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We prove that the algebraic dimension of an infinite dimensional C-σ-complete Riesz space
(in particular, of a Dedekind σ-complete and a laterally σ-complete Riesz space) with the
principal projection property which either has a weak order unit or is not purely atomic, is at
least continuum. A similar (incomparable to ours) result for complete metric linear spaces is
well known.

For necessary information on Riesz spaces, we refer the reader to [1]. A linear basis of
a vector space having some additional structure (like norm, metric, topology, order) is called
a Hamel basis in order to distinguish this type of bases from the other ones (Schauder bases,
order bases, ect.). More precisely, a system of elements (xi)i∈I of a vector space X is called
a Hamel basis (or linear basis), if for every x ∈ X there exists a unique system of finitely
nonzero reals (ai)i∈I such that x =

∑
i∈I aixi. As an exercise, one can prove that the Hamel

bases are exactly the maximal linearly independent systems in X. An application of Zorn’s
lemma yields that every linearly independent system can be extended to a Hamel basis.
A nice introduction to Hamel bases can be found in [6]. Every two Hamel bases of a vector
space X have the same cardinality [6, p. 3], which is called the algebraic dimension of X.

The present note is devoted to complete a chain of the results by different authors
asserting that, the algebraic dimension of an infinite dimensional complete (in some sense)
vector space with an additional structure cannot be strictly less than continuum. A short
proof that any Hamel basis of an infinite dimensional Banach space has at least continuum
many elements was provided by H.E. Lacey in [7]. A more general result by T.O. Banakh
and A.M. Plichko [2] asserts the same for the setting of complete metric linear spaces (as
was mentioned by the authors later in [3], one can deduce their result from [4, Propositi-
on VIII.2.2] by C. Bessaga and A. Pe lczyński).

In order to achieve maximal generality in the theorem statement, we need some infor-
mation. Given a Riesz space E, we consider the lateral order on E by setting x ⊑ y for any
x, y ∈ E if and only if x is a fragment of y, that is, x ⊥ (y − x). It is a partial order on E
(see [9] for more details about this order), which coincides with the usual order ≤ on the
positive cone E+. A subset A ⊆ E is said to be laterally bounded if there is e ∈ E such that
x ⊑ e for all x ∈ A (the lateral boundedness is considered from above only because every
subset is laterally bounded from below by zero). The lateral supremum of a subset A ⊆ E is
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defined to be the supremum (if exists) of A with respect to the lateral order, and denoted
by

⋃
A.

A Riesz space E is said to be laterally complete if every disjoint family from E+ has a
supremum. Equivalently, E is laterally complete if and only if every disjoint family from E
has a lateral supremum [9, Proposition 5.3]. A Riesz space E is said to be C-complete if every
nonempty laterally bounded subset G of E has a lateral supremum

⋃
G ∈ E. The notion of

C-completeness is the most general one: if a Riesz space E is either Dedekind complete or
laterally complete then E is C-complete [9, Corollary 5.8]. On the other hand, the Banach
lattice C[0, 1] is a C-complete Riesz space which is neither Dedekind complete, nor laterally
complete.

We consider the σ-versions of the above notions, which are much more general. A Riesz
space E is said to be

• laterally σ-complete if every disjoint sequence from E+ has a supremum;

• C-σ-complete if every nonempty laterally bounded at most countable subset G of E
has a lateral supremum

⋃
G ∈ E.

Using the same proof as in [9, Corollary 5.8] with some little adjustments, one can show
that if a Riesz space E is either Dedekind σ-complete or laterally σ-complete then E is
C-σ-complete.

Theorem 1. Let E be a C-σ-complete Riesz space admitting a disjoint laterally bounded
sequence of nonzero elements. Then the algebraic dimension of E is at least continuum.

We say that subsets A,B of N are almost disjoint provided A∩B is finite. One can show
that there exists a family (Ax)x∈R of pairwise almost disjoint infinite subsets of N, which we
use in our proof below (see e.g. [5]).

Proof. Let (en)∞n=1 be a laterally bounded sequence of nonzero elements. With no loss of
generality we may and do assume that en > 0 for all n, otherwise consider |en| instead of en.
Define a family (fx)x∈R in E as follows. Given any x ∈ R, we set

fx = sup
n∈Ax

en, x ∈ R (1)

(fx is well defined by the theorem assumptions, because the lateral supremum coincides
with the usual supremum on E+). It is enough to prove that the family (fx)x∈R is li-
nearly independent. Assuming the contrary, we obtain a linearly dependent finite subsystem
(fxk

)mk=1, m ∈ N. Let (λk)mk=1 be real numbers not all equal zero such that
∑m

k=1 λkfxk
= 0.

Say, λm ̸= 0. Then

fxm = −λ−1
m

m−1∑
k=1

λkfxk
. (2)

Set

A := Axm \
(m−1⋃

k=1

Axk

)
= Axm \

(m−1⋃
k=1

(
Axm ∩ Axk

))
Since Axm is infinite and Axm ∩Axk

is finite for all k ∈ {1, . . . ,m−1}, we obtain that A ̸= ∅.
Fix some j ∈ A. Observe that j ∈ Axm implies ej∧fxm = ej, and j /∈ Axk

implies ej∧fxk
= 0

for k ∈ {1, . . . ,m − 1}. Since the disjoint complement to any subset of a Riesz space is a
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band (in particular, is a linear subspace) [1, p. 34], one has that {ej}d is a linear subspace
and hence ej ∧

(
−λ−1

m

∑m−1
k=1 λkfxk

)
= 0. Therefore, taking infimum of ej with both sides of

equality (2), we obtain

0 < ej = ej ∧ fxm = ej ∧
(
−λ−1

m

m−1∑
k=1

λkfxk

)
= 0,

a contradiction which proves the theorem.

Corollary 1. Let E be a Dedekind σ-complete Riesz space admitting a disjoint order
bounded sequence of nonzero elements. Then the algebraic dimension of E is at least conti-
nuum.

Although the same proof as that of Theorem 1 with minor adjustments will do for
Corollary 1, one can formally obtain Corollary 1 as a consequence of Theorem 1 by showing
that an order bounded sequence in a Dedekind σ-complete Riesz space is laterally bounded.

Corollary 2. Let E be a laterally σ-complete Riesz space admitting a disjoint sequence of
nonzero elements. Then the algebraic dimension of E is at least continuum.

Next we provide a simple example showing that the lateral boundedness assumption on a
sequence in Theorem 1 is essential, as well as the order bounded assumption in Corollary 1.
Let c00 denote the Riesz space of all eventually zero real sequences x = (ξ1, ξ2, . . .) (that is,
(∃n0 ∈ N)(∀n ≥ n0) ξn = 0) with the coordinate-wise order.

Example 1. The Riesz space c00 is Dedekind complete and the unit vector basis (en)∞n=1

forms a countable Hamel basis of c00 being a disjoint sequence of nonzero elements.

The following one-dimensional modification of c00 shows that the C-σ-completeness
assumption in Theorem 1 is essential, as well as the Dedekind σ-completeness assumption
in Corollary 1. Another pathological conclusion of the same example is that, a Riesz space
which is a direct sum of two Dedekind complete Riesz subspaces need not be Dedekind
complete.

Example 2. Let E denote the Riesz space of all eventually constant sequences of real
numbers with the coordinate-wise order. Then E possesses the following properties.

1. E equals the direct sum of its Dedekind complete Riesz subspaces c00 and cR :=
{(λ, λ, . . .) : λ ∈ R}, that is, E = c00 ⊕ cR.

2. E has the principal projection property and is not Dedekind σ-complete. Moreover, E
is not C-σ-complete.

3. The unit vectors (en)∞n=1 form a laterally bounded (and hence, order bounded) disjoint
sequence of nonzero elements in E.

4. The sequence (en)∞n=0, where e0 = (1, 1, . . .) ∈ cR, is a countable Hamel basis of E.

Proof. We prove item 2 only, because the rest ones are obvious. First we show that E has
the principal projection property. Fix any x = (a1, a2, . . .) ∈ E. Set J := {j ∈ N : aj = 0}
and I := N \ J . Then for the principal band Bx generated by x one has

Bx =
{

(ξ1, ξ2, . . .) ∈ E : (∀j ∈ J) ξj = 0
}
, Bd

x =
{

(ξ1, ξ2, . . .) ∈ E : (∀i ∈ I) ξi = 0
}
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and Bx ⊕Bd
x = E. So, E has the principal projection property.

Now we prove that E is not C-σ-complete. The sequence (e2n)∞n=1 is laterally bounded,
for instance, by e0. Show that this sequence has no lateral supremum. Indeed, let z be any
lateral upper bound of (e2n)∞n=1. Decompose z = x + y, where x ∈ c00 and y ∈ cR, say,
x = (a1, . . . , ai, 0, 0, . . .), where i ∈ N and y = λe0, where λ ∈ R. Then z′ := z − e2i+1 is
another lateral upper bound of (e2n)∞n=1 which is strictly less than z. This confirms that E
is not C-σ-complete.

Now we provide necessary information on atoms. An element u ̸= 0 of a Riesz space E
is called

• an atom, whenever 0 ≤ x ≤ |u|, 0 ≤ y ≤ |u| and x ∧ y = 0 imply that either x = 0 or
y = 0;

• a weak atom, if u has no proper fragment, that is, for every x ⊑ u either x = 0 or x = u.

On can easily show that if u ∈ E is an atom then either u > 0 or u < 0 [8, Lemma 26.2 (i)].
On the other hand, if u is an atom then −u is obviously an atom as well. So, for many
purposes, it is enough to consider positive atoms only. Every atom 0 < u ∈ E is a weak
atom, and if E has the principal projection property then every weak atom in E is an atom
[10, Proposition 1.3].

A Riesz space is said to be atomless if it has no atom. We say that a Riesz space E is
purely atomic if there is a collection (ui)i∈I of atoms in E+, called a generating collection of
atoms, such that ui⊥uj for i ̸= j and for every x ∈ E if |x| ∧ ui = 0 for each i ∈ I then
x = 0.

By [10, Proposition 1.6], any Riesz space E with the principal projection property has a
decomposition to mutually complemented bands E = E0 ⊕ E1 where E0 is a purely atomic
vector lattice and E1 is an atomless vector lattice.

By Px we denote the order projection of E onto the principal band generated by a
projection element x of E. By [1, Prop.1.47], Pxy = supm∈N(y ∧m|x|) for all y ∈ E+. It is
well known and easily seen that Pxy ⊑ y for all y ∈ E.

Theorem 2. Let E be an infinite dimensional C-σ-complete Riesz space with the principal
projection property. If E either has a weak order unit or is not purely atomic then every
Hamel basis of E has at least continuum many elements.

Proof. By Theorem 1, it is enough to prove the existence of a laterally bounded disjoint
sequence of nonzero elements. Consider cases.

1. Assume E has a weak order unit e > 0 and E is purely atomic with a generating
collection of positive atoms (ui)i∈I . Since E is infinite dimensional, the index set I is infinite.
With no loss of generality, we assume that N ⊆ I. Since e is a weak order unit, we have that
e ∧ un > 0 and hence,

en := Pune = sup
m∈N

(e ∧mun) > 0

for all n ∈ N.
Now we show that for every n ∈ N there exists λn > 0 such that en = λnun. Fix any

n,m ∈ N. A direct verification shows that e ∧ mun is an atom. By [8, Theorem 26,4 (ii)],
any two atoms in a Riesz space are either disjoint or linearly dependent. So, since e ∧mun
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is not disjoint to un, there is αm,n > 0 such that e ∧mun = αm,nun. Then for any n ∈ N the
number λn = supm∈N αm,n is finite, because

en = sup
m∈N

(e ∧mun) = sup
m∈N

αm,nun = λnun.

Consequently, (en)∞n=1 is a disjoint sequence of atoms. Since Pune ⊑ e for all n ∈ N, this
sequence is laterally bounded by e. By (3) of Theorem 1, every Hamel basis of E has at least
continuum many elements.

2. Assume E is not purely atomic. Let E1 be a nontrivial atomless band of E and
0 < e ∈ E1. Decompose e into disjoint nonzero fragments e = e1 + e′1. Then decompose
e′1 into nonzero disjoint fragments e′1 = e2 + e′2. Arguing like that, we construct a disjoint
sequence of nonzero fragments of e. By (3) of Theorem 1, every Hamel basis of E has at
least continuum many elements.
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