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Let L(H) denote the algebra of operators on a complex infinite dimensional Hilbert space
H and let J denote a two-sided ideal in L(H). Given A,B ∈ L(H), define the generalized
derivation δA,B as an operator on L(H) by

δA,B(X) = AX −XB.

We say that the pair of operators (A,B) has the Fuglede-Putnam property (PF )J if AT = TB
and T ∈ J implies A∗T = TB∗. In this paper, we give operators A,B for which the pair
(A,B) has the property (PF )J . We establish the orthogonality of the range and the kernel
of a generalized derivation δA,B for non-normal operators A,B ∈ L(H). We also obtain new
results concerning the intersection of the closure of the range and the kernel of δA,B .

1. Introduction. Let H be a separable infinite dimensional complex Hilbert space, and
let L(H) denote the algebra of all bounded linear operators acting on H into itself. Given
A,B ∈ L(H), we define the generalized derivation δA,B(X) : L(H) −→ L(H) by δA,B(X) =
AX−XB, and the elementary operator ∆A,B(X) : L(H) −→ L(H) by ∆A,B(X) = AXB−X.
We simply write δA for δA,A and ∆A denote ∆A,A.

Let J denote a two sided ideal of L(H). We say that the pair of operators (A,B) satisfies
the Fuglede-Putnam property (PF )J if ker(δA,B|J ) ⊆ ker(δA∗,B∗|J ), where ker(δA,B|J )
denote the kernel of the restriction of δA,B to J .

In this paper, we give some pairs of operators (A,B) having the Fuglede-Putnam property
(PF )J . It is proved that if A is a left invertible by a contraction and B is a contraction or,
if A is invertible and B be such that ∥A−1∥.∥B∥ ≤ 1, then the pair (A,B) satisfies the
Fuglede-Putnam property (FP )J .

Let F and G be two subspaces of a normed linear space E with norm ∥.∥. The subspace
F is said to be orthogonal to the subspace G, in the sense of Birkhof-James, if ∥x+y∥ ≥ ∥y∥
for all x ∈ F and for all y ∈ G. This asymmetric definition of orthogonality agrees with the
usual definition of orthogonality in the case in which E = H is a Hilbert space.
In [1], J. Anderson proved that if A and T are operators in L(H), such that A is normal and
AT = TA then for all X ∈ L(H)

∥δA(X) + T∥ ≥ ∥T∥.

In view of the previous definition, the above inequality says that the range R(δA) is
orthogonal to the kernel ker(δA) of δA.
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Let A,B, T be operators in L(H) such that A and B are normal and AT = TB. On H ⊕H,

if we apply Anderson’s Theorem to the operators A ⊕ B,
(
0 X
0 0

)
and

(
0 T
0 0

)
, then we

get the inequality
∥δA,B(X) + T∥ ≥ ∥T∥.

The range-kernel orthogonality of elementary operators has been considered in a number of
papers (see for examples [2], [5], [6], [7], [9], [10], [11], [12], [19], [20], [21]).

We investigate the orthogonality of the range and the kernel of a generalized derivation
with respect to the usual operator norm. By using a very simple argument, we give pairs
of operators (A,B) such that R(δA,B) is orthogonal to ker(δA,B) . Furthermore, it is proved
that if A is a dominant (respectively, M-hyponormal) and essentially normal ( essentially
isometric, respectively) operator, then

∥δA(X) + T∥ ≥ ∥T∥

for all X ∈ L(H), and for all hyponormal operator T in the commutant {A}′ of A. Also,
we establish the orthogonality of the range and the kernel of a derivation δA, induced by a
rationally cyclic subnormal operator A.

We obtain some new results concerning the intersection of the closure of the range and the
kernel of the generalized derivation δA,B. Also, it is showed that if A is a cyclic subnormal
operator with no point spectrum, then A commute with nonzero compact operator. We
present a pair of operators A,B for which R(δA,B)

w
∩ ker(δA∗,B∗) = {0}, where R(δA,B)

w
is

the weak closure of R(δA,B).

Notations. Let K(H) be the ideal of compact operators, and let C1(H) be the ideal of
trace class operators. The trace function is defined on C1(H) by tr(T ) =

∑
n(Ten, en), where

(en) is any complete orthonormal sequence in H. The weak continuous linear functionals
on L(H) are those of the form fT (X) = tr(XT ), where T is a finite rank operator. Let
π : L(H) −→ L(H)/K(H) denote the Calkin map, and let C(H) = L(H)/K(H) denote the
Calkin algebra.

Given X ∈ L(H), we shall denote the kernel, the orthogonal complement of the kernel
and the closure of the range of X by ker(X), ker⊥(X), and R(X), respectively. The spectrum,
the essential spectrum, the left essential spectrum, the point spectrum and the the spectral
radius of X will be denoted by σ(X), σe(X), σle(X), σp(X) , r(X). By X|M we will denote
the restriction of X to an invariant subspace M .

2. Main Results.

Definition 1 ([6], Definition 2). Let A,B ∈ L(H) and J be a two-sided ideal of L(H). The
pair (A,B) is said to possess the Fuglede-Putnam property (FP )J if AT = TB and T ∈ J
implies A∗T = TB∗. i.e. ker(δA,B|J ) ⊆ ker(δA∗,B∗ |J ).

Before giving our results we need the following lemmas.

Lemma 1 ([21], Theorem 2.2). Let A and B be contractions and T a compact operator
such that ATB = T . Then A∗TB∗ = T .

Lemma 2 ([12], Lemma 3.4). Let A and B be contractions, such that ∆A,B(T ) = 0 for some
T ∈ L(H). Then ∥∆A,B(X) + T∥ ≥ ∥T∥, for all X ∈ L(H).
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Theorem 1. Let A,B ∈ L(H). If one of the following assertions:

(i) A is a left invertible by a contraction and B is a contraction,

(ii) A is a contraction and B is a right invertible by a contraction,

(iii) A is invertible and B be such that ∥A−1∥.∥B∥ ≤ 1,

is verified, then the pair of operators (A,B) satisfies the Fuglede-Putnam property (FP )J .

Proof. (i) Let T ∈ ker(δA,B)∩J . We have A is a left invertible by a contraction, then there
exists C ∈ L(H) such that CA = I and ∥C∥ ≤ 1. Since AT = TB, hence it follows that
T = CTB. It results from Lemma 1 that T = C∗TB∗. Consequently, we get A∗T = TB∗

and the pair (A,B) has the property (FP )J .
(ii) The second assertion is an immediate consequence of the first, by taking adjoint.
(iii) Let T ∈ J such that AT = TB. Since A is invertible, then T = A−1TB. We can write

T =

√
∥B∥
∥A−1∥

.A−1T

√
∥A−1∥
∥B∥

.B,

The operators A1 =
√

∥B∥
∥A−1∥ .A

−1 and B1 =
√

∥A−1∥
∥B∥ .B are contractions. We obtain that

T = A1TB1 and T is compact. It holds From Lemma 1 that T = A∗
1TB

∗
1 . Hence we deduce

that A∗T = TB∗.

The following definition generalizes the idea of orthogonality in Hilbert space.

Definition 2 ([17]). Let E be a normed linear space and C be the complex numbers.

1) We say that x ∈ E is orthogonal to y ∈ E if ∥x− λy∥ ≥ ∥λy∥ for all λ ∈ C.

2) Let F and G be two subspaces in E. If ∥x+ y∥ ≥ ∥y∥ for all x ∈ F and for all y ∈ G,
then F is said to be orthogonal to G.

The following theorem generalizes a well-known result of J. Anderson [1, Theorem 1.4].

Theorem 2. Let A,B ∈ L(H). Suppose that A and B satisfy one of the following cases:

(i) A is left invertible by a contraction and B is a contraction.

(ii) A is a contraction and B is right invertible by a contraction.

(iii) A is invertible and B be such that ∥A−1∥.∥B∥ ≤ 1.

Then, we have ∥δA,B(X) + T∥ ≥ ∥T∥, for all T ∈ ker(δA,B) and for all X ∈ L(H).

Proof. (i) Given T ∈ L(H) such that AT = TB. Since A is left invertible by a contraction,
then there exists C ∈ L(H) for which CA = I and ∥C∥ ≤ 1. It follows that T = CTB. By
applying Lemma 2, it holds that ∥∆C,B(X) + T∥ ≥ ∥T∥ for all X ∈ L(H). From this we get
∥∆C,B(−AY ) + T∥ ≥ ∥T∥ for all Y ∈ L(H). Consequently, we have ∥δA,B(Y ) + T∥ ≥ ∥T∥
for all Y ∈ L(H). This implies that R(δA,B) is orthogonal to ker(δA,B).
(ii) We notice that the seconde assertion is a direct consequence of the first.
(iii) Suppose that A is invertible such that ∥A−1∥.∥B∥ ≤ 1. Let T ∈ ker(δA,B), then we have
T = A−1TB. It can be easily seen that

T =

√
∥B∥
∥A−1∥

.A−1T

√
∥A−1∥
∥B∥

.B.
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Consider the operators A1 =
√

∥B∥
∥A−1∥ .A

−1 and B1 =
√

∥A−1∥
∥B∥ .B. Since ∥A−1∥.∥B∥ ≤ 1, it

follows that A1 and B1 are contractions and T = A1TB1. Hence, by another application of
the Lemma 2, we obtain ∥∆A1,B1(X)+T∥ ≥ ∥T∥ for all X ∈ L(H). By setting Y = −A−1X,
then we have ∥δA,B(Y ) + T∥ ≥ ∥T∥ for all Y ∈ L(H).

The following definitions are well-known.

Definition 3. An operator A ∈ L(H) is called subnormal, if there exists a Hilbert space K
and a normal operator N ∈ L(K), such that H is a subspace of K and A = N |H. Operator
N is called a normal extension of A.

Definition 4. An operator A ∈ L(H), is called cyclic if for some x ∈ H we get

{p(A)x : p ∈ C[Z]} = H.

Vector x is called a cyclic vector of A.

The following results has a crucial role in the sequel.

Theorem 3 ([8], Theorem 2.3). Let A ∈ L(H). Then, we have the following properties:

1) If A is a cyclic subnormal operator, then R(δA) ∩ {A}′
= {0}.

2) If p(A) is a cyclic subnormal operator for some polynomial p, then every operator in
R(δA) ∩ {A}′ is nilpotent.

Theorem 4 ([18], Theorem 1). If K is compact and S is any operator, then all solutions X
of the equation X = KXS have finite rank.

Now, we are in a position to prove the following propositions.

Proposition 1. Let A ∈ L(H) be a cyclic subnormal operator with no point spectrum.
Then A commute with nonzero compact operator.

Proof. Let T nonzero compact operator such that AT = TA. Then T is subnormal by
Yoshino’s result ([23]). But any compact subnormal operator is normal. Hence AT = TA
implies AT ∗ = T ∗A. It follows that A(T ∗T ) = (T ∗T )A. We have T ̸= 0, thus T ∗T has
a positive eigenvalue λ.

Since T ∗T and A commutes, the corresponding finite dimensional eigenspace ker(T ∗T−λ)
is invariant under A, and A has point spectrum, contrary to assumption.

Proposition 2. Let A,B ∈ L(H). Suppose that one of the following conditions holds:

(i) A,B∗ are cyclic subnormal operators.

(ii) A is cyclic subnormal and B is normal.

(iii) A is cyclic subnormal and B is isometric.

Then every operator

T ∈ R(δA⊕B) ∩ {{A⊕B}′ ∪ {(A⊕B)∗}′},

is nilpotent of index less than 2.
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Proof. We consider the case in which A,B∗ are cyclic subnormal operators. Assume that
T ∈ R(δA⊕B) ∩ {A⊕B}′ . Then there exists a sequence (Xn)n in L(H) such that

(A⊕B)Xn −Xn(A⊕B) −→ T ∈ {A⊕B}′
,

On H = H◦ ⊕H1, let

T =

(
T◦ T1

T2 T3

)
and Xn =

(
Yn Zn

Un Vn

)
.

Then an elementary calculations shows that

AYn − YnA −→ T◦ ∈ {A}′
, BVn − VnB −→ T3 ∈ {B}′

,

AZn − ZnB −→ T1 ∈ ker(δA,B), BUn − UnA −→ T2 ∈ ker(δB,A).

A is a cyclic subnormal operator, hence it results from Theorem 3, that T◦ = 0. It follows
from Theorem 2.5 ([4]) that B∗ is D-symmetric, which means that R(δB∗) = R(δB). This
implies that T ∗

3 ∈ R(δB∗) ∩ {B∗}′ . By applying Theorem 3, we get T3 = 0.
Since A,B∗ are cyclic subnormal operators, it follows from Theorem 1 ([15]), that R(δA,B)

is orthogonal to ker(δA,B). From this, we obtain T1 = 0. Consequently

T =

(
0 0
T2 0

)
is nilpotent of index less than 2. We leave the proof of the other cases to the reader.

Proposition 3. Let A,B ∈ L(H). If A is invertible and B is compact, then

R(δA,B)
w
∩ ker(δA∗,B∗) = {0}.

Proof. Suppose that T ∈ R(δA,B)
w
∩ ker(δA∗,B∗). We have A∗T = TB∗, this implies that

BT ∗ = T ∗A, and so BT ∗A−1 = T ∗. It follows from Theorem 4 that T ∗ has finite rank. Then
it results that fT ∗(T ) = tr(T ∗T ) = 0, that is T = 0.

We will need the following definitions.

Definition 5 ([19], Definition 1). An operator A ∈ L(H) is called dominan, by J. Stampfli
and B. Wadhwa, if for all complex λ, R(A − λ) ⊆ R(A∗ − λ), or equivalently, if there is a
real number Mλ ≥ 1 such that

∥(A− λ)∗x∥ ≤ Mλ∥(A− λ)x∥ (∀x ∈ H).

If there exists a real number M such that Mλ ≤ M for all λ, the dominant operator A is
said to be M-hyponormal. If M = 1, then A is hyponormal.

Definition 6 ([22]). An operator A ∈ L(H) is called finite, if ∥AX −XA+ I∥ ≥ 1 for each
X ∈ L(H).

The following theorem allows a stronger deduction for dominant operators.

Theorem 5. Let A ∈ L(H) be dominant (respectively, M-hyponormal) and essentially
normal operator(essentially isometric, respectively) . If T is a hyponormal operator such
that AT = TA, then

∥δA(X) + T∥ ≥ ∥T∥
for every X ∈ L(H).
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Proof. Let us first suppose that T is a compact operator. Note that any compact hyponormal
operator is normal. Then we have T is normal in the commutant of A. Since A is dominant
it results from ([17]) that

∥δA(X) + T∥ ≥ ∥T∥
for all X ∈ L(H).

We now wish to consider the case when T is not compact.
Let T be hyponormal such that AT = TA. We have r(T ) = ∥T∥, then there exists some

scalar λ ∈ ∂σ(T ) which satisfies ∥T∥ = |λ|. Hence it will suffice to show that

∥δA(X) + T∥ ≥ |λ| (∀X ∈ L(H)) , (∀λ ∈ ∂σ(T )).

It is well known that ∂σ(T ) ⊆ σp(T ) ∪ σle(T ). Let λ ∈ ∂σ(T ) we consider two cases:

Case 1: If λ ∈ σp(T ) such that M = ker(T − λ) is finite dimensional.
The subspace M is invariant under T and A, and the restriction A|M is dominant. Since

M is finite dimensional, it follows that A|M is normal, then M reduces A. On H = M⊕M⊥,
we get decompositions of operators respectively

A =

(
B 0
0 C

)
and T =

(
λ 0
0 ∗

)
.

By setting X =

(
X◦ X1

X2 X3

)
, we have

∥δA(X) + T∥ =

∥∥∥∥∥
(
BX◦ −X◦B + λ ∗

∗ ∗

)∥∥∥∥∥ ≥ ∥BX◦ −X◦B + λ∥.

B is a finite operator, this implies ∥BX◦ −X◦B + λ∥ ≥ |λ|. Consequently, we obtain

∥δA(X) + T∥ ≥ |λ|, (∀X ∈ L(H)).

Case 2: If λ ∈ σle(T ). Suppose that T has isolated eigenvalues of finite multiplicity.
Let

E =
∨

µ∈Π◦◦(T )

ker(T − µ),

where Π◦◦(T ) is the set of all isolated eigenvalues of T with finite multiplicity.
Since T is hyponormal, it results that E reduces T . On H = E ⊕ E⊥, we can write

T = T◦ ⊕ T1.
The condition AT = TA implies π(A)π(T ) = π(T )π(A). Furthermore A is essentially

normal(resp. essentially isometric), then R(δπ(A)) is orthogonal to ker(δπ(A)). Anderson’s
result ([1]) applied to the Calkin algebra guarantees that

∥δA(X) + T∥ ≥ ∥δπ(A)(π(X)) + π(T )∥ ≥ ∥π(T )∥.

On the other hand, it is easily seen that ∥π(T )∥ ≥ ∥π(T1)∥. Since T1 is hyponormal
and has no isolated eigenvalues of finite multiplicity, it follows from ([14]) that ∥π(T1)∥ =
r(π(T1)).

Consequently, we have

∥δA(X) + T∥ ≥ |λ|, (∀X ∈ L(H)).

The case T has no isolated eigenvalues of finite multiplicity, follows from a similar
argument as seen above for T1.
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The next Corollary is an immediate consequence of the above theorem.

Corollary 1. Let A ∈ L(H) be a rationally cyclic subnormal operator. If AT = TA for
some T ∈ L(H), then

∥δA(X) + T∥ ≥ ∥T∥

for all X ∈ L(H).

Proof. Indeed, if A is a rationally cyclic hyponormal operator, then it results from ([3]) that
A∗A − AA∗ ∈ C1(H). Hence, A is a hyponormal and essentially normal operator. Since
T ∈ {A}′ and A is a rationally cyclic subnormal operator, it follows by Yoshino’s results
([23]) that T is also subnormal. Hence, it suffices to apply the preceding Theorem.
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(1993), 517–525.
5. S. Bouali, S. Cherki, Approximation by generalized commutators, Acta Sci. Math (Szeged), 63 (1997),

273–278.
6. M. Benlarbi Delai, S. Bouali, S. Cherki, Une remarque sur l’orthogonalité de l’image au noyau d’une
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