УДК 517.547.2

M. M. Sheremeta

ON THE GROWTH OF SERIES IN SYSTEMS OF FUNCTIONS AND LAPLACE-STIELTJES TYPE INTEGRALS

M. M. Sheremeta. On the growth of series in system of functions and Laplace-Stieltjes integrals, Mat. Stud. 55 (2021), 124–131.

For a regularly convergent in \mathbb{C} series $A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z)$ in the system $f(\lambda_n z)$, where $f(z) = \sum_{k=0}^{\infty} f_k z^k$ is an entire transcendental function and (λ_n) is a sequence of positive numbers increasing to $+\infty$, it is investigated the relationship between the growth of functions A and f in terms of a generalized order. It is proved that if $a_n \ge 0$ for all $n \ge n_0$,

A and f in terms of a generalized order. It is proved that if $u_n \ge 0$ for all $n \ge n_0$, $\ln \lambda_n = o\left(\beta^{-1}\left(c\alpha(\frac{1}{\ln\lambda_n}\ln\frac{1}{a_n})\right)\right)$ for each $c \in (0, +\infty)$ and $\ln n = O(\Gamma_f(\lambda_n))$ as $n \to \infty$ then $\lim_{r \to +\infty} \frac{\alpha(\ln M_A(r))}{\beta(\ln r)} = \lim_{r \to +\infty} \frac{\alpha(\ln M_f(r))}{\beta(\ln r)},$ where $M_f(r) = \max\{|f(z)| : |z| = r\}, \Gamma_f(r) := \frac{d\ln M_f(r)}{d\ln r}$ and positive continuous on $(x_0, +\infty)$ functions α and β are such that $\beta((1 + o(1))x) = (1 + o(1))\beta(x), \alpha(cx) = (1 + o(1))\alpha(x)$ and $d\beta^{-1}(c\alpha(r))$ $\frac{d\beta^{-1}(c\alpha(x))}{d\ln x} = O(1)$ as $x \to +\infty$ for each $c \in (0, +\infty)$. A similar result is obtained for the Laplace-Stieltjes type integral $I(r) = \int_{0}^{\infty} a(x)f(rx)dF(x).$

1. Introduction. Let

$$f(z) = \sum_{k=0}^{\infty} f_k z^k \tag{1}$$

be an entire function, $M_f(r) = \max\{|f(z)|: |z| = r\}$ and (λ_n) be a sequence of positive numbers increasing to $+\infty$. Suppose that the series

$$A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z)$$
⁽²⁾

in the system $f(\lambda_n z)$ regularly convergent in \mathbb{C} , i. e. $\sum_{n=1}^{\infty} |a_n| M_f(r\lambda_n) < +\infty$ for all $r \in$ $[0, +\infty)$. Many authors have studied the representation of analytic functions by series in the system $f(\lambda_n z)$. We will specify here only on the monographs of A.F. Leont'ev [1] and B.V. Vinnitskyi [2], where references are to other works. Since series (2) regularly convergent in \mathbb{C} , the function A is entire. To study its growth, we will use generalized orders. For this purpose, as in [3] by L we denote the class of continuous non-negative on $(-\infty, +\infty)$ functions α such that $\alpha(x) = \alpha(x_0) \ge 0$ for $x \le x_0$ and $\alpha(x) \uparrow +\infty$ as $x_0 \le x \to +\infty$. We say that $\alpha \in L^0$, if $\alpha \in L$ and $\alpha((1+o(1))x) = (1+o(1))\alpha(x)$ as $x \to +\infty$. Finally, $\alpha \in L_{si}$, if $\alpha \in L$

²⁰¹⁰ Mathematics Subject Classification: 30B50, 30D10, 30D20.

Keywords: entire function; regularly converging series; generalized order. doi:10.30970/ms.55.2.124-131

and $\alpha(cx) = (1 + o(1))\alpha(x)$ as $x \to +\infty$ for each $c \in (0, +\infty)$, i. e. α is a slowly increasing function. Clearly, $L_{si} \subset L^0$. For $\alpha \in L$ and $\beta \in L$ quantity $\varrho_{\alpha,\beta}[f] = \lim_{r \to +\infty} \frac{\alpha(\ln M_f(r))}{\beta(\ln r)}$ is called generalized (α, β) -order of the entire function f ([3]). Note that functions of form (2) were also studied in [4].

Lemma 1 ([1]). If $\alpha \in L_{si}$, $\beta \in L^0$ and $\frac{d\beta^{-1}(c\alpha(x))}{d\ln x} = O(1)$ as $x \to +\infty$ for each $c \in (0, +\infty)$ then

$$\varrho_{\alpha,\beta}[f] = \lim_{k \to +\infty} \frac{\alpha(k)}{\beta\left(\frac{1}{k} \ln \frac{1}{|f_k|}\right)}.$$
(3)

Using Lemma 1 here we establish a relationship between the growth of the entire functions f and F in terms of generalized orders.

2. Main result. Suppose that $a_n \ge 0$ for all $n \ge 1$. Since

$$A(z) = \sum_{n=1}^{\infty} a_n \sum_{k=0}^{\infty} f_k (z\lambda_n)^k = \sum_{k=0}^{\infty} f_k \Big(\sum_{n=1}^{\infty} a_n \lambda_n^k \Big) z^k,$$

inequality we have

in view of Cauchy's inequality we have

$$M_A(r) \ge |f_k| \Big(\sum_{n=1}^{\infty} a_n \lambda_n^k \Big) r^k \ge a_n |f_k| (\lambda_n r)^k$$

for all $n \ge 1$, $k \ge 0$ and $r \in [0, +\infty)$. Hence it follows that $M_A(r) \ge |f_k|\mu_D(k)r^k$, where $\mu_D(\sigma) = \max\{|a_n| \exp\{\sigma \ln \lambda_n\}: n \ge 1\}$ be the maximal term of entire Dirichlet series

$$D(\sigma) = \sum_{n=1}^{\infty} |a_n| \exp\{\sigma \ln \lambda_n\}.$$
(4)

Therefore, $M_A(r) \ge \mu_G(r)$, where $\mu_G(r) = \max\{|f_k|\mu_D(k)r^k : k \ge 0\}$ is the maximal term of the series

$$G(r) = \sum_{k=0}^{\infty} |f_k| \mu_D(k) r^k.$$
 (5)

To obtain the estimate $M_A(r)$ from above, in addition to Lemma 1, the following two wellknown lemmas will be required.

Lemma 2. If a function f is transcendental then the function $\ln M_f(r)$ is logarithmically convex and, thus,

$$\Gamma_f(r) := \frac{d \ln M_f(r)}{d \ln r} \nearrow +\infty, \quad r \to +\infty,$$

(in points where the derivative does not exist, under $\frac{d \ln M_f(r)}{d \ln r}$ we mean the right-hand derivative).

Lemma 3. If a function f is transcendental then

$$M_f(r) \le \sum_{k=0}^{\infty} |f_k| (2r)^k 2^{-k} \le 2\mu_f(2r).$$

Lemma 4 ([5]). If $\beta \in L$ and $B(\delta) = \lim_{x \to +\infty} \frac{\beta((1+\delta)x)}{\beta(x)}, \delta > 0$, then in order that $\beta \in L^0$, it is necessary and sufficient that $B(\delta) \to 1$ as $\delta \to +0$.

Since series (2) regularly convergent in \mathbb{C} , for every $r \in [0, +\infty)$ and $\tau > 0$ we have

$$M_A(r) \le \sum_{n=1}^{\infty} |a_n| M_f(r\lambda_n) \le \mu_A((1+\tau)r) \sum_{n=1}^{\infty} \frac{M_f(r\lambda_n)}{M_f((1+\tau)r\lambda_n)},\tag{6}$$

where $\mu_A(r) = \max\{|a_n|M_f(r\lambda_n): n \ge 1\}$. Then by Lemma 2 for $r \ge 1$ we have

Then by Lemma 2 for $r \ge 1$ we have

$$\ln M_f((1+\tau)r\lambda_n) - \ln M_f(r\lambda_n) = \int_{r\lambda_n}^{(1+\tau)r\lambda_n} \frac{d\ln M_f(x)}{d\ln x} d\ln x = \int_{r\lambda_n}^{(1+\tau)r\lambda_n} \Gamma_f(x) d\ln x \ge \sum_{r\lambda_n} \Gamma_f(r\lambda_n) \ln(1+\tau) \ge \Gamma_f(\lambda_n) \ln(1+\tau)$$

Therefore, if $\ln n \leq q\Gamma_f(\lambda_n)$ for all $n \geq n_0$ and $\ln(1+\tau) > q$ then

$$\sum_{n=n_0}^{\infty} \frac{M_f(r\lambda_n)}{M_f((1+\tau)r\lambda_n)} \le \sum_{n=n_0}^{\infty} \exp\left\{-\Gamma_f(\lambda_n)\ln(1+\tau)\right\} \le \sum_{n=n_0}^{\infty} \exp\left\{-\frac{\ln(1+\tau)}{q}\ln n\right\} < +\infty$$

and (6) for $r \ge 1$ implies

$$M_A(r) \le T\mu_A((1+\tau)r), \quad T = \text{const} > 0.$$
(7)

Also we have

$$\mu_A(r) \le \max\left\{ |a_n| \sum_{k=0}^{\infty} |f_k| (r\lambda_n)^k \colon n \ge 1 \right\} \le \sum_{k=0}^{\infty} \max\{|a_n|\lambda_n^k \colon n \ge 1\} |f_k| r^k = \sum_{k=0}^{\infty} \mu_D(k) |f_k| r^k \le \mu_G(2r) \sum_{k=0}^{\infty} 2^{-k} = 2\mu_G(2r).$$
(8)

From (7) and (8) we get the estimate $M_A(r) \leq 2T\mu_G(2(1+\tau)r)$ for $r \geq 1$ and, thus,

$$\ln \mu_G(r) \le \ln M_A(r) \le \ln \mu_G(2(1+\tau)r) + \ln(2T), \quad r \ge 1.$$
(9)

Now we can prove such a theorem.

Theorem 1. Let f be an entire transcendental function, $a_n \ge 0$ for all $n \ge 1$ and series (2) regularly convergent in \mathbb{C} . Suppose that the functions α and β satisfy the conditions of Lemma 1, $\ln n = O(\Gamma_f(\lambda_n))$ as $n \to \infty$ and for each $c \in (0, +\infty)$

$$\ln \lambda_n = o\left(\beta^{-1} \left(c\alpha \left(\frac{1}{\ln \lambda_n} \ln \frac{1}{a_n}\right)\right), \quad n \to \infty.$$
(10)

Then $\varrho_{\alpha,\beta}[A] = \varrho_{\alpha,\beta}[f].$

Proof. Since $\mu_D(\sigma) \to +\infty$ as $\sigma \to +\infty$, we have $\mu_D(k) \ge 1$ for $k \ge k_0$. For simplicity, we assume that $k_0 = 0$. Then $\mu_G(r) = \max\{|f_k|\mu_D(k)r^k : k \ge 0\} \ge \max\{|f_k|r^k : k \ge 0\} = \mu_f(r)$, whence in view of (9) and Lemma 3 it follows that $\varrho_{\alpha,\beta}[f] \le \varrho_{\alpha,\beta}[F]$.

On the other hand, in view of (9) $\rho_{\alpha,\beta}[A] \leq \rho_{\alpha,\beta}[G]$. By Lemma 1

$$\varrho_{\alpha,\beta}[G] = \lim_{k \to +\infty} \frac{\alpha(k)}{\beta\left(\frac{1}{k} \ln \frac{1}{\mu_D(k)|f_k|}\right)} = \lim_{k \to +\infty} \frac{\alpha(k)}{\beta\left(\frac{1}{k} \ln \frac{1}{|f_k|} - \frac{\ln \mu_D(k)}{k}\right)}.$$
(11)

If $\rho_{\alpha,\beta}[f] < +\infty$ then by Lemma 1 for every $\rho > \rho_{\alpha,\beta}[f]$ and all $k \ge k_0(\rho)$ we have $\alpha(k) \le \rho\beta(\frac{1}{k} \ln \frac{1}{|f_k|})$ and, thus,

$$\frac{1}{k}\ln\frac{1}{|f_k|} \ge \beta^{-1}\left(\frac{\alpha(k)}{\varrho}\right), \quad k \ge k_0(\varrho). \tag{12}$$

Let $\nu_D(\sigma) = \max\{n \colon |a_n| \exp\{\sigma \ln \lambda_n\} = \mu_D(\sigma)\}$ be the central index of series (4). Then ([6, p.17])

$$\ln \mu_D(\sigma) = \ln \mu_D(\sigma_0) + \int_{\sigma_0}^{\sigma} \ln \lambda_{\nu_D(x)} dx, \quad \sigma_0 \le \sigma.$$
(13)

From condition (10) with $c = 1/\rho$ we get

$$\ln a_n \le -\ln \lambda_n \alpha^{-1} \left(\varrho \beta \left(\frac{\ln \lambda_n}{\varepsilon} \right) \right)$$

for each $\varepsilon > 0$ and all $n \ge n_0(\varepsilon)$. Therefore, for all $\sigma \ge \sigma_0 = \sigma_0(\varepsilon)$

$$\ln \mu_D(\sigma) = \ln a_{\nu_D(\sigma)} + \sigma \ln \lambda_{\nu_D(\sigma)} \leq -\ln \lambda_{\nu_D(\sigma)} \alpha^{-1} \left(\varrho \beta \left(\frac{\ln \lambda_{\nu_D(\sigma)}}{\varepsilon} \right) \right) + \sigma \ln \lambda_{\nu_D(\sigma)} = \\ = \ln \lambda_{\nu_D(\sigma)} \left(\sigma - \alpha^{-1} \left(\varrho \beta \left(\frac{\ln \lambda_{\nu_D(\sigma)}}{\varepsilon} \right) \right) \right).$$

Since $\mu_D(\sigma) \to +\infty$ as $\sigma \to +\infty$, hence it follows that $\sigma - \alpha^{-1}(\varrho\beta(\frac{\ln\lambda_{\nu_D(\sigma)}}{\varepsilon})) \ge 0$, i. e. $\ln\lambda_{\nu_D(\sigma)} \le \varepsilon\beta^{-1}(\frac{\alpha(\sigma)}{\varrho})$ for $\sigma \ge \sigma_0$. Therefore, in view of (13)

$$\ln \mu_D(\sigma) \le \ln \mu_D(\sigma_0) + \varepsilon \int_{\sigma_0}^{\sigma} \beta^{-1} \left(\frac{\alpha(x)}{\varrho}\right) dx \le \ln \mu_D(\sigma_0) + \varepsilon \sigma \beta^{-1} \left(\frac{\alpha(\sigma)}{\varrho}\right)$$

and, thus,

$$\frac{\ln \mu_D(k)}{k} \le \varepsilon + \varepsilon \beta^{-1} \left(\frac{\alpha(k)}{\varrho}\right), \quad k \ge k_0(\varepsilon).$$
(14)

From (11), (12) and (14) we obtain

$$\begin{split} \varrho_{\alpha,\beta}[G] &\leq \overline{\lim_{k \to +\infty}} \frac{\alpha(k)}{\beta \left(\beta^{-1} \left(\frac{\alpha(k)}{\varrho} \right) - \varepsilon - \varepsilon \beta^{-1} \left(\frac{\alpha(k)}{\varrho} \right) \right)} = \overline{\lim_{k \to +\infty}} \frac{\alpha(k)}{\beta \left((1 - \varepsilon) \beta^{-1} \left(\frac{\alpha(k)}{\varrho} \right) \right)} = \\ &= \overline{\lim_{k \to +\infty}} \frac{\alpha(k)}{\beta \left(\beta^{-1} \left(\frac{\alpha(k)}{\varrho} \right) \right)} \frac{\beta \left(\beta^{-1} \left(\frac{\alpha(k)}{\varrho} \right) \right)}{\beta \left((1 - \varepsilon) \beta^{-1} \left(\frac{\alpha(k)}{\varrho} \right) \right)} \leq \varrho B(\varepsilon), \end{split}$$

where by Lemma 4 $B(\varepsilon) = \lim_{k \to +\infty} \frac{\beta(x)}{\beta((1-\varepsilon)x)} \to 1$ as $\epsilon \to 0$. Thus, $\rho_{\alpha,\beta}[G] \leq \rho$ and since ρ is arbitrary, we obtain the inequality $\rho_{\alpha,\beta}[G] \leq \rho_{\alpha,\beta}[f]$ which is obvious when $\rho_{\alpha,\beta}[f] = +\infty$. Finally, (9) implies the inequality $\rho_{\alpha,\beta}[A] \leq \rho_{\alpha,\beta}[G] \leq \rho_{\alpha,\beta}[f]$. The functions $\alpha(x) = \ln^+ x$ and $\beta(x) = x^+$ satisfy the conditions of Theorem 1. Therefore, Theorem 1 implies the following statement.

Corollary 1. Let an entire transcendental function f have the order $\varrho[f] := \lim_{r \to +\infty} \frac{\ln \ln M_f(r)}{\ln r} = \rho \in (0, +\infty)$ and

$$0 < \underline{\sigma}_f := \lim_{r \to +\infty} \frac{\ln M_f(r)}{r^{\varrho}} \le \overline{\sigma}_f := \lim_{r \to +\infty} \frac{\ln M_f(r)}{r^{\varrho}} < +\infty.$$
(15)

Suppose that $a_n \ge 0$ for all $n \ge 1$ and series (2) regularly convergent in \mathbb{C} . If $\ln n = O(\lambda_n^{\varrho})$ and $\ln \lambda_n = o(\ln \ln(1/a_n))$ as $n \to \infty$ then $\varrho[A] = \varrho[f]$.

Indeed, it is clear that

$$\ln M_f(r) = \ln M_f(r_0) + \int_{r_0}^r \frac{\Gamma_f(t)}{t} dt, \quad 0 \le r_0 \le r < +\infty.$$

Therefore, if we put

$$\underline{\tau} = \lim_{r \to +\infty} \frac{\Gamma_f(r)}{r^{\varrho}}, \quad \overline{\tau} = \lim_{r \to +\infty} \frac{\Gamma_f(r)}{r^{\varrho}}$$

then using results from [7] we get

$$\underline{\tau} \le \underline{\varrho}\underline{\sigma} \le \underline{\tau} \left(1 + \ln \frac{\overline{\tau}}{\underline{\tau}} \right) \le \overline{\tau} \le e \varrho \overline{\sigma}.$$

Hence in view of (15) it follows that $\overline{\tau} < +\infty$ and $\underline{\tau} > 0$. Therefore, $\Gamma_f(r) \simeq r^{\varrho}$ as $r \to +\infty$ and, thus, the conditions $\ln n = O(\lambda_n^{\varrho})$ and $\ln n = O(\Gamma_f(\lambda_n))$ as $n \to \infty$ are equivalent.

We remark also that condition (10) now looks like $\ln \lambda_n = o(\ln(\frac{1}{\ln \lambda_n} \ln \frac{1}{a_n}))$, i. e. $\ln \lambda_n = o(\ln \ln(1/a_n))$ as $n \to \infty$.

All conditions of Theorem 1 are satisfied and Theorem 1 implies Corollary 1.

3. Growth of Laplace-Stieltjes type integrals. Let V be the class of nonnegative nondecreasing unbounded continuous on the right functions F on $[0, +\infty)$. We assume that f is an entire transcendental function and $f_k \ge 0$ for all $k \ge 0$ and a positive on $[0, +\infty)$ function a is such that the Laplace-Stieltjes type integral

$$I(r) = \int_{0}^{\infty} a(x)f(rx)dF(x)$$
(16)

exists for every $r \in [0, +\infty)$. The asymptotical behavior of such integrals in the case when $f(x) = e^x$ is studied in the monograph [8] (see also [9, 10, 11]), as well as for the case of positive functions f such that the function $\ln f$ is convex on $(0, +\infty)$ in [12].

Suppose that $x_0 > 1$ is such that $\int_1^{x_0} a(x) dF(x) \ge c > 0$. Then

$$I(r) \ge \int_{1}^{x_0} a(x) f(rx) dF(x) \ge f(r)c.$$
 (17)

On the other hand, as in the proof of Theorem 1 for $r \ge 1$ we have $\ln f((1 + \tau)xr) - \ln f(rx) \ge \Gamma_f(x) \ln(1 + \tau)$. Therefore, if $\mu_I(r) = \max\{a(x)f(rx): x \ge 0\}$ is the maximum of the integrand, $\ln F(x) \le q\Gamma_f(x)$ and $\ln(1 + \tau) > q$

$$I(r) = \int_{0}^{\infty} a(x)f((1+\tau)rx)\frac{f(rx)}{f((1+\tau)rx)}dF(x) \le \mu_{I}((1+\tau)r)\int_{0}^{\infty} \frac{f(rx)}{f((r+\tau)x)}dF(x) \le \\ \le \mu_{I}((1+\tau)r)\int_{0}^{\infty} e^{-\Gamma_{f}(x)\ln(1+\tau)}dF(x) = \\ = \mu_{I}((1+\tau)r)\left(T_{1}+\ln(1+\tau)\int_{0}^{\infty} F(x)e^{-\Gamma_{f}(x)\ln(1+\tau)}d\Gamma_{f}(x)\right) \le \\ \le \mu_{I}((1+\tau)r)\left(T_{1}+\ln(1+\tau)\int_{0}^{\infty} e^{-\Gamma_{f}(x)((\ln(1+\tau)-q)}d\Gamma_{f}(x)\right) \le T_{2}\mu_{I}(r+\tau).$$
(18)

where $T_j = \text{const} > 0$. Also, as above, we have

$$\mu_{I}(r) = \max\left\{a(x)\sum_{k=0}^{\infty} f_{k}(xr)^{k} \colon x \ge 0\right\} \le \le \le \sum_{k=0}^{\infty} \max\{a(x)x^{k} \colon x \ge 0\} f_{k}r^{k} = G_{1}(r) \coloneqq \sum_{k=0}^{\infty} \mu_{J}(k)f_{k}r^{k},$$
(19)

where $\mu_J(\sigma) = \max\{a(x)e^{\sigma \ln x} : x \ge 0\}$ is the maximum of the integrand for Laplace-Stieltjes integral

$$J(\sigma) = \int_0^\infty a(x) e^{\sigma \ln x} dF(x).$$

Now we prove the following analog of Theorem 1.

Theorem 2. Let $F \in V$, f be an entire transcendental function and $f_k \ge 0$ for all $k \ge 0$. Suppose that $\ln F(x) \le q\Gamma_f(x)$ for some q > 0 and all $x \ge 0$, the functions α and β satisfy the conditions of Lemma 1 and for each $c \in (0, +\infty)$

$$\ln x = o\left(\beta^{-1}\left(c\alpha\left(\frac{1}{\ln x}\ln\frac{1}{a(x)}\right)\right)\right), \quad x \to +\infty.$$
(20)

Then $\varrho_{\alpha,\beta}[I] = \varrho_{\alpha,\beta}[f].$

Proof. From (17) it follows that $\rho_{\alpha,\beta}[f] \leq \rho_{\alpha,\beta}[I]$. On the other hand, in view of (18) and (19) $\rho_{\alpha,\beta}[I] \leq \rho_{\alpha,\beta}[G_1]$. By Lemma 1

$$\varrho_{\alpha,\beta}[G_1] = \lim_{k \to +\infty} \frac{\alpha(k)}{\beta\left(\frac{1}{k} \ln \frac{1}{|f_k|} - \frac{\ln \mu_J(k)}{k}\right)}.$$
(21)

If $\rho_{\alpha,\beta}[f] < +\infty$ then as above we get (12).

As in [8, p.24], let $\nu_j(\sigma)$ be the central point of $\mu_J(\sigma)$. Then [8, p.26]

$$\ln \mu_J(\sigma) = \ln \mu_J(\sigma_0) + \int_{\sigma_0}^{\sigma} \ln \nu_J(x) dx, \quad \sigma_0 \le \sigma.$$
(22)

From condition (20) with $c = 1/\rho$ we get $\ln a(x) \leq -\ln x \alpha^{-1} \left(\rho \beta \left(\frac{\ln x}{\varepsilon}\right)\right)$ for each $\varepsilon > 0$ and all $x \geq x_0(\varepsilon)$. Therefore, as in the proof of Theorem 1, for all $\sigma \geq \sigma_0 = \sigma_0(\varepsilon)$ we have

$$\ln \mu_J(\sigma) \leq \ln \nu_J(\sigma) \left(\sigma - \alpha^{-1} \left(\varrho \beta \left(\frac{\ln \nu_J(\sigma)}{\varepsilon} \right) \right) \right),$$

whence it follows that $\ln \nu_J(\sigma) \leq \varepsilon \beta^{-1} (\alpha(\sigma)/\varrho)$ for $\sigma \geq \sigma_0$. Therefore, in view of (22) $\ln \mu_J(\sigma) \leq \ln \mu_J(\sigma_0) + \varepsilon \sigma \beta^{-1} (\alpha(\sigma)/\varrho)$ and, thus,

$$\frac{\ln \mu_D(k)}{k} \le \varepsilon + \varepsilon \beta^{-1} \left(\frac{\alpha(k)}{\varrho}\right), \quad k \ge k_0(\varepsilon).$$
(23)

From (21), (12) and (23) as in the proof of Theorem 1 we get $\rho_{\alpha,\beta}[I] \leq \rho_{\alpha,\beta}[G_1] \leq \rho_{\alpha,\beta}[f]$. \Box

For the functions $\alpha(x) = \ln^+ x$ and $\beta(x) = x^+$ Theorem 2 implies the following statement.

Corollary 2. Let an entire transcendental function (1) with $f_k \ge 0$ satisfy condition (15). If $\ln F(x) = O(x^{\varrho})$ and $\ln x = o(\ln \ln(1/a(x)) \text{ as } x \to +\infty \text{ then } \varrho[I] = \varrho[f].$

4. Remarks. The conditions $\ln n = O(\lambda_n^{\varrho})$ and $\ln \lambda_n = o(\ln \ln(1/a_n))$ as $n \to \infty$ in Corollary 1 and their analogues $\ln F(x) = O(x^{\varrho})$ and $\ln x = o(\ln \ln(1/a(x)))$ as $x \to +\infty$ in Corollary 2 are natural. Let us show this by the example of the function $A_{\varrho}(z) = \sum_{n=1}^{\infty} a_n E_{\varrho}(z\lambda_n)$, where

$$E_{\varrho}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(1+k/\varrho)}, \ 0 < \varrho < +\infty,$$

is the Mittag-Leffler function. The properties of this function have been used in many problems in the theory of entire functions. We only need the following property of the Mittag-Leffler function: if $0 < \rho < +\infty$ then [13, p.115]

$$M_{E_{\varrho}}(r) = E_{\varrho}(r) = (1 + o(1))\varrho e^{r^{\varrho}}, \quad r \to +\infty.$$

Hence it follows that $\varrho[E_{\varrho}] = \varrho$ and $\varrho[A_{\varrho}] = \varrho[A_{\varrho}^*]$, where $A_{\varrho}^*(r) = \sum_{n=1}^{\infty} a_n \exp\{r^{\varrho} \lambda_n^{\varrho}\}$. We put $r^{\varrho} = \sigma$ and $\lambda_n^{\varrho} = \mu_n$. Then $A_{\varrho}^*(r) = D_{\varrho}(\sigma) = \sum_{n=1}^{\infty} a_n e^{\sigma \mu_n}$ and $\varrho[A_{\varrho}^*] = \varrho \varrho_l[D_{\varrho}]$, where

$$\varrho_l[D_{\varrho}] = \lim_{\sigma \to +\infty} \frac{\ln \ln D_{\varrho}(\sigma)}{\ln \sigma}$$

is the logarithmic order of Dirichlet series D_{ϱ} . It is known [14] that if $\ln n = O(\mu_n)$ as $n \to \infty$ then $\varrho_l[D_{\varrho}] = p_l + 1$, where

$$p_l = \lim_{n \to +\infty} \frac{\ln \mu_n}{\ln \left(\frac{1}{\mu_n} \ln \frac{1}{a_n}\right)}$$

Therefore, if $\ln n = O(\lambda^{\varrho})$ as $n \to \infty$ and $p_l = 0$ then $\varrho[A_{\varrho}] = \varrho = \varrho[E_{\varrho}]$. Finally, $p_l = 0$ if and only $\ln \mu_n = o(\ln \ln(1/a_n))$, i. e. $\ln \lambda_n = o(\ln \ln(1/a_n))$ as $n \to \infty$.

By a similar method, studying the growth of an integral $I_{\varrho}(r)(r) = \int_0^\infty a(x)E_{\varrho}(rx)dF(x)$ can be reduced to studying the growth of the integral $J(\sigma) = \int_0^\infty a_1(x)e^{x\sigma}dF_1(x)$ and then use the formula [8, p.83]

$$\lim_{\sigma \to +\infty} \frac{\ln \ln J(\sigma)}{\ln \sigma} = \lim_{x \to +\infty} \frac{\ln x}{\ln \left(\frac{1}{x} \ln \frac{1}{a_1(x)}\right)} + 1,$$

provided

$$\lim_{x \to +\infty} \frac{\ln \ln F_1(x)}{\ln x} \le 1$$

Acknowledgements. The authors express their gratitude to Dr. Ya.V. Mykytyuk for the formulation of the problem and thank him for his ideas to solve it.

REFERENCES

- 1. Leont'ev A.F. Generalizations of exponential series. M.:Nauka, 1981. (in Russian)
- Vinnitsky B.V. Some approximation properties of generalized systems of exponentials. Drogobych. 1991. – Dep. in UkrNIINTI 25.02.1991. (in Russian)
- Sheremeta M.N. Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion// Izv. Vyssh. Uchebn. Zaved. Mat. – 1967. – №2. – P. 100–108. (in Russian)
- Skaskiv O.B., Trusevych O.M. Relations of Borel type for generalizations of exponential series // Ukr. Math. J. - 2001. - V.53, no.11. - P. 1926-1931. https://doi.org/10.1023/A:1015219417195
- Sheremeta M.M. On two classes of positive functions and the belonging to them of main characteristics of entire functions// Mat. Stud. - 2003. - V.19, №1. - P. 75-82.
- 6. Sheremeta M.M. Entire Dirichlet series. K.: ISDO, 1993. (in Ukrainian)
- Shankar H. On the characteristic function of a meromorphic function, I// Tohoku Math. J. 1957. V.9, №3. – P. 243–246. https://doi.org/10.2748/tmj/1178244778
- 8. Sheremeta M.M. Asymptotical behavior of Laplace-Stieltjes integrals. Lviv: VNTL Publishers, 2010.
- Skaskiv O.B. On certain relations between the maximum modulus and the maximal term of an entire Dirichlet series // Math. Notes. - 1999. - V.66, no.2. - P. 223-232. https://doi.org/10.1007/BF02674881
- 10. Ovchar I.Ye., Skaskiv O.B. Some analogue of the Wiman inequality for the Laplace integrals on a small parameter // Carpathian math. publ. - 2013. - V.5, no.2. - P. 305-309. (in Ukrainian) https://doi.org/10.15330/cmp.5.2.305-309
- Kuryliak A.O., Ovchar I.E., Skaskiv O.B. Wiman's inequality for Laplace integrals // Int. Journal of Math. Analysis. – 2014. – V.8, no.8. – P. 381–385. http://dx.doi.org/10.12988/ijma.2014.4232
- 12. Skaskiv O.B., Trakalo O.M. On the stability of the maximum term of the entire Dirichlet series // Ukr. Math. J. 2005. V.57, no.4. P. 686-693. https://doi.org/10.1007/s11253-005-0220-9
- Gol'dberg A.A., Ostrovsky I.V. Distribution of values of meromorphic functions. M.: Nauka, 1970. (in Russian)
- 14. Reddy A.R. On entire Dirichlet series of zero order// Tohoku Math. J. 1966. V.18, №2. P. 144–155. https://doi.org/10.2748/tmj/1178243445

Ivan Franko National University of Lviv Lviv, Ukraine m.m.sheremeta@gmail.com

> Received 30.11.2020 Revised 15.03.2021