Y. BOUHAFSI, M. ECH-CHAD, M. MISSOURI, A. ZOUAKI

REMARKS ON THE RANGE AND THE KERNEL OF GENERALIZED DERIVATION

Y. Bouhafsi, M. Ech-chad, M. Missouri, A. Zouaki. *Remarks on the range and the kernel of generalized derivation*, Mat. Stud. **57** (2022), 202–209.

Let L(H) denote the algebra of operators on a complex infinite dimensional Hilbert space H and let \mathcal{J} denote a two-sided ideal in L(H). Given $A, B \in L(H)$, define the generalized derivation $\delta_{A,B}$ as an operator on L(H) by

$$\delta_{A,B}(X) = AX - XB.$$

We say that the pair of operators (A, B) has the Fuglede-Putnam property $(PF)_{\mathcal{J}}$ if AT = TBand $T \in \mathcal{J}$ implies $A^*T = TB^*$. In this paper, we give operators A, B for which the pair (A, B) has the property $(PF)_{\mathcal{J}}$. We establish the orthogonality of the range and the kernel of a generalized derivation $\delta_{A,B}$ for non-normal operators $A, B \in L(H)$. We also obtain new results concerning the intersection of the closure of the range and the kernel of $\delta_{A,B}$.

1. Introduction. Let H be a separable infinite dimensional complex Hilbert space, and let L(H) denote the algebra of all bounded linear operators acting on H into itself. Given $A, B \in L(H)$, we define the generalized derivation $\delta_{A,B}(X) \colon L(H) \longrightarrow L(H)$ by $\delta_{A,B}(X) =$ AX - XB, and the elementary operator $\Delta_{A,B}(X) \colon L(H) \longrightarrow L(H)$ by $\Delta_{A,B}(X) = AXB - X$. We simply write δ_A for $\delta_{A,A}$ and Δ_A denote $\Delta_{A,A}$.

Let \mathcal{J} denote a two sided ideal of L(H). We say that the pair of operators (A, B) satisfies the Fuglede-Putnam property $(PF)_{\mathcal{J}}$ if $\ker(\delta_{A,B}|\mathcal{J}) \subseteq \ker(\delta_{A^*,B^*}|\mathcal{J})$, where $\ker(\delta_{A,B}|\mathcal{J})$ denote the kernel of the restriction of $\delta_{A,B}$ to \mathcal{J} .

In this paper, we give some pairs of operators (A, B) having the Fuglede-Putnam property $(PF)_{\mathcal{J}}$. It is proved that if A is a left invertible by a contraction and B is a contraction or, if A is invertible and B be such that $||A^{-1}|| \cdot ||B|| \leq 1$, then the pair (A, B) satisfies the Fuglede-Putnam property $(FP)_{\mathcal{J}}$.

Let F and G be two subspaces of a normed linear space E with norm $\|.\|$. The subspace F is said to be orthogonal to the subspace G, in the sense of Birkhof-James, if $\|x+y\| \ge \|y\|$ for all $x \in F$ and for all $y \in G$. This asymmetric definition of orthogonality agrees with the usual definition of orthogonality in the case in which E = H is a Hilbert space.

In [1], J. Anderson proved that if A and T are operators in L(H), such that A is normal and AT = TA then for all $X \in L(H)$

$$\|\delta_A(X) + T\| \ge \|T\|.$$

In view of the previous definition, the above inequality says that the range $R(\delta_A)$ is orthogonal to the kernel ker (δ_A) of δ_A .

doi:10.30970/ms.57.2.202-209

²⁰¹⁰ Mathematics Subject Classification: 47A16, 47A30, 47B07, 47B20, 47B47.

Keywords: derivation; orthogonality; Fuglede-Putnam property; subnormal operator; compact operator; dominant operator.

Let A, B, T be operators in L(H) such that A and B are normal and AT = TB. On $H \oplus H$, if we apply Anderson's Theorem to the operators $A \oplus B$, $\begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & T \\ 0 & 0 \end{pmatrix}$, then we get the inequality

$$\|\delta_{A,B}(X) + T\| \ge \|T\|.$$

The range-kernel orthogonality of elementary operators has been considered in a number of papers (see for examples [2], [5], [6], [7], [9], [10], [11], [12], [19], [20], [21]).

We investigate the orthogonality of the range and the kernel of a generalized derivation with respect to the usual operator norm. By using a very simple argument, we give pairs of operators (A, B) such that $R(\delta_{A,B})$ is orthogonal to ker $(\delta_{A,B})$. Furthermore, it is proved that if A is a dominant (respectively, M-hyponormal) and essentially normal (essentially isometric, respectively) operator, then

$$\|\delta_A(X) + T\| \ge \|T\|$$

for all $X \in L(H)$, and for all hyponormal operator T in the commutant $\{A\}'$ of A. Also, we establish the orthogonality of the range and the kernel of a derivation δ_A , induced by a rationally cyclic subnormal operator A.

We obtain some new results concerning the intersection of the closure of the range and the kernel of the generalized derivation $\delta_{A,B}$. Also, it is showed that if A is a cyclic subnormal operator with no point spectrum, then A commute with nonzero compact operator. We present a pair of operators A, B for which $\overline{R(\delta_{A,B})}^w \cap \ker(\delta_{A^*,B^*}) = \{0\}$, where $\overline{R(\delta_{A,B})}^w$ is the weak closure of $R(\delta_{A,B})$.

Notations. Let K(H) be the ideal of compact operators, and let $C_1(H)$ be the ideal of trace class operators. The trace function is defined on $C_1(H)$ by $\operatorname{tr}(T) = \sum_n (Te_n, e_n)$, where (e_n) is any complete orthonormal sequence in H. The weak continuous linear functionals on L(H) are those of the form $f_T(X) = \operatorname{tr}(XT)$, where T is a finite rank operator. Let $\pi: L(H) \longrightarrow L(H)/K(H)$ denote the Calkin map, and let $\mathcal{C}(H) = L(H)/K(H)$ denote the Calkin algebra.

Given $X \in L(H)$, we shall denote the kernel, the orthogonal complement of the kernel and the closure of the range of X by ker(X), ker^{\perp}(X), and $\overline{R(X)}$, respectively. The spectrum, the essential spectrum, the left essential spectrum, the point spectrum and the the spectral radius of X will be denoted by $\sigma(X)$, $\sigma_e(X)$, $\sigma_{le}(X)$, $\sigma_p(X)$, r(X). By X|M we will denote the restriction of X to an invariant subspace M.

2. Main Results.

Definition 1 ([6], Definition 2). Let $A, B \in L(H)$ and \mathcal{J} be a two-sided ideal of L(H). The pair (A, B) is said to possess the Fuglede-Putnam property $(FP)_{\mathcal{J}}$ if AT = TB and $T \in \mathcal{J}$ implies $A^*T = TB^*$. i.e. $\ker(\delta_{A,B}|\mathcal{J}) \subseteq \ker(\delta_{A^*,B^*}|\mathcal{J})$.

Before giving our results we need the following lemmas.

Lemma 1 ([21], Theorem 2.2). Let A and B be contractions and T a compact operator such that ATB = T. Then $A^*TB^* = T$.

Lemma 2 ([12], Lemma 3.4). Let A and B be contractions, such that $\Delta_{A,B}(T) = 0$ for some $T \in L(H)$. Then $\|\Delta_{A,B}(X) + T\| \ge \|T\|$, for all $X \in L(H)$.

Theorem 1. Let $A, B \in L(H)$. If one of the following assertions:

- (i) A is a left invertible by a contraction and B is a contraction,
- (ii) A is a contraction and B is a right invertible by a contraction,
- (iii) A is invertible and B be such that $||A^{-1}|| \cdot ||B|| \le 1$,

is verified, then the pair of operators (A, B) satisfies the Fuglede-Putnam property $(FP)_{\mathcal{J}}$.

Proof. (i) Let $T \in \ker(\delta_{A,B}) \cap \mathcal{J}$. We have A is a left invertible by a contraction, then there exists $C \in L(H)$ such that CA = I and $||C|| \leq 1$. Since AT = TB, hence it follows that T = CTB. It results from Lemma 1 that $T = C^*TB^*$. Consequently, we get $A^*T = TB^*$ and the pair (A, B) has the property $(FP)_{\mathcal{J}}$.

(ii) The second assertion is an immediate consequence of the first, by taking adjoint.

(iii) Let $T \in \mathcal{J}$ such that AT = TB. Since A is invertible, then $T = A^{-1}TB$. We can write

$$T = \sqrt{\frac{\|B\|}{\|A^{-1}\|}} \cdot A^{-1}T \sqrt{\frac{\|A^{-1}\|}{\|B\|}} \cdot B,$$

The operators $A_1 = \sqrt{\frac{\|B\|}{\|A^{-1}\|}} A^{-1}$ and $B_1 = \sqrt{\frac{\|A^{-1}\|}{\|B\|}} B$ are contractions. We obtain that $T = A_1TB_1$ and T is compact. It holds From Lemma 1 that $T = A_1^*TB_1^*$. Hence we deduce that $A^*T = TB^*$.

The following definition generalizes the idea of orthogonality in Hilbert space.

Definition 2 ([17]). Let E be a normed linear space and \mathbb{C} be the complex numbers.

- 1) We say that $x \in E$ is orthogonal to $y \in E$ if $||x \lambda y|| \ge ||\lambda y||$ for all $\lambda \in \mathbb{C}$.
- 2) Let F and G be two subspaces in E. If $||x + y|| \ge ||y||$ for all $x \in F$ and for all $y \in G$, then F is said to be *orthogonal* to G.

The following theorem generalizes a well-known result of J. Anderson [1, Theorem 1.4].

Theorem 2. Let $A, B \in L(H)$. Suppose that A and B satisfy one of the following cases:

- (i) A is left invertible by a contraction and B is a contraction.
- (ii) A is a contraction and B is right invertible by a contraction.
- (iii) A is invertible and B be such that $||A^{-1}|| \cdot ||B|| \le 1$.

Then, we have $\|\delta_{A,B}(X) + T\| \ge \|T\|$, for all $T \in \ker(\delta_{A,B})$ and for all $X \in L(H)$.

Proof. (i) Given $T \in L(H)$ such that AT = TB. Since A is left invertible by a contraction, then there exists $C \in L(H)$ for which CA = I and $||C|| \leq 1$. It follows that T = CTB. By applying Lemma 2, it holds that $||\Delta_{C,B}(X) + T|| \geq ||T||$ for all $X \in L(H)$. From this we get $||\Delta_{C,B}(-AY) + T|| \geq ||T||$ for all $Y \in L(H)$. Consequently, we have $||\delta_{A,B}(Y) + T|| \geq ||T||$ for all $Y \in L(H)$. This implies that $R(\delta_{A,B})$ is orthogonal to $\ker(\delta_{A,B})$.

(ii) We notice that the second assertion is a direct consequence of the first.

(iii) Suppose that A is invertible such that $||A^{-1}|| \cdot ||B|| \leq 1$. Let $T \in \ker(\delta_{A,B})$, then we have $T = A^{-1}TB$. It can be easily seen that

$$T = \sqrt{\frac{\|B\|}{\|A^{-1}\|}} \cdot A^{-1}T \sqrt{\frac{\|A^{-1}\|}{\|B\|}} \cdot B$$

Consider the operators $A_1 = \sqrt{\frac{\|B\|}{\|A^{-1}\|}} A^{-1}$ and $B_1 = \sqrt{\frac{\|A^{-1}\|}{\|B\|}} B$. Since $\|A^{-1}\| \|B\| \leq 1$, it follows that A_1 and B_1 are contractions and $T = A_1TB_1$. Hence, by another application of the Lemma 2, we obtain $\|\Delta_{A_1,B_1}(X) + T\| \geq \|T\|$ for all $X \in L(H)$. By setting $Y = -A^{-1}X$, then we have $\|\delta_{A,B}(Y) + T\| \geq \|T\|$ for all $Y \in L(H)$. \Box

The following definitions are well-known.

Definition 3. An operator $A \in L(H)$ is called *subnormal*, if there exists a Hilbert space K and a normal operator $N \in L(K)$, such that H is a subspace of K and A = N|H. Operator N is called a *normal extension of* A.

Definition 4. An operator $A \in L(H)$, is called *cyclic* if for some $x \in H$ we get

$$\overline{\{p(A)x \colon p \in \mathbb{C}[Z]\}} = H.$$

Vector x is called a *cyclic vector of* A.

The following results has a crucial role in the sequel.

Theorem 3 ([8], Theorem 2.3). Let $A \in L(H)$. Then, we have the following properties:

- 1) If A is a cyclic subnormal operator, then $\overline{R(\delta_A)} \cap \{A\}' = \{0\}$.
- 2) If p(A) is a cyclic subnormal operator for some polynomial p, then every operator in $\overline{R(\delta_A)} \cap \{A\}'$ is nilpotent.

Theorem 4 ([18], Theorem 1). If K is compact and S is any operator, then all solutions X of the equation X = KXS have finite rank.

Now, we are in a position to prove the following propositions.

Proposition 1. Let $A \in L(H)$ be a cyclic subnormal operator with no point spectrum. Then A commute with nonzero compact operator.

Proof. Let T nonzero compact operator such that AT = TA. Then T is subnormal by Yoshino's result ([23]). But any compact subnormal operator is normal. Hence AT = TAimplies $AT^* = T^*A$. It follows that $A(T^*T) = (T^*T)A$. We have $T \neq 0$, thus T^*T has a positive eigenvalue λ .

Since T^*T and A commutes, the corresponding finite dimensional eigenspace ker $(T^*T-\lambda)$ is invariant under A, and A has point spectrum, contrary to assumption.

Proposition 2. Let $A, B \in L(H)$. Suppose that one of the following conditions holds:

- (i) A, B^* are cyclic subnormal operators.
- (ii) A is cyclic subnormal and B is normal.
- (iii) A is cyclic subnormal and B is isometric.

Then every operator

$$T \in \overline{R(\delta_{A \oplus B})} \cap \{\{A \oplus B\}' \cup \{(A \oplus B)^*\}'\},\$$

is nilpotent of index less than 2.

Proof. We consider the case in which A, B^* are cyclic subnormal operators. Assume that $T \in \overline{R(\delta_{A \oplus B})} \cap \{A \oplus B\}'$. Then there exists a sequence $(X_n)_n$ in L(H) such that

$$(A \oplus B)X_n - X_n(A \oplus B) \longrightarrow T \in \{A \oplus B\}',$$

On $H = H_{\circ} \oplus H_1$, let

$$T = \begin{pmatrix} T_{\circ} & T_1 \\ T_2 & T_3 \end{pmatrix}$$
 and $X_n = \begin{pmatrix} Y_n & Z_n \\ U_n & V_n \end{pmatrix}$

Then an elementary calculations shows that

$$AY_n - Y_n A \longrightarrow T_o \in \{A\}', \quad BV_n - V_n B \longrightarrow T_3 \in \{B\}',$$

$$AZ_n - Z_n B \longrightarrow T_1 \in \ker(\delta_{A,B}), BU_n - U_n A \longrightarrow T_2 \in \ker(\delta_{B,A})$$

A is a cyclic subnormal operator, hence it results from Theorem 3, that $T_{\circ} = 0$. It follows from Theorem 2.5 ([4]) that B^* is D-symmetric, which means that $\overline{R(\delta_{B^*})} = \overline{R(\delta_B)}$. This implies that $T_3^* \in \overline{R(\delta_{B^*})} \cap \{B^*\}'$. By applying Theorem 3, we get $T_3 = 0$.

Since A, B^* are cyclic subnormal operators, it follows from Theorem 1 ([15]), that $R(\delta_{A,B})$ is orthogonal to ker $(\delta_{A,B})$. From this, we obtain $T_1 = 0$. Consequently

$$T = \begin{pmatrix} 0 & 0 \\ T_2 & 0 \end{pmatrix}$$

is nilpotent of index less than 2. We leave the proof of the other cases to the reader. \Box

Proposition 3. Let $A, B \in L(H)$. If A is invertible and B is compact, then

$$\overline{R(\delta_{A,B})}^w \cap \ker(\delta_{A^*,B^*}) = \{0\}.$$

Proof. Suppose that $T \in \overline{R(\delta_{A,B})}^w \cap \ker(\delta_{A^*,B^*})$. We have $A^*T = TB^*$, this implies that $BT^* = T^*A$, and so $BT^*A^{-1} = T^*$. It follows from Theorem 4 that T^* has finite rank. Then it results that $f_{T^*}(T) = \operatorname{tr}(T^*T) = 0$, that is T = 0.

We will need the following definitions.

Definition 5 ([19], Definition 1). An operator $A \in L(H)$ is called *dominan*, by J. Stampfli and B. Wadhwa, if for all complex λ , $R(A - \lambda) \subseteq R(A^* - \overline{\lambda})$, or equivalently, if there is a real number $M_{\lambda} \geq 1$ such that

$$||(A - \lambda)^* x|| \le M_{\lambda} ||(A - \lambda) x|| \quad (\forall x \in H).$$

If there exists a real number M such that $M_{\lambda} \leq M$ for all λ , the dominant operator A is said to be M-hyponormal. If M = 1, then A is hyponormal.

Definition 6 ([22]). An operator $A \in L(H)$ is called *finite*, if $||AX - XA + I|| \ge 1$ for each $X \in L(H)$.

The following theorem allows a stronger deduction for dominant operators.

Theorem 5. Let $A \in L(H)$ be dominant (respectively, M-hyponormal) and essentially normal operator(essentially isometric, respectively). If T is a hyponormal operator such that AT = TA, then

$$\|\delta_A(X) + T\| \ge \|T\|$$

for every $X \in L(H)$.

Proof. Let us first suppose that T is a compact operator. Note that any compact hyponormal operator is normal. Then we have T is normal in the commutant of A. Since A is dominant it results from ([17]) that

$$\|\delta_A(X) + T\| \ge \|T\|$$

for all $X \in L(H)$.

We now wish to consider the case when T is not compact.

Let T be hyponormal such that AT = TA. We have r(T) = ||T||, then there exists some scalar $\lambda \in \partial \sigma(T)$ which satisfies $||T|| = |\lambda|$. Hence it will suffice to show that

$$\|\delta_A(X) + T\| \ge |\lambda| \ (\forall X \in L(H)), \ (\forall \lambda \in \partial \sigma(T)).$$

It is well known that $\partial \sigma(T) \subseteq \sigma_p(T) \cup \sigma_{le}(T)$. Let $\lambda \in \partial \sigma(T)$ we consider two cases:

Case 1: If $\lambda \in \sigma_p(T)$ such that $M = \ker(T - \lambda)$ is finite dimensional.

The subspace M is invariant under T and A, and the restriction A|M is dominant. Since M is finite dimensional, it follows that A|M is normal, then M reduces A. On $H = M \oplus M^{\perp}$, we get decompositions of operators respectively

$$A = \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$$
 and $T = \begin{pmatrix} \lambda & 0 \\ 0 & * \end{pmatrix}$.

By setting $X = \begin{pmatrix} X_{\circ} & X_1 \\ X_2 & X_3 \end{pmatrix}$, we have

$$\|\delta_A(X) + T\| = \left\| \begin{pmatrix} BX_\circ - X_\circ B + \lambda & * \\ * & * \end{pmatrix} \right\| \ge \|BX_\circ - X_\circ B + \lambda\|$$

B is a finite operator, this implies $||BX_{\circ} - X_{\circ}B + \lambda|| \geq |\lambda|$. Consequently, we obtain

 $\|\delta_A(X) + T\| \ge |\lambda|, \quad (\forall X \in L(H)).$

Case 2: If $\lambda \in \sigma_{le}(T)$. Suppose that T has isolated eigenvalues of finite multiplicity. Let

$$E = \bigvee_{\mu \in \Pi_{\circ \circ}(T)} \ker(T - \mu),$$

where $\Pi_{\infty}(T)$ is the set of all isolated eigenvalues of T with finite multiplicity.

Since T is hyponormal, it results that E reduces T. On $H = E \oplus E^{\perp}$, we can write $T = T_{\circ} \oplus T_{1}$.

The condition AT = TA implies $\pi(A)\pi(T) = \pi(T)\pi(A)$. Furthermore A is essentially normal(resp. essentially isometric), then $R(\delta_{\pi(A)})$ is orthogonal to ker $(\delta_{\pi(A)})$. And erson's result ([1]) applied to the Calkin algebra guarantees that

$$\|\delta_A(X) + T\| \ge \|\delta_{\pi(A)}(\pi(X)) + \pi(T)\| \ge \|\pi(T)\|.$$

On the other hand, it is easily seen that $\|\pi(T)\| \ge \|\pi(T_1)\|$. Since T_1 is hyponormal and has no isolated eigenvalues of finite multiplicity, it follows from ([14]) that $\|\pi(T_1)\| = r(\pi(T_1))$.

Consequently, we have

$$\|\delta_A(X) + T\| \ge |\lambda|, \quad (\forall X \in L(H)).$$

The case T has no isolated eigenvalues of finite multiplicity, follows from a similar argument as seen above for T_1 .

The next Corollary is an immediate consequence of the above theorem.

Corollary 1. Let $A \in L(H)$ be a rationally cyclic subnormal operator. If AT = TA for some $T \in L(H)$, then

$$\|\delta_A(X) + T\| \ge \|T\|$$

for all $X \in L(H)$.

Proof. Indeed, if A is a rationally cyclic hyponormal operator, then it results from ([3]) that $A^*A - AA^* \in C_1(H)$. Hence, A is a hyponormal and essentially normal operator. Since $T \in \{A\}'$ and A is a rationally cyclic subnormal operator, it follows by Yoshino's results ([23]) that T is also subnormal. Hence, it suffices to apply the preceding Theorem. \Box

Acknowledgements. The authors are grateful to the referee for his very careful reading of the manuscript, and for his helpful suggestions.

REFERENCES

- 1. J.H. Anderson, On normal derivations, Proc. Amer. Math. Soc., 38 (1973), 135–140.
- J.H. Anderson, C. Fioas, Properties which normal operators share with normal derivations and related operators, Pacific J. Math., 61 (1975), 313–325.
- C.A. Berger, B.I. Shaw, Self-commutators of multicyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc., 79 (1973), 1193–1199.
- S. Bouali, J. Charles, Extension de la notion d'opérateur-symétrique I, Acta. Sci. Math. (Szeged), 58 (1993), 517–525.
- S. Bouali, S. Cherki, Approximation by generalized commutators, Acta Sci. Math (Szeged), 63 (1997), 273–278.
- M. Benlarbi Delai, S. Bouali, S. Cherki, Une remarque sur l'orthogonalité de l'image au noyau d'une dérivation généralisée, Proc. Amer. Math. Soc., 126 (1998), 167–171.
- S. Bouali, Y. Bouhafsi, On the range-kernel orthogonality and P-symmetric operators, Math. Inequal. Appl., 9 (2006), 511–519.
- S. Bouali, Y. Bouhafsi, *P*-symmetric operators and the range of a subnormal derivation, Acta Sci. Math. (Szeged), 72 (2006), 701–708.
- 9. S. Bouali, M. Ech-chad, *Analytic fonctions*, derivations and orthogonality, preprint.
- 10. B.P. Duggal, A remark on normal derivations, Proc. Amer. Math. Soc., 126 (1998), 2047–2052.
- B.P. Duggal, On the range-kernel orthogonality of derivations, Linear Algebra Appl., 304 (2000), 103– 108.
- B.P. Duggal, Putnam-Fuglede theorem and the range-kernel orthogonality of derivations, International J. Math. and Math. Sciences, 27 (2001), 573–582.
- B.P. Duggal, A perturbed elementary operator and range-kernel orthogonality, Proc. Amer. Math. Soc., 134 (2006), 1727–1734.
- P.A. Fillmore, J.G. Stampfli, J.P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math., 33 (1972), 179–192.
- T. Furuta, Relaxation of normality in the Fuglede-Putnam theorem, Proc. Amer. Math. Soc., 77 (1979), 324–328.
- F. Kittaneh, Operators that are orthogonal to the range of a derivation, J. Math. Anal. Appl., 203 (1997), 868–873.
- R.C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 61 (1947), 265–292.
- 18. P. Rosenthal, On the equations X = KXS and AX = XK, Spectral theory, 8 (1982), 389–391.
- 19. J.G. Stampfli, B.L. Wadhwa, On dominant operators, Monatshefte für Mathematik, 84 (1977), 143–153.

- 20. Y. Tong, Kernels of generalized derivations, Acta. Sci. Math(Szeged), 54 (1990), 159–169.
- 21. A. Turnsěk, Orthogonality in C_p classes, Monatsh. Math. **132** (2001), 349–354.
- 22. J.P. Williams, Finite operators, Proc. Amer. Math. Soc., 26 (1970), 129–136.
- 23. T. Yoshino, Subnormal operators with a cyclic vector, Tôhoku Math. J., 21 (1969), 47-55.

Chouaib Doukkali University, Faculty of Science, Department of Mathematics El Jadida, Morocco Département de Mathématiques Centre Régional des Métiers de l'Education et de la Formation Marrakech-Safi, Marocco ybouhafsi@yahoo.fr

Ibn Tofail University, Faculty of Science Kénitra, Morocco m.echchad@yahoo.fr mohamed-tri3@hotmail.com zouadil-2007@hotmail.com

Received 23.01.2022