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For a regularly convergent in C series A(z) =
∑∞

n=1 anf(λnz) in the system f(λnz), where
f(z) =

∑∞
k=0 fkz

k is an entire transcendental function and (λn) is a sequence of positive
numbers increasing to +∞, it is investigated the relationship between the growth of functions
A and f in terms of a generalized order. It is proved that if an ≥ 0 for all n ≥ n0,

lnλn = o
(
β−1

(
cα( 1

lnλn
ln 1

an
)
))

for each c ∈ (0,+∞) and lnn = O(Γf (λn)) as n → ∞ then

lim
r→+∞

α(lnMA(r))

β(ln r)
= lim

r→+∞

α(lnMf (r))

β(ln r)
,

where Mf (r) = max{|f(z)| : |z| = r}, Γf (r) :=
d lnMf (r)

d ln r and positive continuous on (x0,+∞)
functions α and β are such that β((1 + o(1))x) = (1 + o(1))β(x), α(cx) = (1 + o(1))α(x) and
dβ−1(cα(x))

d ln x = O(1) as x → +∞ for each c ∈ (0,+∞). A similar result is obtained for the

Laplace-Stieltjes type integral I(r) =
∞∫
0

a(x)f(rx)dF (x).

1. Introduction. Let

f(z) =
∞∑
k=0

fkz
k (1)

be an entire function, Mf (r) = max{|f(z)| : |z| = r} and (λn) be a sequence of positive
numbers increasing to +∞. Suppose that the series

A(z) =
∞∑
n=1

anf(λnz) (2)

in the system f(λnz) regularly convergent in C, i. e.
∑∞

n=1 |an|Mf (rλn) < +∞ for all r ∈
[0,+∞). Many authors have studied the representation of analytic functions by series in
the system f(λnz). We will specify here only on the monographs of A.F. Leont’ev [1] and
B.V. Vinnitskyi [2], where references are to other works. Since series (2) regularly convergent
in C, the function A is entire. To study its growth, we will use generalized orders. For this
purpose, as in [3] by L we denote the class of continuous non-negative on (−∞,+∞) functions
α such that α(x) = α(x0) ≥ 0 for x ≤ x0 and α(x) ↑ +∞ as x0 ≤ x → +∞. We say that
α ∈ L0, if α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞. Finally, α ∈ Lsi, if α ∈ L
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and α(cx) = (1 + o(1))α(x) as x → +∞ for each c ∈ (0,+∞), i. e. α is a slowly increasing
function. Clearly, Lsi ⊂ L0. For α ∈ L and β ∈ L quantity ϱα,β[f ] = lim

r→+∞
α(lnMf (r))

β(ln r)
is called

generalized (α, β)-order of the entire function f ([3]). Note that functions of form (2) were
also studied in [4].

Lemma 1 ([1]). If α ∈ Lsi, β ∈ L0 and dβ−1(cα(x))
d lnx

= O(1) as x → +∞ for each c ∈ (0,+∞)
then

ϱα,β[f ] = lim
k→+∞

α(k)

β
(

1
k
ln 1

|fk|

) . (3)

Using Lemma 1 here we establish a relationship between the growth of the entire func-
tions f and F in terms of generalized orders.

2. Main result. Suppose that an ≥ 0 for all n ≥ 1. Since

A(z) =
∞∑
n=1

an

∞∑
k=0

fk(zλn)
k =

∞∑
k=0

fk

( ∞∑
n=1

anλ
k
n

)
zk,

in view of Cauchy’s inequality we have

MA(r) ≥ |fk|
( ∞∑

n=1

anλ
k
n

)
rk ≥ an|fk|(λnr)

k

for all n ≥ 1, k ≥ 0 and r ∈ [0,+∞). Hence it follows that MA(r) ≥ |fk|µD(k)r
k, where

µD(σ) = max{|an| exp{σ lnλn} : n ≥ 1} be the maximal term of entire Dirichlet series

D(σ) =
∞∑
n=1

|an| exp{σ lnλn}. (4)

Therefore, MA(r) ≥ µG(r), where µG(r) = max{|fk|µD(k)r
k : k ≥ 0} is the maximal term of

the series

G(r) =
∞∑
k=0

|fk|µD(k)r
k. (5)

To obtain the estimate MA(r) from above, in addition to Lemma 1, the following two well-
known lemmas will be required.

Lemma 2. If a function f is transcendental then the function lnMf (r) is logarithmically
convex and, thus,

Γf (r) :=
d lnMf (r)

d ln r
↗ +∞, r → +∞,

(in points where the derivative does not exist, under d lnMf (r)

d ln r
we mean the right-hand deri-

vative).

Lemma 3. If a function f is transcendental then

Mf (r) ≤
∞∑
k=0

|fk|(2r)k2−k ≤ 2µf (2r).

Lemma 4 ([5]). If β ∈ L and B(δ) = lim
x→+∞

β((1+δ)x)
β(x)

, δ > 0, then in order that β ∈ L0, it is

necessary and sufficient that B(δ) → 1 as δ → +0.
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Since series (2) regularly convergent in C, for every r ∈ [0,+∞) and τ > 0 we have

MA(r) ≤
∞∑
n=1

|an|Mf (rλn) ≤ µA((1 + τ)r)
∞∑
n=1

Mf (rλn)

Mf ((1 + τ)rλn)
, (6)

where µA(r) = max{|an|Mf (rλn) : n ≥ 1}.
Then by Lemma 2 for r ≥ 1 we have

lnMf ((1 + τ)rλn)− lnMf (rλn) =

(1+τ)rλn∫
rλn

d lnMf (x)

d ln x
d ln x =

(1+τ)rλn∫
rλn

Γf (x)d ln x ≥

≥ Γf (rλn) ln(1 + τ) ≥ Γf (λn) ln(1 + τ)

Therefore, if lnn ≤ qΓf (λn) for all n ≥ n0 and ln(1 + τ) > q then

∞∑
n=n0

Mf (rλn)

Mf ((1 + τ)rλn)
≤

∞∑
n=n0

exp {−Γf (λn) ln(1 + τ)} ≤
∞∑

n=n0

exp

{
− ln(1 + τ)

q
lnn

}
< +∞

and (6) for r ≥ 1 implies

MA(r) ≤ TµA((1 + τ)r), T = const > 0. (7)

Also we have

µA(r) ≤ max

{
|an|

∞∑
k=0

|fk|(rλn)
k : n ≥ 1

}
≤

∞∑
k=0

max{|an|λk
n : n ≥ 1}|fk|rk =

=
∞∑
k=0

µD(k)|fk|rk ≤ µG(2r)
∞∑
k=0

2−k = 2µG(2r). (8)

From (7) and (8) we get the estimate MA(r) ≤ 2TµG(2(1 + τ)r) for r ≥ 1 and, thus,

lnµG(r) ≤ lnMA(r) ≤ lnµG(2(1 + τ)r) + ln(2T ), r ≥ 1. (9)

Now we can prove such a theorem.

Theorem 1. Let f be an entire transcendental function, an ≥ 0 for all n ≥ 1 and series (2)
regularly convergent in C. Suppose that the functions α and β satisfy the conditions of
Lemma 1, lnn = O(Γf (λn)) as n → ∞ and for each c ∈ (0,+∞)

lnλn = o

(
β−1(cα

(
1

lnλn

ln
1

an

))
, n → ∞. (10)

Then ϱα,β[A] = ϱα,β[f ].

Proof. Since µD(σ) → +∞ as σ → +∞, we have µD(k) ≥ 1 for k ≥ k0. For simplicity, we
assume that k0 = 0. Then µG(r) = max{|fk|µD(k)r

k : k ≥ 0} ≥ max{|fk|rk : k ≥ 0} = µf (r),
whence in view of (9) and Lemma 3 it follows that ϱα,β[f ] ≤ ϱα,β[F ].



ON THE GROWTH OF SERIES IN SYSTEMS OF FUNCTIONS 127

On the other hand, in view of (9) ϱα,β[A] ≤ ϱα,β[G]. By Lemma 1

ϱα,β[G] = lim
k→+∞

α(k)

β
(

1
k
ln 1

µD(k)|fk|

) = lim
k→+∞

α(k)

β
(

1
k
ln 1

|fk|
− lnµD(k)

k

) . (11)

If ϱα,β[f ] < +∞ then by Lemma 1 for every ϱ > ϱα,β[f ] and all k ≥ k0(ϱ) we have α(k) ≤
ϱβ( 1

k
ln 1

|fk|
) and, thus,

1

k
ln

1

|fk|
≥ β−1

(
α(k)

ϱ

)
, k ≥ k0(ϱ). (12)

Let νD(σ) = max{n : |an| exp{σ lnλn} = µD(σ)} be the central index of series (4). Then
([6, p.17])

lnµD(σ) = lnµD(σ0) +

σ∫
σ0

lnλνD(x)dx, σ0 ≤ σ. (13)

From condition (10) with c = 1/ϱ we get

ln an ≤ − lnλnα
−1

(
ϱβ

(
lnλn

ε

))
for each ε > 0 and all n ≥ n0(ε). Therefore, for all σ ≥ σ0 = σ0(ε)

lnµD(σ) = ln aνD(σ) + σ lnλνD(σ) ≤ − lnλνD(σ)α
−1

(
ϱβ

(
lnλνD(σ)

ε

))
+ σ lnλνD(σ) =

= lnλνD(σ)

(
σ − α−1

(
ϱβ

(
lnλνD(σ)

ε

)))
.

Since µD(σ) → +∞ as σ → +∞, hence it follows that σ − α−1(ϱβ(
lnλνD(σ)

ε
)) ≥ 0, i. e.

lnλνD(σ) ≤ εβ−1(α(σ)
ϱ
) for σ ≥ σ0. Therefore, in view of (13)

lnµD(σ) ≤ lnµD(σ0) + ε

σ∫
σ0

β−1

(
α(x)

ϱ

)
dx ≤ lnµD(σ0) + εσβ−1

(
α(σ)

ϱ

)
and, thus,

lnµD(k)

k
≤ ε+ εβ−1

(
α(k)

ϱ

)
, k ≥ k0(ε). (14)

From (11), (12) and (14) we obtain

ϱα,β[G] ≤ lim
k→+∞

α(k)

β
(
β−1

(
α(k)
ϱ

)
− ε− εβ−1

(
α(k)
ϱ

)) = lim
k→+∞

α(k)

β
(
(1− ε)β−1

(
α(k)
ϱ

)) =

= lim
k→+∞

α(k)

β
(
β−1

(
α(k)
ϱ

)) β
(
β−1

(
α(k)
ϱ

))
β
(
(1− ε)β−1

(
α(k)
ϱ

)) ≤ ϱB(ε),

where by Lemma 4 B(ε) = lim
k→+∞

β(x)
β((1−ε)x)

→ 1 as ϵ → 0. Thus, ϱα,β[G] ≤ ϱ and since ϱ is

arbitrary, we obtain the inequality ϱα,β[G] ≤ ϱα,β[f ] which is obvious when ϱα,β[f ] = +∞.
Finally, (9) implies the inequality ϱα,β[A] ≤ ϱα,β[G] ≤ ϱα,β[f ].
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The functions α(x) = ln+ x and β(x) = x+ satisfy the conditions of Theorem 1. Therefore,
Theorem 1 implies the following statement.

Corollary 1. Let an entire transcendental function f have the order ϱ[f ] := lim
r→+∞

ln lnMf (r)

ln r
=

= ϱ ∈ (0,+∞) and

0 < σf := lim
r→+∞

lnMf (r)

rϱ
≤ σf := lim

r→+∞

lnMf (r)

rϱ
< +∞. (15)

Suppose that an ≥ 0 for all n ≥ 1 and series (2) regularly convergent in C. If lnn = O(λϱ
n)

and lnλn = o(ln ln(1/an)) as n → ∞ then ϱ[A] = ϱ[f ].

Indeed, it is clear that

lnMf (r) = lnMf (r0) +

r∫
r0

Γf (t)

t
dt, 0 ≤ r0 ≤ r < +∞.

Therefore, if we put

τ = lim
r→+∞

Γf (r)

rϱ
, τ = lim

r→+∞

Γf (r)

rϱ

then using results from [7] we get

τ ≤ ϱσ ≤ τ

(
1 + ln

τ

τ

)
≤ τ ≤ eϱσ.

Hence in view of (15) it follows that τ < +∞ and τ > 0. Therefore, Γf (r) ≍ rϱ as r → +∞
and, thus, the conditions lnn = O(λϱ

n) and lnn = O(Γf (λn)) as n → ∞ are equivalent.
We remark also that condition (10) now looks like lnλn = o(ln( 1

lnλn
ln 1

an
)), i. e. lnλn =

o(ln ln(1/an)) as n → ∞.
All conditions of Theorem 1 are satisfied and Theorem 1 implies Corollary 1.

3. Growth of Laplace-Stieltjes type integrals. Let V be the class of nonnegative nonde-
creasing unbounded continuous on the right functions F on [0,+∞). We assume that f is an
entire transcendental function and fk ≥ 0 for all k ≥ 0 and a positive on [0,+∞) function a
is such that the Laplace-Stieltjes type integral

I(r) =

∞∫
0

a(x)f(rx)dF (x) (16)

exists for every r ∈ [0,+∞). The asymptotical behavior of such integrals in the case when
f(x) = ex is studied in the monograph [8] (see also [9, 10, 11]), as well as for the case of
positive functions f such that the function ln f is convex on (0,+∞) in [12].

Suppose that x0 > 1 is such that
∫ x0

1
a(x)dF (x) ≥ c > 0. Then

I(r) ≥
x0∫
1

a(x)f(rx)dF (x) ≥ f(r)c. (17)
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On the other hand, as in the proof of Theorem 1 for r ≥ 1 we have ln f((1 + τ)xr) −
− ln f(rx) ≥ Γf (x) ln(1 + τ). Therefore, if µI(r) = max{a(x)f(rx) : x ≥ 0} is the maximum
of the integrand, lnF (x) ≤ qΓf (x) and ln(1 + τ) > q

I(r) =

∞∫
0

a(x)f((1 + τ)rx)
f(rx)

f((1 + τ)rx)
dF (x) ≤ µI((1 + τ)r)

∞∫
0

f(rx)

f((r + τ)x)
dF (x) ≤

≤ µI((1 + τ)r)

∞∫
0

e−Γf (x) ln(1+τ)dF (x) =

= µI((1 + τ)r)

T1 + ln(1 + τ)

∞∫
0

F (x)e−Γf (x) ln(1+τ)dΓf (x)

 ≤

≤ µI((1 + τ)r)

T1 + ln(1 + τ)

∞∫
0

e−Γf (x)((ln(1+τ)−q)dΓf (x)

 ≤ T2µI(r + τ). (18)

where Tj = const > 0. Also, as above, we have

µI(r) = max

{
a(x)

∞∑
k=0

fk(xr)
k : x ≥ 0

}
≤

≤
∞∑
k=0

max{a(x)xk : x ≥ 0}fkrk = G1(r) :=
∞∑
k=0

µJ(k)fkr
k, (19)

where µJ(σ) = max{a(x)eσ lnx : x ≥ 0} is the maximum of the integrand for Laplace-Stieltjes
integral

J(σ) =

∫ ∞

0

a(x)eσ lnxdF (x).

Now we prove the following analog of Theorem 1.

Theorem 2. Let F ∈ V , f be an entire transcendental function and fk ≥ 0 for all k ≥ 0.
Suppose that lnF (x) ≤ qΓf (x) for some q > 0 and all x ≥ 0, the functions α and β satisfy
the conditions of Lemma 1 and for each c ∈ (0,+∞)

ln x = o

(
β−1

(
cα

(
1

ln x
ln

1

a(x)

)))
, x → +∞. (20)

Then ϱα,β[I] = ϱα,β[f ].

Proof. From (17) it follows that ϱα,β[f ] ≤ ϱα,β[I].
On the other hand, in view of (18) and (19) ϱα,β[I] ≤ ϱα,β[G1]. By Lemma 1

ϱα,β[G1] = lim
k→+∞

α(k)

β
(

1
k
ln 1

|fk|
− lnµJ (k)

k

) . (21)

If ϱα,β[f ] < +∞ then as above we get (12).
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As in [8, p.24], let νj(σ) be the central point of µJ(σ). Then [8, p.26]

lnµJ(σ) = lnµJ(σ0) +

σ∫
σ0

ln νJ(x)dx, σ0 ≤ σ. (22)

From condition (20) with c = 1/ϱ we get ln a(x) ≤ − ln xα−1
(
ϱβ

(
lnx
ε

))
for each ε > 0

and all x ≥ x0(ε). Therefore, as in the proof of Theorem 1, for all σ ≥ σ0 = σ0(ε) we have

lnµJ(σ) ≤ ln νJ(σ)

(
σ − α−1

(
ϱβ

(
ln νJ(σ

ε

)))
,

whence it follows that ln νJ(σ) ≤ εβ−1 (α(σ)/ϱ) for σ ≥ σ0. Therefore, in view of (22)
lnµJ(σ) ≤ lnµJ(σ0) + εσβ−1 (α(σ)/ϱ) and, thus,

lnµD(k)

k
≤ ε+ εβ−1

(
α(k)

ϱ

)
, k ≥ k0(ε). (23)

From (21), (12) and (23) as in the proof of Theorem 1 we get ϱα,β[I] ≤ ϱα,β[G1] ≤ ϱα,β[f ].

For the functions α(x) = ln+ x and β(x) = x+ Theorem 2 implies the following statement.

Corollary 2. Let an entire transcendental function (1) with fk ≥ 0 satisfy condition (15).
If lnF (x) = O(xϱ) and ln x = o(ln ln(1/a(x)) as x → +∞ then ϱ[I] = ϱ[f ].

4. Remarks. The conditions lnn = O(λϱ
n) and lnλn = o(ln ln(1/an)) as n → ∞ in

Corollary 1 and their analogues lnF (x) = O(xϱ) and lnx = o(ln ln(1/a(x)) as x → +∞
in Corollary 2 are natural. Let us show this by the example of the function Aϱ(z) =
∞∑
n=1

anEϱ(zλn), where

Eϱ(z) =
∞∑
k=0

zk

Γ(1 + k/ϱ)
, 0 < ϱ < +∞,

is the Mittag-Leffler function. The properties of this function have been used in many
problems in the theory of entire functions. We only need the following property of the
Mittag-Leffler function: if 0 < ϱ < +∞ then [13, p.115]

MEϱ(r) = Eϱ(r) = (1 + o(1))ϱer
ϱ

, r → +∞.

Hence it follows that ϱ[Eϱ] = ϱ and ϱ[Aϱ] = ϱ[A∗
ϱ], where A∗

ϱ(r) =
∑∞

n=1 an exp{rϱλϱ
n}. We

put rϱ = σ and λϱ
n = µn. Then A∗

ϱ(r) = Dϱ(σ) =
∑∞

n=1 ane
σµn and ϱ[A∗

ϱ] = ϱϱl[Dϱ], where

ϱl[Dϱ] = lim
σ→+∞

ln lnDϱ(σ)

lnσ

is the logarithmic order of Dirichlet series Dϱ. It is known [14] that if lnn = O(µn) as n → ∞
then ϱl[Dϱ] = pl + 1, where

pl = lim
n→+∞

lnµn

ln
(

1
µn

ln 1
an

) .
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Therefore, if lnn = O(λϱ) as n → ∞ and pl = 0 then ϱ[Aϱ] = ϱ = ϱ[Eϱ]. Finally, pl = 0 if
and only lnµn = o(ln ln(1/an)), i. e. lnλn = o(ln ln(1/an)) as n → ∞.

By a similar method, studying the growth of an integral Iϱ(r)(r) =
∫∞
0

a(x)Eϱ(rx)dF (x)
can be reduced to studying the growth of the integral J(σ) =

∫∞
0

a1(x)e
xσdF1(x) and then

use the formula [8, p.83]

lim
σ→+∞

ln ln J(σ)

lnσ
= lim

x→+∞

lnx

ln
(

1
x
ln 1

a1(x)

) + 1,

provided

lim
x→+∞

ln lnF1(x)

lnx
≤ 1.
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