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The basic principles of the theory of singularly perturbed self-adjoint operators are generali-
zed to the case of closed linear operators with non-symmetric perturbation of rank one. Namely,
firstly linear closed operators are considered that coincide with each other on a dense set in
a Hilbert space. The theory of singularly perturbed self-adjoint operators arose from the need
to consider differential expressions in such terms as the Dirac δ-function. Since it is important
to consider expressions given not only by symmetric operators, the generalization (transfer) of
the basic principles of the theory of singularly perturbed self-adjoint operators in the case of
non-symmetric ones is important problem. The main facts of the theory include the definition
of a singularly perturbed linear operator and the resolvent formula in the cases of H−1-class
and H−2-class. The paper additionally describes the possibility of the appearance a point of the
point spectrum and the construction of a perturbation with a predetermined point. In compari-
son with self-adjoint perturbations, the description of perturbations by non-symmetric terms
is unexpected. Namely, in some cases, when the perturbed by a vectors from H−2 operator can
be conveniently described by methods of class H−1, that is impossible in the case of symmetric
perturbations of a self-adjoint operator. The perturbation of self-adjoint operators in a non-
symmetric manner fully fits into the proposed studies. Such operators, for example, generalize
models with nonlocal interactions, perturbations of the harmonic oscillator by the δ-potentials,
and can be used to study perturbations generated by a delay or an anticipation.

1. Introduction. The theory of singularly perturbed self-adjoint operators has several
thousands of large and small works, collected in the monographs [1,3]. The omitted methods
in [1, 3] are presented in [10]. In general, this theory arose from the need to consider di-
fferential expressions in such terms as the Dirac δ-function. Since it is important to consi-
der expressions given not only by symmetric operators, the generalization (transfer) of the
basic principles of the theory of singularly perturbed self-adjoint operators in the case of
non-symmetric ones is important problem. The main facts of the theory include the defi-
nition of a singularly perturbed linear operator and the resolvent formula in the cases of
H−1-class and H−2-class. The paper additionally describes the possibility of the appearance
a point of the point spectrum and the construction of a perturbation with a predetermi-
ned point. In comparison with self-adjoint perturbations, the description of perturbations
by non-symmetric terms is unexpected. Namely, in some cases, when the perturbed by a
vectors from H−2 operator can be conveniently described by methods of class H−1, that is
impossible in the case of symmetric perturbations of a self-adjoint operator. Some aspects of

2010 Mathematics Subject Classification: 34A37, 47A10, 47A55, 47A75.
Keywords: singularly perturbed operator; scale of Hilbert spaces; non-symmetric perturbations; eigenvalue;
eigenvector; Krein’s formula.
doi:10.30970/ms.56.2.162-175

©M. E. Dudkin, O. Yu. Dyuzhenkova, 2021



SINGULARLY PERTURBED RANK ONE LINEAR OPERATORS 163

non-symmetric rank one perturbations of self-adjoint operators are considered in [7,8]. There
are also some technical details of proofs, which we do not repeat here. The perturbation of
self-adjoint operators in a non-symmetric manner fully fits into the proposed studies. Such
operators, for example, generalize models with nonlocal interactions [2, 4], perturbations of
the harmonic oscillator by the δ-potentials [11], and can be used to study perturbations
generated by a delay or an anticipation.

2. Perturbations H−1-class. Let us consider a linear unbounded closed operator A on
the dense domain D(A) in the separable Hilbert H space with the scalar product (·, ·) and
the norm ‖ · ‖ =

√
(·, ·). (The unboundedness condition of the operator is obligatory and

without it our consideration is not meaningful.) Suppose, the set of regular points ρ(A) of
the operator A is not empty. It is an essential condition for all statements of the article.

Using the operator A, we construct A-scale of Hilbert spaces [6]. Next, consider only part
of it, namely the chain:

H−2 ⊃ H−1 ⊃ H ≡ H0 ⊃ H+1 ⊃ H+2, (1)

where H+k is the positive space with the norm ‖ϕ‖+k = ‖(
√
A∗A+ I)k/2ϕ‖, ϕ ∈ D(

√
A∗A),

H−k is the completion of H with respect to the norm ‖f‖−k = ‖(
√
A∗A+ I)−k/2f‖, f ∈ H,

k = 1, 2, A∗ is adjoint to A operator in H, I stands for the identity operator. Denote by 〈·, ·〉
the dual scalar product for the couple of spaces H+k and H−k, k = 1, 2.

The extension of the operator A by continuity on H−k we can consider as the bounded
operator acting from H+k into H−k and as an unbounded operator in H−k with the domain
H+k, k ∈ {1, 2}. Such an extension we define by A.

Let us consider the linear operator V = α〈·, ω1〉ω2, ω1, ω2 ∈ H−k, α ∈ C \ {0}, k = 1, 2,
in the chain (1).

The perturbed operator Ã in H we understand as the restriction of the sum of bounded
operators from H−k onto H:

Ã := (A + α〈·, ω1〉ω2) �H . (2)

Denote by A∗ the adjoint to A operator according to (1) [5].
The restriction procedure is not always convenient to use, so we propose the following

definition.

Definition 1. Let A be a linear unbounded closed operator in the separable Hilbert spaceH.
For ω1, ω2 ∈ H−1 \ H, we put η1(z̄) = (A∗ − z̄)−1ω1, η2(z) = (A − z)−1ω2, z ∈ ρ(A). The
operator Ã ∈ P1

−1(A) is called singularly rank one perturbed of H−1-class with respect to A,
if it has the domain (for a fixed z)

D(Ã) =

{
ϑ = φ− bzη2(z) | φ ∈ D(A), bz =

((A− z)φ, η1(z̄))

1/α + 〈(A− z)−1ω2, ω1〉

}
, (3)

in the case 〈(A− z)−1ω2, ω1〉 6= −1/α; and

D(Ã) = DH1+̇{cη2(z)}, DH1 = {φ ∈ D(A) : ((A− z)φ, η1(z̄)) = 0} , c ∈ C, (4)

in the case 〈(A− z)−1ω2, ω1〉 = −1/α; the action is defined by the rule:

(Ã− z)ϑ = (A− z)φ. (5)
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Remark 1. The action of the defined in (2) perturbed operator satisfies (5) on vectors
(3), (4).

Proof of Remark 1. This fact is verified by direct substitution (3), (4) in (2). Such an substi-
tution is possible only for H−1-class perturbations. Indeed, one has

(Ã− z)ϑ = ((A− z) + α〈·, ω1〉ω2)ϑ = (A− z)

[
φ− ((A− z)φ, η1(z̄))

1/α + 〈(A− z)−1ω2, ω1〉

]
η2(z)+

+α

〈[
φ− ((A− z)φ, η1(z̄))

1/α + 〈(A− z)−1ω2, ω1〉

]
, ω1

〉
ω2 = (A− z)φ− ((A− z)φ, η1(z̄))

1/α + 〈(A− z)−1ω2, ω1〉
ω2+

+α〈φ, ω1〉ω2 − α
((A− z)φ, η1(z̄))

1/α + 〈(A− z)−1ω2, ω1〉
〈η2(z), ω1〉ω2 =

= (A− z)φ− ((A− z)φ, η1(z̄))

1/α + 〈(A− z)−1ω2, ω1〉
ω2+

+α
〈φ, ω1〉(1/α + 〈(A− z)−1ω2, ω1〉)− ((A− z)φ, η1(z̄))〈η2(z), ω1〉

1/α + 〈(A− z)−1ω2, ω1〉
ω2 =

= (A− z)φ− ((A− z)φ, η1(z̄))

1/α + 〈(A− z)−1ω2, ω1〉
ω2+

+α
1/α〈φ, ω1〉+ 〈φ, ω1〉〈(A− z)−1ω2, ω1〉 − ((A− z)φ, η1(z̄))〈η2(z), ω1〉

1/α + 〈(A− z)−1ω2, ω1〉
ω2 =

= (A− z)φ− ((A− z)φ, η1(z̄))

1/α + 〈(A− z)−1ω2, ω1〉
ω2 +

〈φ, ω1〉
1/α + 〈(A− z)−1ω2, ω1〉

ω2 = (A− z)φ,

since ((A−z)φ, η1(z̄)) = (φ, (A∗−z̄)η1(z̄)) = 〈φ, ω1〉, and 〈(A−z)−1ω2, ω1〉 = (η2(z), ω1).

Remark 2. Let us explain that two cases are caused for the domain D(Ã) in (3) and (4),
in Definition 1, since the fixed point z may belong to the point spectrum of the perturbed
operator, namely z /∈ σp(Ã), as provided in the case (3), and may belong to σp(Ã), namely
z ∈ σp(Ã), as provided in the case (4).

Remark 3. If we put A as a self-adjoint operator, ω1 = ω2, α ∈ R \ {0}, in Definition 1
then, obviously, we obtain known definition of the singularly perturbed self-adjoint operator
of H−1-class [3, 10].

Denote a resolvent Rz = (A− z)−1, z ∈ ρ(A) of unperturbed operator A and write the
general form of the resolvent R̃z = (Ã− z)−1, z ∈ ρ(Ã) of perturbed operator Ã in H.

Theorem 1. Let A be linear unbounded closed operator in the separable Hilbert space H
and Ã ∈ P1

−1(A) is a singularly non-symmetrically perturbed rank one with respect to A
operator, defined by (3)–(5). Then, the resolvent Rz and resolvent R̃z are related to each
other by M. Krein’s type formula:

R̃z = Rz + bz(·, η1(z̄))η2(z), (6)

with vector-valued functions

η1(z̄) = (A∗ − ξ̄)(A∗ − z̄)−1η1(ξ̄), η2(z) = (A− ξ)(A− z)−1η2(ξ), (7)
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where η1(z̄), η2(z) ∈ H+1, z, ξ ∈ ρ(A) ∩ ρ(Ã), and the scalar-valued function

−b−1
z = α−1 + 〈(A− z)−1ω2, ω1〉, 0 < |α| <∞, (8)

satisfies the condition
b−1
z − b−1

ξ = (ξ − z)(η2(ξ), η1(z̄)), (9)

where the vectors η1(z̄), η2(z) are related to the vectors ω1, ω2 by the expression

η1(z̄) = (A∗ − z̄)−1ω1, η2(z) = (A− z)−1ω2. (10)

We can also consider the case α = 0, if we put bz ≡ 0 and R̃z ≡ Rz. There we can
also consider |α| = ∞. In such a case the term α−1 will omit in (8). In the theory of
singularly perturbed self-adjoint operators the condition |α| =∞ corresponds to the case of
the Friedrichs extension of a symmetric operator which is the joint for A = A∗ and Ã = Ã∗.

Proof. Let us consider the expression Ã = A + α〈·, ω1〉ω2 in H−1, where 0 < |α| < ∞.
Remind that we use the notation A i Ã instead of A and Ã. Then for some z ∈ ρ(A) such
that ((A− z)−1ω2, ω1) 6= −α−1, we write (Ã− z) = (A− z) + α〈·, ω1〉ω2, and hence

(Ã− z)−1 = (A− z)−1 − α〈·, (A∗ − z̄)−1ω1〉(Ã− z)−1ω2. (11)

For the vector ω2 we have

(Ã− z)−1ω2 = (A− z)−1ω2 − α〈ω2, (A
∗ − z̄)−1ω1〉(Ã− z)−1ω2,

(Ã− z)−1ω2 =
[
1 + α〈ω2, (A

∗ − z̄)−1ω1〉
]

(Ã− z)−1ω2,

(Ã− z)−1ω2 =
α

1 + α〈ω2, (A∗ − z̄)−1ω1〉}
(A− z)−1ω2.

Substitute the last expression in (11), we get

(Ã− z)−1 = (A− z)−1 − 1

1/α + 〈ω2, (A∗ − z̄)−1ω1〉}
(·, (A∗ − z̄)−1ω1)(A− z)−1ω2.

And now, there is need to redefine

η1(z̄) = (A− z̄)−1ω1, η2(z) = (A− z)−1ω2,

〈ω2, (A
∗ − z̄)−1ω1〉 = 〈(A− z)−1ω2, ω1〉 = 〈(A− z)η2(z), η1(z̄)〉.

From (10) we have η1(z) = Rzω1, η1(ξ) = Rξω1 and ω1 = (A− ξ)η1(ξ), i.e.

η1(z) = Rz(A− ξ)η1(ξ).

The last expression is correct only for the space H−1. For the correctness in H we must write
in the form η1(z) = (A − ξ)Rzη1(ξ), since (A − ξ) commutes with Rz and η1(z), η1(ξ) ∈
H+1 ⊂ H.

Analogously, expressions η2(z) = Rzω2 and η2(ξ) = Rξω2 give η2(z) = (A− ξ)Rzη2(ξ).
Hence, (7) is proved.
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Let us prove (9). Using (8), we have

b−1
z − b−1

ξ = −〈ω2, (A
∗ − z̄)−1ω1〉+ 〈ω2, (A

∗ − ξ̄)−1ω1〉 =

= 〈ω2,
(
(A∗ − ξ̄)−1 − (A∗ − z̄)−1

)
ω1〉 = 〈

(
(A− ξ)−1 − (A− z)−1

)
ω2, ω1〉 =

= 〈(ξ − z)(A− ξ)−1(A− z)−1ω2, ω1〉 =

= (ξ − z)〈(A− ξ)−1ω2, (A− z̄)−1ω1〉 = (ξ − z)(η2(ξ), η1(z̄)).

And conversely, for some h ∈ H, (Ã− z)−1h = ϑ ∈ D(Ã). Hence, we take (A− z)−1h = φ
and substitute it in (6):

ϑ = (Ã− z)−1h = (A− z)−1h+ bz(h, η1(z̄))η2(z) =

= φ− 1

1/α + 〈(A− z)η2(z), η1(z̄)〉
(h, η1(z̄))η2(z) = φ− ((A− z)φ, η1(z̄))

1/α + 〈(A− z)η2(z), η1(z̄)〉
η2(z).

Comparing the start and the end of the last formula, we obtain (3).

Theorem 1 gives directly an important consequence.

Corollary 1. The domain D(Ã) of the operator Ã ∈ P1
−1(A) does not depend on the choice

of the point z ∈ ρ(A) in Definition 1.

Proof. Let us plug a vector (A − z)φ into (6). We obtain ϑ = φ + bz((A − z)φ, η1(z̄))η2(z),
i.e. it is the vector of (3) for a fixed z. Substituting (A− ξ)φ into (6) for ξ, we also obtain

ϑ = φ+ bz((A− ξ)φ, η1(ξ̄))η2(ξ) ∈ D(Ã).

The second way to show the independence D(Ã) of z is direct verification of the equality

bz((A− z)φ, η1(z̄))η2(z) = bz((A− ξ)φ, η1(ξ̄))η2(ξ),

using (7), (9), and the Hilbert identity. Then we rewrite mean calculations of the proof of
Theorem 1.

By analogy to (Ã− z) we define ((Ã)∗ − z̄) for a fixed z.

D((Ã)∗) =

{
ϑ = φ− bzη1(z̄) : φ ∈ D(A∗), bz =

((A∗ − z̄)φ, η2(z))

1/ᾱ + 〈(A∗ − z̄)−1ω1, ω2〉

}
(12)

in the case ((A∗ − z̄)−1ω1, ω2) 6= −1/ᾱ; and

D((Ã)∗) = D∗H1
+̇{cη1(z̄)}, D∗H1

= {φ ∈ D(A∗) : ((A∗ − z̄)φ, η2(z)) = 0} (13)

in the case ((A− z̄)−1ω1, ω2) = −1/ᾱ; the action is defined analogously to (5):

((Ã)∗ − z̄)ϑ = (A∗ − z̄)φ. (14)

Now another corollary of Theorem 1 is obvious.

Corollary 2. If the operator A (and its adjoint A∗) are given, then we have the equality
(Ã− z)∗ = Ã∗ − z̄, z ∈ ρ(A) for the operator Ã− z defined in (3)–(5) and Ã∗ − z̄ defined in
in (12)–(14).
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Proof. Indeed, the expression adjoint to (6) has the form

(R̃z)
∗ = (Rz + bz(·, η1(z̄))η2(z))∗ = R∗z + b∗z(·, η2(z))η1(z̄) = R∗z + bz̄(·, η2(z))η1(z̄),

where bz̄ = b∗z =
1

1/ᾱ + 〈(A∗ − z̄)ω1, ω2〉
. From (8) we have

−bz̄ = 1/α + 〈(A− z)−1ω2, ω1〉 = 1/ᾱ + 〈(A− z)−1ω2, ω1〉 =

= 1/ᾱ + 〈(ω1, (A− z)−1ω2〉 = 1/ᾱ + 〈((A∗ − z̄)−1ω1, ω2〉 = −b−1
z̄ .

Remark 4. The usage of a singularly perturbed operator together with its adjoint one allows
to provide additional description of both operators as one whole object. Namely, linear un-
bounded closed operator Ã 6= A, densely defined in H, is singularly perturbed H−1-class
with respect to the operator A (without loss of generality 0 ∈ ρ(A) ∩ ρ(Ã)), if sets

D = {f ∈ D(A) ∩D(Ã) : Af = Ãf}, D∗ = {f ∈ D(A∗) ∩D((Ã)∗) : A∗f = Ã∗f} (15)

are dense in H both, herewith D ⊂ H+1, D∗ ⊂ H+1.
It is clear that for each couple A, Ã and A∗, Ã∗ there exist joint restrictions i.e. operators

Ȧ := A � D and Ȧ∗ := A � D∗, so that each of them has nontrivial deficiency indices

n±(Ȧ) = dim ker(Ȧ∓ z)∗ 6= 0, n±(Ȧ∗) = dim ker(Ȧ∗ ∓ z)∗ 6= 0, z ∈ ρ(A).

In this paper we consider only the case n±(Ȧ) = n±(Ȧ∗) = 1.
The last description is close to the topic of solvable extensions described in the work

of M.I. Vishik [12]. If D = D∗ and Ã = Ã∗, then we have usual description of singularly
perturbed self-adjoint operator [3, 10].

The perturbed operator can possess a new point λ of the point spectrum σp(Ã), which
does not exist in σp(A).

Proposition 1. If Ã ∈ P1
−1(A) possesses new eigenvalue λ ∈ C in comparison with A,

namely there exists λ ∈ σp(Ã), but λ 6∈ σp(A), then for corresponding eigenvectors ϕ:
Ãϕ = λϕ and ψ: Ã∗ψ = λ̄ψ, we have equalities:

(λ− z)bz(ϕ, (A
∗ − z̄)−1ω1) = 1, ϕ = (A− λ)−1ω2, (16)

(λ̄− z̄)b̄z(ψ, (A− z)−1ω2) = 1, ψ = (A∗ − λ̄)−1ω1, (17)

where ηi(z) (i ∈ {1, 2}) is defined in Theorem 1, z ∈ ρ(A)
⋂
ρ(Ã).

Proof. Solving the eigenvalue problem in the form R̃zϕ = 1
λ−zϕ and using expressions for

the resolvents (6) and also (10), we obtain (16). Indeed,

R̃zϕ = Rzϕ+ bz(ϕ, η1(z̄))η2(z) =
1

λ− z
ϕ,

bz(ϕ, η1(z̄))η2(z) =
1

λ− z
ϕ−Rzϕ =

1

λ− z
(A− λ)(A− z)−1ϕ.
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Hence, (λ − z)bz(ϕ, η1(z̄))(A − z)(A − λ)−1η2(z) = ϕ. The multiplication on η1(z̄) gives
(λ− z)bz(ϕ, η1(z̄)) = 1, if we put (A− z)(A−λ)−1η2(z) = ϕ = (A−λ)−1ω2. Then we obtain
(16).

Expressions (16) are obtained analogously. In the case of adjoint operator (17), we write
the expression adjoint to (6) and (7). Indeed,

R̃∗zϕ = R∗zψ + bz(ψ, η2(z))η1(z̄) =
1

λ̄− z̄
ψ,

b̄z(ψ, η2(z))η1(z̄) =
1

λ̄− z̄
ϕ−R∗zψ =

1

λ̄− z̄
(A∗ − λ̄)(A∗ − z̄)−1ψ.

Hence, (λ̄ − z̄)bz̄(ψ, η2(z))(A∗ − z̄)(A∗ − λ̄)−1η1(z̄) = ψ. The multiplication on η2(z) gives
(λ̄ − z̄)bz̄(ψ, η2(z)) = 1, if we put (A∗ − z̄)(A∗ − λ̄)−1η1(z̄) = ψ = (A∗ − λ̄)−1ω1. Then we
obtain (17).

The inverse spectral problem is also solvable for Ã ∈ P1
−1(A).

Theorem 2. For a given linear unbounded closed operator A in the separable Hilbert space
H, numbers λ ∈ C and vectors ϕ, ψ ∈ H+1 \ H+2, such that for some z ∈ ρ(A), z 6= λ and
(ϕ, (A∗ − λ̄)(A∗ − z̄)−1ψ) 6= 0, there exists unique singularly non-symmetrically perturbed
rank one operator Ã ∈ P1

−1(A) such that λ, λ̄ and ϕ, ψ are its eigenvalues and eigenvectors
respectively: namely, Ãϕ = λϕ and Ã∗ψ = λ̄ψ. Herewith, the operator Ã is defined due to
the resolvent (6) from Theorem 1:

R̃z = Rz + bz(·, η1(z̄))η2(z), (18)

with the vector-valued functions

η1(z̄) = (A∗ − λ̄)(A∗ − z̄)−1ψ, η2(z) = (A− λ)(A− z)−1ϕ, (19)

and with the scalar-valued function

b−1
z = (λ− z)(ϕ, η1(z̄)),

(
b̄−1
z = (λ̄− z̄)(ψ, η2(z))

)
. (20)

Remark 5. The inequality (ϕ, (A∗ − λ̄)(A∗ − z̄)−1ψ) 6= 0 is equivalent to the inequality
(ψ, (A− λ)(A− z)−1ϕ) 6= 0

Proof of Remark 5. Indeed,

(ψ, (A− λ)(A− z)−1ϕ) 6= 0 ⇐⇒ (ψ, (A− λ)(A− z)−1ϕ) 6= 0 ⇐⇒

((A− λ)(A− z)−1ϕ, ψ) 6= 0 ⇐⇒ (ϕ, (A∗ − λ̄)(A∗ − z̄)−1ψ) 6= 0.

Proof of Theorem 2. Let us start to prove Theorem 2. At once, it is possible to show that
both sets

D = {f ∈ D(A) : ((A∗ − z̄)f, η2(z)) = 0}, D∗ = {f ∈ D(A) : ((A− z)f, η1(z̄)) = 0}

coincide with written one in (15) and are dense in H, respectively. If we suppose ∃h ∈ H
such that (D, h) = 0, then

0 = (D, h) = ((A− z)−1Mz, h) = (Mz, (A
∗ − z̄)−1h),
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namely (A∗ − z̄)−1h ∈ D(A∗) and (A∗ − z̄)−1h ∈ Nz⊥Mz, but Nz ∩D(A∗) = {0}.
Analogously, if ∃h ∈ H such that (D∗, h) = 0, then

0 = (D∗, h) = ((A∗ − z̄)−1Mz̄, h) = (Mz, (A− z)−1h),

namely (A− z)−1h ∈ D∗(A) and (A− z)−1h ∈ Nz̄⊥Mz̄, but Nz̄ ∩D∗(A) = {0}.
Further proof of Theorem 2 is essentially based on the next technical proposition.

Proposition 2. Let A be a linear unbounded closed operator in a separable Hilbert spaceH.
Then, the operator-valued function

R̃z := (A− z)−1 + bz(·, η1(z̄))η2(z), z ∈ ρ(A), (21)

is a resolvent of some linear closed operator, if for η1(z), η2(z) and b(z) we have expressions

η1(z̄) = (A∗ − ξ̄)(A∗ − z̄)−1η1(ξ̄), η2(z) = (A− ξ)(A− z)−1η2(ξ), (22)

b−1
z − b−1

ξ = (ξ − z)(η2(ξ), η1(z̄)), z, ξ ∈ ρ(A) ∩ ρ(Ã); (23)

and additionally it is a resolvent of a singularly non-symmetrically rank one perturbed
operator of H−1-class, if η1(z), η2(z) ∈ H+1 \ H+2.

Proof. The proof of Proposition 2 is based on Theorems 1 and 2 from [9, Ch. VIII, §1].
Namely, the operator-valued function (21) R̃z is a resolvent of some closed operator if:

a) R̃z satisfies the Hilbert identity with some z, ξ ∈ C: R̃z − R̃ξ = (z− ξ)R̃zR̃ξ, namely it is
so called pseudoresolvent, and

b) R̃z has the trivial kernel, i.e. ker(R̃z) = {0}.
We will verify the condition a). Substitute the operator-valued function, defined in (6),

into the Hilbert identity:(
(A− z)−1 + bz(·, η1(z̄)))η2(z)

)
−
(
(A− ξ)−1 + bξ(·, η1(ξ̄))η2(ξ)

)
=

= (z − ξ)
(
(A− z)−1 + bz(·, η1(z̄)))η2(z)

) (
(A− ξ)−1 + bξ(·, η1(ξ̄))η2(ξ)

)
.

Using more the Hilbert identity for (A− z)−1, we obtain

bz(·, η1(z̄)))η2(z)− bξ(·, η1(ξ̄))η2(ξ) = (z − ξ)bξ(·, η1(ξ̄))(A− z)−1η2(ξ)+

+(z − ξ)bz(·, (A∗ − ξ̄)−1η1(z̄))η2(z) + (z − ξ)bzbξ(·, η1(ξ̄))(η2(ξ), η1(z̄)))η2(z). (24)

From the second equality (22) we get

η2(z) = η2(ξ) + (z − ξ)(A− z)−1η2(ξ), (z − ξ)(A− z)−1η2(ξ) = η2(z)− η2(ξ).

By analogy, from the second equality (22), we obtain

(z̄ − ξ̄)(A∗ − ξ̄)−1η1(z̄) = η1(z̄)− η1(ξ̄).

Substitute two last equalities in (24):

bz(·, η1(z̄))η2(z)− bξ(·, η1(ξ̄))η2(ξ) = bξ(·, η1(ξ̄))[η2(z)− η2(ξ)]+

+bz(·, [η1(z̄)− η1(ξ̄)])η2(z) + (z − ξ)bzbξ(·, η1(ξ̄))(η2(ξ), η1(z̄)))η2(z).
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Simplifying last expression we obtain

0 = bξ(·, η1(ξ̄))η2(z)− bz(·, η1(ξ̄))η2(z) + (z − ξ)bzbξ(·, η1(ξ̄))(η2(ξ), η1(z̄)))η2(z).

After reduction on (·, η1(ξ̄))η2(z) we obtain the expression, that gives (23).
Verify the condition b). For a vector f ∈ H, such that f ⊥ η1(z̄), with a fixed z, the

vector-valued function R̃(z) = (A−z)−1 is a resolvent of some closed operator, since for such
vector we have R̃(z)f = R(z)f = (A− z)−1f .

For the vector η1(z̄) we have R̃zη1(z̄) = (A− z)−1η1(z̄) + bz(η1(z̄), η1(z̄))η2(z) 6= 0, since,
if (A − z)−1η1(z̄) = −bz(η1(z̄), η1(z̄))η2(z), then from η1(z̄) ∈ H+1 \ H+2 we would have
η2(z) ∈ H+2, but by the conditions of Proposition we have η2(z) 6∈ H+2.

By analogy, for a vector f ∈ H, such that f ⊥ η2(z) with a fixed z, the expression
(R̃z)

∗ = (Ã∗ − z̄)−1 is a resolvent of some closed operator, since for such a vector we have
(R̃z)

∗f = R∗zf = (A− z̄)−1f .
For the vector η2(z) we have (R̃z)η2(z) = (A− z̄)−1η2(z)+ b̄z(η2(z), η2(z))η1(z̄) 6= 0, since,

if it would be (A − z̄)−1η2(z) = −b̄z(η2(z), η2(z))η1(z̄), then from η2(z) ∈ H+1, we would
have η1(z̄) ∈ H+2, but by the assumptions of Proposition 2 we have η1(z̄) 6∈ H+2.

And now, we can say that there exists a closed linear operator Ã, and we can put
(Ã− z)−1 := R̃(z), z ∈ ρ(Ã).

Taking into account Theorem 1, we obtain that the defined in (6) R̃(z) is the resolvent
of singularly non-symmetrically perturbed of rank one operators H−1-class.

Now we can continue the proof of Theorem 2 by steps.
1. If ϕ, ψ ∈ H+1 \H+2, then from (19) it follows that η1(z), η2(z) ∈ H+1 \H+2. Proposition 2
gives that the defined in (21) operator R̃z is a resolvent of some closed operator under the
condition η1(z), η2(z) satisfy (22) and bz satisfies (23).

Let for η1(z), η2(z) we have (19), i.e.

η2(z) = (A− λ)(A− z)−1ϕ = ϕ+ (z − λ)(A− z)−1ϕ,

η1(z̄) = (A− λ̄)(A− z̄)−1ψ = ψ + (z̄ − λ̄)(A− z̄)−1ψ
(25)

and for bz we have (20): b−1
z = (λ − z)(ϕ, η1(z̄)), b̄−1

z = (λ̄ − z̄)(ψ, η2(z)), which we write
in the form

b−1
z = (λ− z)(ψ, η2(z)), b−1

z = (λ− z)(η2(z), ψ). (26)

Write the left-hand side of (23) using (25) and (26):

bz − bξ = (λ− z)(ϕ, [ψ + (z̄ − λ̄)(A∗ − z̄)−1ψ])− (λ− ξ)([ϕ+ (ξ − λ)(A− ξ)−1ϕ], ψ) =

= (λ− z)(ϕ, ψ)− (λ− z)2((A− z)−1ϕ, ψ)− (λ− ξ)(ϕ, ψ) + (λ− ξ)2((A− ξ)−1ϕ, ψ) =

= (ξ − z)(ϕ, ψ)− (λ− z)2((A− z)−1ϕ, ψ) + (λ− ξ)2((A− ξ)−1ϕ, ψ).

Write the right-hand side of (23) using (25):

(ξ − z)(η2(z), η1(z̄)) = (ξ − z)([ϕ+ (ξ − λ)(A− ξ)−1ϕ], [ψ + (z̄ − λ̄)(A∗ − z̄)−1ψ]) =

= (ξ − z)[(ϕ, ψ) + (z − λ)((A− z)−1ϕ, ψ)+ (27)
+(ξ − λ)((A− ξ)−1ϕ, ψ) + (z − λ)(ξ − λ)((A− z)−1(A− ξ)−1ϕ, ψ)].
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In the last line we used the Hilbert identity: (A−z)−1−(A−ξ)−1 = (z−ξ)(A−z)−1(A−ξ)−1.
Hence,

(ξ − z)(η2(ξ), η1(z̄)) = (ξ − z)(ϕ, ψ) + (ξ − z)(z − λ)((A− z)−1ϕ, ψ)+

+(ξ − z)(ξ − λ)((A− ξ)−1ϕ, ψ) + (ξ − λ)(z − λ)((A− ξ)−1ϕ, ψ)−
−(z − λ)(ξ − λ)((A− z)−1ϕ, ψ) = (ξ − z)(ϕ, ψ) + (−z2 + zξ − λξ + λz)((A− z)−1ϕ, ψ)+

+(ξ2 − zξ − λξ + λz)((A− ξ)−1ϕ, ψ) + (zξ − λz − λξ + λ2)((A− ξ)−1ϕ, ψ)−
−(zξ − λz − λξ + λ2)((A− z)−1ϕ, ψ) =

= (ξ − z)(ϕ, ψ)− (λ2 − 2λz + z2)((A− z)−1ϕ, ϕ) + (ξ2 − 2λξ + λ2)((A− ξ)−1ϕ, ψ).

Therefore,

(ξ−z)(η2(ξ), η1(z̄)) = (ξ−z)(ϕ, ψ)+(ξ−λ)2((A−ξ)−1ϕ, ψ)−(z−λ)2((A−z)−1ϕ, ψ). (28)

Comparing (27) and (28) we obtain (23).
2. Since vectors η1(z) and η2(z) belong to H+1 \ H+2, by Proposition 2 the operator Ã is a
singular perturbation of A.
3. Let us prove Ãϕ = λϕ in the form (Ã− z)−1ϕ = 1

λ−zϕ.
Indeed, the substitution of the first expression (20) and first expression of (25) in (18)

gives

(Ã− z)−1ϕ = (A− z)−1ϕ+
1

(λ− z)(ϕ, η1(z̄))
(ϕ, η1(z̄))(ϕ+ (z − λ)(A− z)−1ϕ) =

1

λ− z
ϕ.

Show Ã∗ψ = λ̄ψ in the form (Ã∗ − z)−1ψ = 1
λ̄−z̄ψ. Analogously, the substitution the

second expression of (20) and the second expression of (25) in a joint to (18) give us

(Ã∗ − z̄)−1ψ = (A− z̄)−1ψ +
1

(λ̄− z̄)(ψ, η2(z))
(ψ, η2(z))(ψ + (z̄ − λ̄)(A∗ − z̄)−1ψ) =

1

λ̄− z̄
ψ.

4. Show the uniqueness. Suppose the contrary i.e. there exists another operator Â 6= Ã
such that Âϕ = λϕ and Â∗ψ = λ̄ψ. Since Â ∈ P(A) is also singularly non-symmetrically
perturbed of rank one operator A, due to Theorem 1 it has the representation

(Â− z)−1 := (A− z)−1 + b̂z(·, η̂1(z̄))η̂2(z), z ∈ ρ(Â) ∩ ρ(A), (29)

where at least one of inequalities η̂1(z) 6= η1(z) either η̂2(z) 6= η2(z) or b̂z 6= bz is true. Then
for λ and ϕ we have

(Â− z)−1ϕ = (Ã− z)−1ϕ =
1

λ− z
ϕ =

= (A− z)−1ϕ+ b̂z(ϕ, η̂1(z̄))η̂2(z) = (A− z)−1ϕ+ bz(ϕ, η1(z̄))η2(z),

namely
b̂z(ϕ, η̂1(z̄))η̂2(z) = bz(ϕ, η1(z̄))η2(z). (30)

From the last equality we deduce η2(z) = µη̂2(z) for a fixed z, i.e. bz(ϕ, η1(z̄)) = µb̂z(ϕ, η̂1(z̄)).
Analogously, for λ̄ and ψ we have

(Â∗ − z̄)−1ψ = (Ã∗ − z̄)−1ψ =
1

λ̄− z̄
ψ =

= (A∗ − z̄)−1ψ + b̂z(ψ, η̂2(z))η̂1(z̄) = (A∗ − z̄)−1ψ + b̄z(ψ, η2(z))η1(z̄),
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namely b̂z(ψ, η̂2(z))η̂1(z̄) = b̄z(ψ, η2(z))η1(z̄).
The last expression gives η̂1(z̄) = νη1(z̄) for fixed z. Now (30) yields

bz(ϕ, η1(z̄))η2(z) = b̂z(ϕ, νη1(z̄))µη2(z) = b̂zν̄µ(ϕ, η1(z̄))η2(z),

namely bz = b̂zν̄µ and hence b̂z = bz
1
ν̄µ
. And (29) has a form

(Â− z)−1 := (A− z)−1 +
1

ν̄µ
(·, νη1(z̄))µη2(z) = (Ã− z)−1.

The obtained contradiction finishes the proof of the uniqueness and the proof of the theorem
in general.

Remark 6. Theorem 2, in fact, states more than the statement inverse to Proposition 1. In
Proposition 1 we have λ ∈ σp(Ã), λ ∈ ρ(A), simultaneously, in Theorem 2 λ ∈ σp(Ã) can be
immersed in the continuous spectrum σc(A), and hence in σc(Ã).

3. PerturbationsH−2-class. Transfer the results of the previous paragraph to the perturba-
tion of the H−2-class. This general case requires an additional parametrization. Then Defi-
nition 1 takes a slightly different form.

Definition 2. Let A be a linear unbounded closed operator in a separable Hilbert space H.
For ω1, ω2 ∈ H−2, where at least one of the vectors ω1, ω2 does not belong to H−1, we
put η1(z̄) = (A∗ − z̄)−1ω1, η2(z) = (A − z)−1ω2, z ∈ ρ(A). The operator Ã ∈ P1

−2(A) is
called singularly non-symmetrically rank one perturbed of the H−2-class with respect to the
operator A, if its domain is defined (by fixed z)

D(Ã) =

{
ϑ = φ− bzη2(z) : φ ∈ D(A),

bz =
((A− z)φ, η1(z̄))

1/α + τ + ((A− z)(1 + zA)(A2 + 1)−1η2(z), η1(z̄))

}
(31)

in the case ((A−z)(1+zA)(A2 +1)−1η2(z), η1(z̄))+1/α+τ 6= 0, where τ ∈ C is a parameter;
and

D(Ã) = DH2+̇{cη2(z)}, DH2 = {φ ∈ D(A) : ((A− z)φ, η1(z̄)) = 0} , c ∈ C, (32)

in the case ((A − z)(1 + zA)(A2 + 1)−1η2(z), η1(z̄)) + 1/α + τ = 0; the action is defined by
the rule

(Ã− z)ϑ = (A− z)φ. (33)

Note at once that the remark similar to 1 is not possible at all in the case of Definition 2
due to the stronger singularity of the perturbation.

Remark 7. Similarly to Remark 2 in Definition 2 two cases for the domain D(Ã) in (31)
and (32) are due to the fact that z /∈ σp(Ã) in the case (31) and z ∈ σp(Ã) in the case (32).

Remark 8. If A is a self-adjoint operator, ω1 = ω2, and α ∈ R \ {0} in Definition 2,
then we obtain the usual known definition of singularly perturbed self-adjoint H−2-class
operator [3, 10].

For the resolvent Rz, z ∈ ρ(A) of an unperturbed operator A and the resolvent R̃z,
z ∈ ρ(Ã) of perturbed H−2-class operator Ã we have also a theorem similar to Theorem 1.
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Theorem 3. Let A be a linear unbounded closed operator in the separable Hilbert space H
and Ã be its singularly non-symmetrically rank one perturbed with respect to A operator
Ã ∈ P1

−2(A) defined by (31)–(33). Then the resolvents Rz and R̃z are related to each other
by the M. Krein type formula:

R̃z = Rz + bz(·, η1(z̄))η2(z), (34)

with vector-valued functions η1(z) = (A− ξ)(A− z)−1η1(ξ), η2(z) = (A− ξ)(A− z)−1η2(ξ),
where η1(z), η2(z) ∈ H, z, ξ ∈ ρ(A) ∩ ρ(Ã), and with the scalar-valued function

−b−1
z = α−1 + τ + ((A− z)(1 + zA)(A2 + 1)−1η2(z), η1(z̄)), (35)

where α ∈ C, 0 < |α| <∞ and ∀τ ∈ C, for which we have the equality:

b−1
z − b−1

ξ = (ξ − z)(η2(ξ), η1(z̄)), (36)

and vectors η1(z), η2(z) are connected to ω1, ω2 by relations η1(z̄) = (A∗ − z̄)−1ω1, η2(z) =
(A− z)−1ω2.

Analogously to Theorem 1, in general, the case α = 0 can also be considered by assigning
bz ≡ 0 R̃z ≡ Rz. One can put also |α| = ∞, then in the last expression (35) the term α−1

will be omitted.

Proof of Theorem 3. Steps of the proof are generally similar to those of Theorem 1, but
differ in the technical details that arise due to perturbations of H−2-class.

For ∀h ∈ H, z ∈ ρ(Ã)∩ρ(A), (Ã−z)−1h = ψ ∈ D(Ã). Hence, we can put (A−z)−1h = ϕ
and substitute in (34):

ψ = (Ã− z)−1h = (A− z)−1h+ bz(h, η1(z̄))η2(z) =

= ϕ− 1

1/α + τ + ((A− z)(1 + zA)(A2 + 1)−1η2(z), η1(z̄))
(h, η1(z̄))η2(z) =

= ϕ− ((A− z)ϕ, η1(z̄))

1/α + τ + ((A− z)(1 + zA)(A2 + 1)−1η2(z), η1(z̄))
η2(z).

Comparing the start and the end of the last expression, we obtain (31).
Let us show (36). Using the equality (35), we have

b−1
z − b−1

ξ = −((A− z)(1 + zA)(A2 + 1)−1η2(z), η1(z̄))+

+((A− ξ)(1 + ξA)(A2 + 1)−1η2(ξ), η1(ξ̄)).

And we use the following equalities

η1(ξ̄) = (A− z̄)(A− ξ̄)−1η1(z̄), η2(z) = (A− ξ)(A− z)−1η2(ξ).

Then we have

b−1
z − b−1

ξ = −((A− z)(1 + zA)(A2 + 1)−1(A− ξ)(A− z)−1η2(ξ), η1(z̄))+

+((A− ξ)(1 + ξA)(A2 + 1)−1η2(ξ), (A− z̄)(A− ξ̄)−1η1(z̄)) =

= −((A− ξ)(1 + zA)(A2 + 1)−1η2(ξ), η1(z̄)) + ((A− z)(1 + ξA)(A2 + 1)−1η2(ξ), η1(z̄)) =

= ([(A− z)(1 + ξA)− (A− ξ)(1 + zA)](A2 + 1)−1η2(ξ), η1(z̄)) =

= ([A+ ξA2 − z − zξA− A− zA2 + ξ + ξzA](A2 + 1)−1η2(ξ), η1(z̄)) =

= ((ξ − z)A2 + (ξ − z))((A2 + 1)−1η2(ξ), η1(z̄)) = (ξ − z)(η2(ξ), η1(z̄)).
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By analogy with (Ã− z), we can define ((Ã)∗ − z̄) as perturbation of H−2-class.

Remark 9. Consideration of a singularly perturbed operator of H−2-class and its adjoint
together also allows us to provide an additional description of both operators as a whole.
Linear unbounded closed densely defined inH operator Ã 6= A is singularly perturbed ofH−2-
class with respect to the operator A (without loss of generality we assume 0 ∈ ρ(A)∩ ρ(Ã)),
if both sets (15) are dense in H but herewith D ⊂ H+2, D∗ ⊂ H+2.

Singularly perturbed H−2-class operator can also possess a new point λ of the point
spectrum σp(Ã), which was not in the spectrum σp(A) of A.

Proposition 3. If the operator Ã ∈ P1
−2(A) possesses a new eigenvalue λ ∈ C, which was

not by A, namely λ ∈ σp(Ã) but λ 6∈ σp(A), then for correspondents eigenvectors ϕ: Ãϕ = λϕ
and ψ: Ã∗ψ = λ̄ψ, we have equalities:

(λ− z)bz(ϕ, η1(z̄)) = 1, ϕ = (A− z)(A− λ)−1η2(z),

(λ̄− z̄)b̄z(ψ, η2(z)) = 1, ψ = (A∗ − z̄)(A∗ − λ̄)−1η1(z̄),

where ηi(z) (i ∈ {1, 2}) denoted in Theorem 3, z ∈ ρ(A)
⋂
ρ(Ã).

Proof. The proof is not essentially different from the proof of Proposition 1.

Theorem 4. For a given linear unbounded closed operator A in a separable Hilbert space
H, a number λ ∈ C and a vector ϕ, ψ ∈ H \ H+1 such that for some z ∈ ρ(A), z 6= λ
and (ϕ, (A∗ − λ̄)(A∗ − z̄)−1ψ) 6= 0, there exists unique (up to the parameter) singularly
non-symmetrically rank one perturbed operator Ã ∈ P1

−2(A) such that λ, λ̄ and ϕ, ψ are its
eigenvalues and eigenvectors, namely Ãϕ = λϕ and Ã∗ψ = λ̄ψ. Herewith, the operator Ã is
defined by the resolvent (34) from Theorem 3: R̃z = Rz+bz(·, η1(z̄))η2(z), z ∈ ρ(A)∩ρ(Ã),
with vector-valued functions η1(z̄) = (A∗− λ̄)(A∗− z̄)−1ψ, η2(z) = (A−λ)(A−z)−1ϕ, and
with the scalar-valued function b−1

z = (λ− z)(ϕ, η1(z̄)),
(
or b̄−1

z = (λ̄− z̄)(ψ, η2(z))
)
.

Proof. The proof has the same steps as the proof of Theorem 2, without taking into account
technical details that require consideration of the H−2-class perturbations.

4. H−2-class perturbations, that allow description by the H−1-class methods.
Differences of coefficients bz in (3) and (31) are due to the fact that if, at least one of the

vectors ω1, ω2 does not belong H−1, then the expression 〈(A − z)−1ω2, ω1〉 does not make
sense at all.

Remark that if ω1, ω2 ∈ H−1 \ H, then the denominator bz in (31) can be written as
follows

((A− z)(1 + zA)(A2 + 1)−1η2(z), η1(z̄)) + 1/α + τ =

= 〈(A− z)−1ω2, ω1〉 − 〈A(A2 + 1)−1ω2, ω1〉+ 1/α + τ,

and we can put τ = 〈A(A2 + 1)−1ω2, ω1〉. Thus, Definition 1 becomes a partial case of
Definition 2.

But if at least one of the vectors ω1, ω2 does not belong H−1 and herewith ω1 6= ω2,
then it is possible that the expression 〈(A − z)−1ω2, ω1〉 has a sense. For example, it is
easy to find two functions f(x) and g(x), both of which do not belong to L2(R, dx), but
the integral

∫∞
−∞ f(x)g(x) dx exists. The observed phenomenon is possible only with non-

symmetric perturbations (as opposed to symmetric one).
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