On the basis of Newton’s interpolation
formulas an interpolating functional Taylor type polynomial is constructed with using the
multiplicity of nodes by means of a limit transition.

In the paper [4], an interpolating integral continued fraction has been constructed and
investigated on a continual set of nodes (1), which is a natural generalization of an interpolati-
on continued fraction. The optimal choice of the sequence of interpolation nodes is indicated.

In [5]–[6], an abstract continued fraction of Thiele type that is interpolating for a nonlinear
operator acting from the linear topological spaceX to an algebra Y with unity is constructed.
In some particular cases, it transforms into a classical Thiele fraction or a matrix-valued
fraction of Thiele type depending on many variables. In the paper [7], for a functional given
on a continual set of nodes on the basis of the previously constructed interpolation integral
continued fraction of the Newton type, an interpolant with a k-th twofold node has been
constructed and investigated. It is proved that the constructed integral continued fraction is
an interpolant of Hermite type.

We will use the following notation for a finite continued fraction

a1

b1 +
a2

b2 +
a3

b3 + · · ·+
an

bn

=

n

D
i=1

ai
bi

=
a1|
|b1

+
a2|
|b2

+ . . .+
an|
|bn

. (2)

Lemma 1. n-th successive convergent fraction Qn = q0 +

n

D
i=1

qi
1

of a continued fraction Q∞

coincides with the fraction Qn =
An
Bn

, where n-th numerator An and n-th denominator Bn

are determined by the recurrent formulas

Ak = Ak−1 + qkAk−2, k = 1, 2, . . . , A−1 = 1, A0 = KI
0 ,

Bk = Bk−1 + qkBk−2, k = 1, 2, . . . , B−1 = 0, B0 = 1.

We note, if qi = qi
(
x(·)

)
, i = 0, 1, . . . , n, are defined by formulas (2), then An, Bn

are the functional polynomials in variable x(z) of degrees
[n+ 1

2

][n+ 2

2

]
and

[n
2

][n+ 3

2

]
,

respectively, and Qn

(
x(·)

)
is a rational functional interpolant (in the previous considerations

square brackets denote the integer part of the number). However, the total functional degree

of the numerator and denominator is
[n+ 1

2

][n+ 2

2

]
+
[n
2

][n+ 3

2

]
, and the number of nodes

in the frame of continuous interpolation nodes is equal to n + 1. Therefore, it is natural to
require that the sum of the numerator and denominator is a functional polynomial of degree
n.

Le u’s illustrate these considerations with the following example.
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The rational interpolating functional fraction will have the form

Qn

(
x(·)

)
=

F
(
x0(·)

)
+

n−1∑
j=1

1∫
0

1∫
z1

. . .
1∫

zj−1

KI
j (z

j)
j∏

p=1

(
x(zp)− xp−1(zp)

)
dzj . . . dz1

1 +
1∫
0

1∫
z1

. . .
1∫

zn−1

KI
n(z

n)
n∏
p=1

(
x(zp)− xp−1(zp)

)
dz1 . . . dzn

=

=
P I
n−1
(
x(·)

)
1 +

1∫
0

1∫
z1

. . .
1∫

zn−1

KI
n(z

n)
n∏
p=1

(
x(zp)− xp−1(zp)

)
dz1 . . . dzn

,

KI
j (z

j) = (−1)j
j∏

p=1

(
xj(zp)− xp−1(zp)

)−1 · ∂jF(xj(·; zj))
∂z1 . . . ∂zj

,

xj(t; zj) = x0(t) +

j∑
p=1

H(t− zp)
[
xp(t)− xp−1(t)

]
, j = 1, 2, . . . , n− 1,

KI
n(z

n) = (−1)n
n∏
p=1

(
xn(zp)− xp−1(zp)

)−1 · ∂n

∂z1 . . . ∂zn

P I
n−1
(
xn(·; zn)

)
F
(
xn(·; zn)

) .

Let n = 3, x(z) ≡ x, x0(z) ≡ x0, x1(z) ≡ x1, x2(z) ≡ x2, x3(z) ≡ x3, then

Q3(x) =

2∑
i=0

ωi(x)f(x0;x1; . . . ;xi)

1− ω3(x)
f(x3)

f(x0;x1;x2;x3)
, (3)

where ωi(x) =
∏i−1

p=0(x−xp) and f(x0;x1; . . . ;xi) =
∑i

s=0
f(xs)
ω′i(xs)

is a divided difference of i-th
order.

The formula (3) is generalized to an arbitrary number of interpolation nodes, namely

Qn(x) =

n−1∑
i=0

ωi(x)f(x0;x1; . . . ;xi)

1− ωn(x)
f(xn)

f(x0;x1; . . . ;xn)
.

The following lemma is proved in the paper [5].

Lemma 2 ([5]). Let QIS
n (x) be a scalar interpolating continued fraction obtained from an

integral continued fraction QI
n

(
x(·)

)
under the assumption that all interpolation nodes of

the frame xi(z), i = 0, 1, . . . , n, and the argument x(z) are identical constants.
For the existence of an integral interpolating continued fraction of the Hermite type

QE
n

(
x(·)

)
with any multiplicity of the interpolation nodes obtained by the limit transition

from QI
n

(
x(·)

)
, it is necessary and sufficient that there exists a continued fraction of the

Hermite type QE
n

(
x
)
with the same multiplicity of interpolation nodes obtained by the limit

transition from QIS
n

(
x
)
.

We find the representation of Q3(x), when the nodes x0, x2 are double. For this purpose,
we will put x1 = x0 + α, x3 = x2 + α and let α tends to zero. Then we obtain

QH
3 (x) =

f(x0) + (x− x0)f(x0;x0) + (x− x0)2f(x0;x0;x2)
1− (x−x0)2(x−x2)

f(x2)
f(x0;x0;x2;x2)

, (4)
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where the divided differences with multiple nodes are defined as follows (see for example [10]):

f(x0;x0) = f ′(x0), f(x0;x0;x2) =
f ′(x0)− f(x0;x2)

x0 − x2
,

f(x0;x0;x2;x2) =
f ′(x0) + f ′(x2)− 2f(x0;x2)

(x0 − x2)2
. (5)

The rational Hermitian interpolant (4), (5), obtained by means of a limit transition
from suitable interpolation fraction (3) uses redundant information in comparison with the
possibilities of ordinary rational interpolation. Namely, the interpolant QH

3 (x) is the ratio
of the second degree polynomial to the third degree polynomial, while there is a natural
rational Hermitian interpolant RH

1,2(x), that is the ratio of the first degree polynomial to the
second degree polynomial.

The last interpolant has the form

RH
1,2(x) =

f(x0) + (x− x0)y
1 + (x− x0)z + (x− x0)2w

,

y =
−
(
f(x2)

)2
f ′(x0)−

(
f(x0)

)2
f ′(x2) + 2f(x0;x2)f(x0)f(x2)

d
,

z =
(x0 − x2)f ′(x0)f ′(x2)− f(x2)f ′(x0)− f(x0)f ′(x2) + 2f(x0;x2)f(x2)

d
, (6)

w = −
(
f(x0;x2)

)2 − f ′(x0)f ′(x2)
d

,

d = (x0 − x2)
(
− f(x0)f ′(x2) + f(x2)f(x0;x2)

)
and satisfies the same Hermitian conditions as QH

3 (x).
We construct an integral rational Hermite type interpolant RH

1,2

(
x(·)

)
, which is the ratio of

a functional polynomial of the first degree to a functional polynomial of the second degree.
For this purpose, at first we construct an integral rational interpolant RI

1,2

(
x(·)

)
in the

following form

RI
1,2

(
x(·)

)
=

F
(
x0(·)

)
+

1∫
0

K1,1(z)
(
x(z)− x0(z)

)
dz

1+
1∫
0

K1,2(z)
(
x(z)− x0(z)

)
dz +

1∫
0

1∫
z1

K2(z2)
2∏
i=1

(
x(zi)− xi−1(zi)

)
dz2dz1

, (7)

where the integral kernels are determined from the corresponding continual conditions.
For the first continual node we take the following

x1(z; ξ1) = x0(z) +H(z − ξ1)
(
x1(z)− x0(z)

)
.

Then the interpolation condition in this node leads to the equation

K1,2(ξ1) = −
1

x1(ξ1)− x0(ξ1)
· d
dξ1

F
(
x0(·)

)
+

1∫
ξ1

K1,1(z)
(
x1(z)− x0(z)

)
dz

F
(
x1(·; ξ1)

) . (8)

We take the following continuous interpolation node in the form

x2(z; ξ2) = x0(z) +H(z − ξ1)
(
x1(z)− x0(z)

)
+H(z − ξ2)

(
x2(z)− x1(z)

)
(9)
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and interpolation condition RI
1,2

(
x2(·; ξ2)

)
= F

(
x2(·; ξ2)

)
leads to the relation

K2(ξ
2) =

2∏
i=1

(
xi(ξi)− xi−1(ξi)

)−1 · ∂2

∂ξ1∂ξ2

F
(
x0(·)

)
+

1∫
0

K1,1(z)
(
x2(z; ξ2)− x0(z)

)
dz

F
(
x2(·; ξ2)

) . (10)

We obtain the similar relation, if in (9), (10) we replace x2(z) on x3(z) :

K2(ξ
2) =

[
2∏
i=1

(
xi(ξi)− xi−1(ξi)

)−1×
× ∂2

∂ξ1∂ξ2

F
(
x0(·)

)
+

1∫
0

K1,1(z)
(
x2(z; ξ2)− x0(z)

)
dz

F
(
x2(·; ξ2)

) ]
x2(z)=x3(z)

.

(11)

Equating the right-hand sides of relations (10), (11) and assuming ξ2 = ξ1, we obtain an
integral equation for determining of the kernel K1,1(z) :

K1,1(ξ1)a(ξ1) + b1(ξ1)

1∫
ξ1

K1,1(z)
(
x2(z)− x0(z)

)
dz+

+b2(ξ1)

1∫
ξ1

K1,1(z)
(
x3(z)− x0(z)

)
dz = F

(
x0(·)

)
g(ξ1),

a(ξ1) = a1(ξ1)− a2(ξ1), a2(ξ1) = a1(ξ1)
∣∣∣
x2(z)=x3(z)

, b2(ξ1) = b1(ξ1)
∣∣∣
x2(z)=x3(z)

,

a1(ξ1)=


∂

∂ξ2
F−1

(
x2(·; ξ2)

)
x2(ξ2)− x1(ξ2)

+
2x1(ξ2)− x0(ξ2)− x2(ξ2)

2∏
i=1

(
xi(ξi)− xi−1(ξi)

) · ∂
∂ξ1

F−1
(
x2(·; ξ2)

)

ξ2=ξ1

, (12)

b1(ξ1) =


∂2

∂ξ1∂ξ2
F−1

(
x2(·; ξ2)

)
2∏
i=1

(
xi(ξi)− xi−1(ξi)

)

ξ2=ξ1

, g(ξ1) = −b1(ξ1) + b2(ξ1).

Using elementary transformations we convert the integral equation (12) into the standard
form of the integral Volterra equation of the second kind. Then, the following lemma is valid
(see, for example, [10]).

Lemma 3. Let a(ξ1), b1(ξ1), b2(ξ1), g(ξ1) be continuous functions on the segment [0, 1] and
a(ξ1) ≥ α > 0 on the same segment. Then the integral equation (12) has a unique continuous
solution K1,1(ξ1).

Substituting K1,1(ξ1) in (8), (11), we obtain the expressions for all kernels, which are
included in the integral rational interpolant RI

1,2

(
x(·)

)
.
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We should observe that the interpolant (7), (8), (11) is the one that retains any rational
functional of the form

R1,2

(
x(·)

)
=

K0 +
1∫
0

K1,1(z)x(z)dz

1 +
1∫
0

K1,2(z)x(z)dz +
1∫
0

1∫
0

K2(z2)
2∏
i=1

x(zi)dz2dz1

. (13)

In this case the following theorem holds.

Theorem 1. Let the conditions of Lemma 2 be satisfied. Then in order that rational functi-
onal (8), (11), (12) admit interpolation on the continual nodes

x2(z; ξ2) = x0(z) +
2∑
i=1

H(z − ξi)
(
xi(z)− xi−1(z)

)
, x2(z; ξ2)

∣∣∣∣
x2(z)=x3(z)

it is sufficient that functional F
(
x(·)

)
satisfies the substitution rule

∂p

∂z1∂z2 . . . ∂zp

[
F
(
xp+1

(
·; zp+1

))∣∣∣
zp+1=zp

]
=

=

[
∂p

∂z1∂z2 . . . ∂zp
F
(
xp+1

(
·; zp+1

))]∣∣∣∣∣
zp+1=zp

xp+1(zp)− xp−1(zp)
xp(zp)− xp−1(zp)

, p = 1, n.

Example 1. For functional F
(
x(·)

)
=
(
1 +

(∫ 1

0

x(s)ds
)2)−1

we obtain

K1,1(z) ≡ 0, K2(z
2) = F

(
x0(·)

)
,

K1,2(z) = 2F
(
x0(·)

)[ 1∫
z

x1(s)ds+

z∫
0

x0(z)dz

]
, RI

1,2

(
x(·)

)
= F

(
x(·)

)
.

To obtain a functional interpolation rational interpolant with two double interpolation
nodes it is not possible to use the above technique through the limit transition.

Let us define continual interpolation conditions of the Hermite type

RH′

1,2

(
x0(·)

)
H(· − ξ1) = F ′

(
x0(·)

)
H(· − ξ1),

RH
1,2

(
x0(·) +H(· − ξ1)

(
x2(·)− x0(·)

))
= F

(
x0(·) +H(· − ξ1)

(
x2(·)− x0(·)

))
,

RH′

1,2

(
x0(·) +H(· − ξ1)

(
x2(·)− x0(·)

))
H(· − ξ2) =

= F ′
(
x0(·) +H(· − ξ1)

(
x2(·)− x0(·)

))
H(· − ξ2).

(14)

We find the functional interpolation rational approximation to the functional F
(
x(·)

)
in

the form

RH
1,2

(
x(·)

)
=

F
(
x0(·)

)
+

1∫
0

K1,1(z)
(
x(z)− x0(z)

)
dz

1+
1∫
0

K1,2(z)
(
x(z)− x0(z)

)
dz+

1∫
0

1∫
z1

K2(z2)
2∏
i=1

(
x(zi)− x0(zi)

)
dz2dz1

. (15)



INTERPOLATION RATIONAL INTEGRAL FRACTION 191

From conditions (14) we obtain the system of equations

−F
(
x0(·)

) 1∫
ξ1

K1,2(z)dz +

1∫
ξ1

K1,1(z)dz = F ′
(
x0(·)

)
H(· − ξ2),

K2(ξ
2) =

1

x2(ξ1)− x0(ξ1)
×

× ∂2

∂ξ1∂ξ2

[
F
(
x0(·)

)
+

1∫
ξ1

K1,1(s)
(
x2(s)−x0(s)

)
ds

]
F ′
(
x0(·)+H(·−ξ1)

(
x2(·)−x0(·)

))
H(·−ξ2)

F
(
x0(·) +H(· − ξ1)

(
x2(·)− x0(·)

))2 ,

K1,2(ξ1)
(
x2(ξ1)− x0(ξ1)

)
+
(
x2(ξ1)− x0(ξ2)

) 1∫
ξ1

K2(ξ1, z2)
(
x2(z2)− x0(z2)

)
dz2+

+
d

dξ1

F
(
x0(·)

)
+

1∫
ξ1

K1,1(s)
(
x2(s)− x0(s)

)
ds

F
(
x0(·) +H(· − ξ1)

(
x2(·)− x0(·)

)) = 0, (16)

relative to the kernels (15).
We denote

M(s, ξ1) =
x2(s)− x0(s)
x2(ξ1)− x0(ξ1)

· ∂
∂s

F ′
(
x0(·) +H(· − ξ1)

(
x2(·)− x0(·)

))
H(· − s)

F
(
x0(·) +H(· − ξ1)

(
x2(·)− x0(·)

))2 ,

then from the second equation (16) we obtain the formula
1∫

ξ1

K2(ξ1, s)
(
x2(s)− x0(s)

)
ds =

1∫
ξ1

∂M(s, ξ1)

∂ξ1
ds · F

(
x0(·)

)
+

+

1∫
ξ1

∂M(s, ξ1)

∂ξ1
ds

1∫
ξ1

K1,1(t)
(
x2(t)− x0(t)

)
dt−

1∫
ξ1

M(s, ξ1)ds ·
(
x2(ξ1)− x0(ξ1)

)
K1,1(ξ1).

(17)

From formula (17) and expressions (16) we obtain the integral equation

a(ξ1)K1,1(ξ1) + b(ξ1)

1∫
ξ1

K1,1(t)
(
x2(t)− x0(t)

)
dt+ g(ξ1) = 0, (18)

where

a(ξ1) =
1

F
(
x0(·)

) − 1∫
ξ1

M(s, ξ1)ds ·
(
x2(ξ1)− x0(ξ1)

)
− 1

F
(
x0(·) +H(· − ξ1)

(
x2(·)− x0(·)

)) ,

b(ξ1) =

1∫
ξ1

∂M(s, ξ1)

∂ξ1
ds−

d

dξ1
F
(
x0(·) +H(· − ξ1)

(
x2(·)− x0(·)

))
(
x2(ξ1)− x0(ξ1)

)
F
(
x0(·) +H(· − ξ1)

(
x2(·)− x0(·)

))2 ,
g(ξ1) =

1

F
(
x0(·)

) + F
(
x0(·)

)
b(ξ1).
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Lemma 4. Let a(ξ1), b1(ξ1), b2(ξ1), g(ξ1) be continuous functions on the segment [0, 1] and
a(ξ1) ≥ α > 0 on the same segment. Then the integral equation (18) has a unique continuous
solution K1,1(ξ1) in the following form

K1,1(ξ1) =
b(ξ1)

a(ξ1)

1∫
ξ1

x2(s)− x0(s)
a(s)

g(s) · exp
( ξ1∫
s

x2(t)− x0(t)
a(t)

b(t)dt
)
ds− g(ξ1)

a(ξ1)
. (19)

Substituting K1,1(ξ1) in (16) we obtain the expressions for all kernels, which are included
in the integral rational interpolant RH

1,2

(
x(·)

)
.

We note that the interpolant (15), (16) is the one that retains any rational functional of
the form (13).

In this case the following theorem holds.

Theorem 2. Let the conditions of Lemma 2 be satisfied. Then, in order that rational
functional (15), (16) satisfies the interpolation conditions (14), it is sufficient that functional
F
(
x(·)

)
satisfies the substitution rule.
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