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For a positive function f on the interval [0, 1], the power mean of order p ∈ R is defined by

∥ f ∥p =

(∫ 1

0

fp(x) dx

)1/p

(p ̸= 0), ∥ f ∥0 = exp

(∫ 1

0

ln f(x) dx

)
.

Assume that 0 < A < B, 0 < θ < 1 and consider the step function gA<B,θ = B ·χ[0,θ) +A ·
χ[θ,1], where χE is the characteristic function of the set E.

Let −∞ < p < q < +∞. The main result of this work consists in finding the term

Cp<q,A<B = max
0≤θ≤1

∥ gA<B,θ ∥q
∥ gA<B,θ ∥p

.

For fixed p < q, we study the behaviour of Cp<q,A<B and θp<q,A<B with respect to β =
B/A ∈ (1,+∞). The cases p = 0 or q = 0 are considered separately.

The results of this work can be used in the study of the extremal properties of classes of
functions, which satisfy the inverse Hölder inequality, e.g. the Muckenhoupt and Gehring ones.
For functions from the Gurov-Reshetnyak classes, a similar problem has been investigated in [4].

Introduction. The Muckenhoupt [1] and Gehring [2] conditions widely used in works on
weighted spaces and conformal mappings, represent important examples of the reverse Hölder
inequality. Initially, the expression “reverse Hölder inequality” has been applied to the Gehri-
ng condition. It is difficult to say who started using it in a more general sense. Nevertheless,
the term becomes widely accepted in scientific community nowadays.

Various classes of functions satisfying the reverse Hölder inequality, often appear in
applications and have numerous interesting properties. However, in order to determine
exact parameters of these classes, mainly power functions are used. In this work, different
elementary functions — viz. two-point step functions are considered and the relations between
exact parameters of the corresponding classes are established.

The results of this work can be used in determining of exact relations between various
classes of functions. Thus, a simple calculation of a sharp constant in the Gurov-Reshetnyak
condition [3] for the same elementary function — cf. [4] allowed to find exact positive and
negative summability orders for arbitrary functions from the Gurov-Reshetnyak class. Besi-
des, the exact parameters of the classes containing the corresponding elementary functions,
can be helpful in the construction of counter examples used in the study of general functions
from these classes. In particular, for the Gurov-Reshetnyak class, it was done in [5, 6].
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1. Main results. Let f be a non-negative measurable function on the interval [0, 1] and p
a real number. If p ̸= 0, we write

∥ f ∥p =
( 1∫

0

fp(x) dx
)1/p

, and ∥ f ∥0 = exp
( 1∫

0

ln f(x) dx
)

if p = 0. Let us recall that by the Hölder inequality, the term ∥ f ∥p grows along with p.
Let 0 < A < B < +∞, 0 ≤ θ ≤ 1. A function g defined on the interval [0, 1] is called

elementary if it has the form
g ≡ gA<B,θ = B · χ[0,θ) + Aχ[θ,1],

where χE is the characteristic function of the set E.
Let p < q. It is clear that if θ(1 − θ) = 0, then ∥ g ∥p = ∥ g ∥q, and for 0 < θ < 1 the

inequality ∥ g ∥p < ∥ g ∥q holds. The aim of this work is to determine the maximum

Cp<q,A<B := max
0≤θ≤1

∥ gA<B,θ ∥q
∥ gA<B,θ ∥p

and the corresponding value of θ ≡ θp<q,A<B where this maximum is attained. In other words,
we are looking for the smallest constant C such that the function gA<B,θ satisfies the reverse
Hölder inequality

∥ gA<B,θ ∥q ≤ C∥ gA<B,θ ∥p (1)

for any 0 ≤ θ ≤ 1.

Remark 1. Let A = 0. If p > 0 is fixed, the reverse Hölder inequality (1) is valid for
0 < θ < 1 with the right-hand side constant C = C(θ), which tends to +∞ as θ tends
to 0. On the other hand, if p < 0, it is natural to set 0p := +∞, (+∞)1/p := 0, so that
we have ∥ g ∥p = 0 for θ < 1. Besides, setting ln 0 := −∞, exp(−∞) := 0, we also obtain
∥ g ∥0 = 0. This justifies the condition A > 0. The other restriction B < +∞ can be validated
analogously.

The main result of this work is the following theorem.

Theorem 1. Let 0 < A < B < +∞, −∞ < p < q < +∞. If p · q ̸= 0, then

Cp<q,A<B =
|p|1/q

|q|1/p
(q − p)1/p−1/q |Bq − Aq|1/p

|Bp − Ap|1/q
(ApBq − AqBp)1/q−1/p ,

and the maximum is attained at the point θp<q,A<B = 1
q−p

(
pAp

Bp−Ap − qAq

Bq−Aq

)
.

In addition, if p · q = 0, then

C0<q,A<B = (e · q)−1/q exp

(
1

q
ln

Bq − Aq

lnB − lnA
− Bq lnA− Aq lnB

Bq − Aq

)
and the maximum is attained at the point θ0<q,A<B = 1

q
· 1
lnB−lnA

− Aq

Bq−Aq ,

and

Cp<0,A<B = (−e · p)1/p exp
(
Ap lnB −Bp lnA

Ap −Bp
− 1

p
ln

Ap −Bp

lnB − lnA

)
and the maximum is attained at the point θp<0,A<B = 1

p
· 1
lnB−lnA

− Ap

Bp−Ap .
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Set β = B/A > 1 and for p · q ̸= 0 we write

Cp<q,A<B =
|p|1/q

|q|1/p
(q − p)1/p−1/q

(
|βq − 1|
βq − βp

)1/p( |βp − 1|
βq − βp

)−1/q

=: Cp<q(β).

On the other hand, if p · q = 0, then

C0<q,A<B = (e · q)−1/q exp

(
ln β

βq − 1
− 1

q
ln

ln β

βq − 1

)
=: C0<q(β),

Cp<0,A<B = (−e · p)1/p exp
(

ln β

1− βp
+

1

p
ln

ln β

1− βp

)
=: Cp<0(β).

Theorem 2. The function Cp<q(β) is continuous on (1,+∞) and strictly increases from 1
to +∞.

The proofs of Theorems 1 and 2 are given in Section 2.

Remark 2. The function Cp<q(β) is defined for β > 1. It is easily seen that the equation

Cp<q(β) = Cp<q

(
1

β

)
(2)

is valid for any p < q. Extending it by continuity, we set Cp<q(1) = 1. Then Theorem 2
yields that the function Cp<q(β) is continuous on (0,+∞), strictly decreases on (0, 1] from
+∞ to 1 and strictly increases on [1,+∞) from 1 to +∞. The equation (2) also means that
the condition A < B in the definition of Cp<q,A<B can be removed.

This remarks leads to the following corollary.

Corollary 1. If p < q, then for any C > 1 the equation Cp<q(β) = C has two solutions
βp<q(C) > 1 and β

p<q
(C) =

(
βp<q(C)

)−1 ∈ (0, 1).

Let us now consider the expression θp<q(β), cf. Theorem 1, for β = B/A. We represent
it as

θp<q(β) :=
1

q − p

(
p

βp − 1
− q

βq − 1

)
, if p · q ̸= 0

and as

θ0<q(β) :=
1

q
· 1

ln β
− 1

βq − 1
, θp<0(β) :=

1

p
· 1

ln β
− 1

βp − 1
, if p · q = 0.

Theorem 3. The function θp<q(β) is continuous on (1,+∞) and has the following properties:

a) For 0 < p < q it strictly decreases from 1/2 to 0.

b) For p < q < 0 it strictly increases from 1/2 to 1.

c) If p < 0 < q, then: 1. For q > −p it strictly decreases from 1/2 to p/(p− q) < 1/2.
2. For q < −p it strictly increases from 1/2 to p/(p− q) > 1/2.
3. For q = −p it takes constant value 1/2 everywhere.

d) For 0 = p < q it strictly decreases from 1/2 to 0.

e) For p < q = 0 it strictly increases from 1/2 to 1.
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The proof of Theorem 3 is given in Section 2.

Remark 3. The value θp<q(β) is well-defined for β > 1. It is easily seen that for any p < q,
the equation

θp<q

(
1

β

)
= 1− θp<q(β) (β > 0, β ̸= 1),

holds. By continuity, it is natural to set θ(1) = 1/2.

2. Proofs.

Proof of Theorem 1. Assume first that p · q ̸= 0. Then ∥ g ∥p = (Bpθ + Ap(1− θ))1/p, and,
consequently, ∥ g ∥q

∥ g ∥p = (Bqθ+Aq(1−θ))1/q

(Bpθ+Ap(1−θ))1/p
. Set

φ(θ) :=

(
∥ g ∥q
∥ g ∥p

)q

=
Bqθ + Aq(1− θ)

(Bpθ + Ap(1− θ))q/p
.

Solving the equation φ′(θ) = 0, we obtain

p (Bq − Aq) (Ap + θ (Bp − Ap)) = q (Bp − Ap) (Aq + θ (Bq − Aq)) ,

which yields that the unique inferior extremum point of the function φ(θ) is

θ = θp<q,A<B =
1

q − p

(
pAp

Bp − Ap
− qAq

Bq − Aq

)
.

Let us note that φ(0) = φ(1) = 1, and if 0 < θ < 1, then φ(θ) > 1 (q > 0) and φ(θ) < 1
(q < 0). Therefore, in both cases q > 0 and q < 0, the value θ = θp<q,A<B is the point of
maximum for the function φ1/q(θ) = ∥ g ∥q/∥ g ∥p. Substituting this value θ = θp<q,A<B we
obtain

∥ g ∥pp =
|q|
q − p

· A
pBq − AqBp

|Bq − Aq|
, ∥ g ∥qq =

|p|
q − p

· A
pBq − AqBp

|Bp − Ap|
,

∥ g ∥q
∥ g ∥p

=
|p|1/q

|q|1/p
(q − p)1/p−1/q · |B

q − Aq|1/p

|Bp − Ap|1/q
(ApBq − AqBp)1/q−1/p .

Considering the case 0 = p < q, we have

∥ g ∥0 = exp ((lnB)θ + (lnA)(1− θ)) ,
∥ g ∥q
∥ g ∥0

=
(Bqθ + Aq(1− θ))1/q

exp ((lnB)θ + (lnA)(1− θ))
.

Set
φ(θ) := ln

∥ g ∥q
∥ g ∥0

=
1

q
· ln (Bqθ + Aq(1− θ))− ((lnB)θ + (lnA)(1− θ)) .

Solving the equation φ′(θ) = 0, we obtain 1
q
· Bq−Aq

lnB−lnA
= Aq + θ (Bq − Aq) , which implies

θ = θ0<q,A<B =
1

q
· 1

lnB − lnA
− Aq

Bq − Aq
.
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The substitution of this value θ = θ0<q,A<B gives

∥ g ∥q
∥ g ∥0

=
1

(e · q)1/q
exp

(
1

q
ln

Bq − Aq

lnB − lnA
− Bq lnA− Aq lnB

Bq − Aq

)
.

It remains to consider the case p < q = 0. We have

∥ g ∥0
∥ g ∥p

=
exp ((lnB)θ + (lnA)(1− θ))

(Bpθ + Ap(1− θ))1/p
.

Set
φ(θ) := ln

∥ g ∥0
∥ g ∥p

= (lnB)θ + (lnA)(1− θ)− 1

p
ln (Bpθ + Ap(1− θ)) .

Solving again the equation φ′(θ) = 0, we obtain

1

p
· Bp − Ap

lnB − lnA
= Ap + θ (Bp − Ap) ,

which implies

θ = θp<0,A<B =
Ap

Ap −Bp
− 1

|p|
· 1

lnB − lnA
.

The substitution of this value θ = θp<0,A<B gives

∥ g ∥0
∥ g ∥p

= (e · (−p))1/p exp
(
Ap lnB −Bp lnA

Ap −Bp
− 1

p
ln

Ap −Bp

lnB − lnA

)
.

Proof of Theorem 2. The continuity of the function Cp<q(β) is obvious.
If p · q ̸= 0, we use the equation (|βq − 1|)′ = |q|βq−1, where β ≥ 1 (for β = 1 the right

derivative is used). Then for β → 1 + 0, we have

Cp<q(β) =
|p|1/q

|q|1/p
(q − p)1/p−1/q

(
|βq − 1|
βq−p − 1

)1/p ( |βp − 1|
1− βp−q

)−1/q

∼

∼ |p|1/q

|q|1/p
(q − p)1/p−1/q

(
|q|(β − 1)

(q − p)(β − 1)

)1/p( |p|(β − 1)

−(p− q)(β − 1)

)−1/q

= 1.

Furthermore, if β → +∞, then

C0<p<q(β) ∼
βq/p

β(q−p)/p
· β−p/q = β1−p/q → +∞,

Cp<0<q(β) ∼
βq/p

β(q−p)/p
= β → +∞, Cp<q<0(β) ∼

1

β(q−p)/p
= β1−q/p → +∞.

In order to determine the limit of C0<q(β) as β → 1 + 0, one can use the equation

lim
β→1+0

ln β

βq − 1
= lim

β→1+0

1
β

qβq−1
=

1

q
.
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It follows that lim
β→1+0

C0<q(β) = 1. On the other hand, it is easily seen that lim
β→+∞

C0<q(β) =

+∞.
Analogously, in order to find the limit of Cp<0(β) as β → 1 + 0, we use the equation

lim
β→1+0

ln β

1− βp
= lim

β→1+0

1
β

−pβp−1
= −1

p
.

It follows that lim
β→1+0

Cp<0(β) = 1. On the other hand, it is easily seen that lim
β→+∞

Cp<0(β) =

+∞.
It remains to show that the function Cp<q(β) is strictly increasing on the interval (1,+∞).

We consider five cases.
Case 1. Let 0 < p < q. Using the representation

C0<p<q(β) =
p1/q

q1/p
(q − p)1/p−1/q

(
1 +

βp − 1

βq − βp

)1/p (
βp − 1

βq − βp

)−1/q

and the notation t = t(β) = (βq − βp) / (βp − 1), we show that t(β) strictly increases on
(1,+∞) from (q − p)/p to +∞. Indeed, it is clear that lim

β→+∞
t(β) = +∞, and L’Hôspital’s

rule gives

lim
β→1+0

t(β) = lim
β→1+0

βpβ
q−p − 1

βp − 1
= lim

β→1+0

(q − p)βq−p−1

pβp−1
=
q − p

p
.

Further, we show that the function

t
(
τ 1/p

)
=
τ q/p − τ

τ − 1

is strictly increasing on the interval (1,+∞). Indeed, we have

d

dτ

(
t
(
τ 1/p

))
=

1

(τ − 1)2

((
q

p
− 1

)
τ q/p − q

p
τ q/p−1 + 1

)
.

Since ((
q

p
− 1

)
τ q/p − q

p
τ q/p−1 + 1

)∣∣∣∣
τ=1

= 0

and for τ > 1 we have

d

dτ

((
q

p
− 1

)
τ q/p − q

p
τ q/p−1 + 1

)
=
q

p

(
q

p
− 1

)
τ q/p−2(τ − 1) > 0,

the function t = t
(
τ 1/p

)
is strictly increasing on the interval (1,+∞) from (q− p)/p to +∞.

It follows that the inverse function β = β(t) is also strictly increasing on ((q − p)/p,+∞)
from 1 to +∞.

In these notations we have

C0<p<q(β(t)) =
p1/q

q1/p
(q − p)1/p−1/q

(
1 +

1

t

)1/p

t1/q.

In order to establish the strict increase of the function C0<p<q(β) on (1,+∞), one has to
check whether

φ(t) :=

(
1 +

1

t

)1/p

t1/q = t1/q−1/p(1 + t)1/p
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strictly increases on ((q − p)/p,+∞). The computation of the corresponding derivative for
t > q (1/p− 1/q) = (q − p)/p gives

φ′(t) = t1/q−1/p−1(1 + t)1/p−1

(
1

q
− 1

p
+

1

q
t

)
> 0,

and we are done.
Case 2. Let p < q < 0. Using the representation

Cp<q<0(β) =
(−p)1/q

(−q)1/p
(q − p)1/p−1/q

(
1− βq

βq − βp

)1/p(
1 +

1− βq

βq − βp

)−1/q

and notation t = t(β) = (βq − βp) / (1− βq), we show that t(β) strictly decreases on (1,+∞)
from (p− q)/q to 0. Indeed, it is clear that lim

β→+∞
t(β) = 0, and the L’Hôspital rule gives

Cp<q<0(β) = lim
β→1+0

t(β) = lim
β→1+0

βpβ
q−p − 1

1− βq
= lim

β→1+0

(q − p)βq−p−1

−qβq−1
=
p− q

q
.

Further, we show that the function t
(
τ 1/q

)
=

(
τ − τ p/q

)
/ (1− τ) strictly decreases on

(1,+∞). Indeed, we have

d

dτ

(
t
(
τ 1/q

))
=

1

(1− τ)2

((
p

q
− 1

)
τ p/q − p

q
τ p/q−1 + 1

)
.

Since ((
p

q
− 1

)
τ p/q − p

q
τ p/q−1 + 1

)∣∣∣∣
τ=1

= 0

and for τ < 1 it holds

d

dτ

((
p

q
− 1

)
τ p/q − p

q
τ p/q−1 + 1

)
=
p

q

(
p

q
− 1

)
τ p/q−2(τ − 1) < 0,

the function t = t (τ 1q) strictly decreases on (0, 1) from (p − q)/q to 0. It follows that the
inverse function β = β(t) strictly decreases on (0, (p− q)/q) from +∞ to 1.

In these notations we have

Cp<q<0(β(t)) =
(−p)1/q

(−q)1/p
(q − p)1/p−1/qt−1/p

(
1 +

1

t

)−1/q

.

In order to show the strict increase of Cp<q<0(β) on (1,+∞), it suffices to verify that

φ(t) := t−1/p

(
1 +

1

t

)−1/q

= t1/q−1/p(1 + t)−1/q

strictly decreases on (0, (p− q)/q). The computation of the corresponding derivative for
0 < t < (p− q)/q gives

φ′(t) = t1/q−1/p−1(1 + t)1/q−1

(
1

q
− 1

p
− 1

p
t

)
< 0,
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and we are done.
Case 3. Let p < 0 < q. Using the representation

Cp<0<q(β) =
(−p)1/q

q1/p
(q − p)1/p−1/q

(
1− 1− βp

βq − βp

)1/p(
1− βp

βq − βp

)−1/q

and the notation t = t(β) = (βq − βp) / (1− βp), we show that t(β) strictly increases on
(1,+∞) from (p − q)/p to +∞. It is clear that lim

β→+∞
t(β) = +∞, and the L’Hôspital rule

gives

lim
β→1+0

t(β) = lim
β→1+0

βpβ
q−p − 1

1− βp
= lim

β→1+0

(q − p)βq−p−1

−pβp−1
=
p− q

p
.

Further, we show that the function t
(
τ 1/p

)
=

(
τ q/p − τ

)
/ (1− τ) strictly decreases on (0, 1).

Indeed, we have

d

dτ

(
t
(
τ 1/p

))
=

1

(1− τ)2

((
1− q

p

)
τ q/p +

q

p
τ q/p−1 − 1

)
.

Since ((
1− q

p

)
τ q/p +

q

p
τ q/p−1 − 1

)∣∣∣∣
τ=1

= 0

and for τ > 1 one has

d

dτ

((
1− q

p

)
τ q/p +

q

p
τ q/p−1 − 1

)
=
q

p

(
1− q

p

)
τ q/p−2(τ − 1) < 0,

the function t = t
(
τ 1/p

)
strictly decreases on (0, 1) from +∞ to (p − q)/p. It follows that

the inverse function β = β(t) strictly increases on ((p− q)/p,+∞) from 1 to +∞.
In these notations we have

Cp<0<q(β(t)) =
(−p)1/q

q1/p
(q − p)1/p−1/q

(
1− 1

t

)1/p

t1/q.

In order to prove the strict increasing of Cp<0<q(β) on (1,+∞), one has to verify that

φ(t) :=

(
1− 1

t

)1/p

t1/q = t1/q−1/p(t− 1)1/p

strictly increases on ((p− q)/p,+∞). Computing the corresponding derivative on t > (p −
q)/p gives

φ′(t) = t1/q−1/p−1(t− 1)1/p−1

(
−1

q
+

1

p
+

1

q
t

)
> 0,

and we are done.
Case 4. Let 0 < q. Setting t = t(β) = (ln β)/ (βq − 1), we get

lim
β→1+0

t(β) =
1

q
, lim

β→+∞
t(β) = 0.

We show that t(β) strictly decreases on (1,+∞) from 1/q to 0. For this we compute the
derivative

d

dβ
(t(β)) =

−βq−1

(βq − 1)2

(
q ln β +

1

βq
− 1

)
.
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It remains to show that the term q ln β + β−q − 1 is positive. Write φ(β) := q ln β + β−q − 1
and note that φ(1) = 0 and

φ′(β) = q · 1
β
− q · β−q−1 =

q

β

(
1− 1

βq

)
> 0.

Hence, φ(β) > 0 and t(β) strictly decreases on (1,+∞) from 1/q to 0. Therefore, the reverse
function β = β(t) strictly decreases on (1/q, 0) from +∞ to 1. Thus in order to establish the
strict increase of the function C0<q(β), one has to show that C0<q(β(t)) strictly decreases on
(0, 1/q). However, since

C0<q(β(t)) = (eq)−1/q exp

(
t− 1

q
ln t

)
,

it suffices to show the strict decreasing of ψ(t) := t− (ln t)/q on (0, 1/q). It follows from the
negativity of ψ′(t) = 1− 1/(qt) for t ∈ (0, 1/q).

Case 5. Let p < 0. Set t = t(β) = (ln β)/ (1− βp) and note

lim
β→1+0

t(β) = −1

p
, lim

β→+∞
t(β) = +∞.

We show that t(β) strictly increases on (1,+∞) from −1/p to +∞. Compute the derivative

d

dβ
(t(β)) =

βp−1

(1− βp)2

(
p ln β +

1

βp
− 1

)
and show that the term p ln β + β−p − 1 is positive. Writing φ(β) := p ln β + β−p − 1, we
note that φ(1) = 0 and

φ′(β) = p · 1
β
− p · β−p−1 =

p

β

(
1− 1

βp

)
> 0.

Thus φ(β) > 0, so that t(β) strictly increases on (1,+∞) from −1/p to +∞. Therefore,
the inverse function β = β(t) strictly increases on (−1/p,+∞) from 1 to +∞. In order to
prove the strict increase of C0<q(β), it suffices to show that C0<q(β(t)) strictly increases on
(−1/p,+∞). However, since

Cp<0(β(t)) = (−ep)1/p exp

(
t+

1

p
ln t

)
,

one can show that ψ(t) := t + (ln t)/p strictly decreases on (−1/p,+∞). But this directly
follows from the positivity of ψ′(t) = 1 + 1/(pt) for t ∈ (−1/p,+∞).

Proof of Theorem 3. For any p < q, the continuity of θp<q(β) is clear. Let p · q ̸= 0. In order
to find the limit of θp<q(β) as β → 1 + 0 we again use the L’Hôspital rule. Thus, we obtain

lim
β→1+0

θp<q(β) = lim
β→1+0

pqβq−1 − pqβq−1

(q − p) (pβp−1 (βq − 1) + qβq−1 (βp − 1))
=

= lim
β→1+0

{[
pq(q − 1)βq−2 − pq(p− 1)βp−2

]
×

[
(q − p)

(
p(p− 1)βp−2 (βq − 1) +

+pβp−1qβq−1 + q(q − 1)βq−2 (βp − 1) + qβq−1pβp−1
)]−1

}
=

pq(q − p)

(q − p)(pq + pq)
=

1

2
.
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On the other hand, if β → +∞, then

θ0<p<q(β) ∼
pβq

(q − p)βq+p
→ 0, θp<q<0(β) ∼

−p+ q

q − p
= 1,

θp<0<q(β) ∼
pβq

(p− q)βq
→ p

p− q
∈ (0, 1).

Consider now the case p · q = 0. The application of the L’Hôspital rule as β → 1+0 gives

θ0<q(β) =
βq − 1− q ln β

q ln β (βq − 1)
∼ βq − 1− q ln β

q2(β − 1)2
,

lim
β→1+0

θ0<q(β) =
1

q2
lim

β→1+0

qβq−1 − q
β

2(β − 1)
=

1

2q
lim

β→1+0

βq − 1

β − 1
=

1

2
,

θp<0(β) =
βp − 1− p ln β

p ln β (βp − 1)
∼ βp − 1− p ln β

p2(β − 1)2
,

lim
β→1+0

θp<0(β) =
1

p2
lim

β→1+0

pβp−1 − p
β

2(β − 1)
=

1

2p
lim

β→1+0

βp − 1

β − 1
=

1

2
.

However, if β → +∞, then it is clear that lim
β→+∞

θ0<q(β) = 0, lim
β→+∞

θp<0(β) = 1.

It remains to study the monotonicity of function θp<q(β) on the interval (1,+∞). Let
p · q ̸= 0. Then the character of the monotonicity of θp<q(β) is the same as of the auxiliary
function φ(β) := p

βp−1
− q

βq−1
. Computing the derivative

φ′(β) =
q2βq−1

(βq − 1)2
− p2βp−1

(βp − 1)2
=

1

β
·
(

q2βq

(βq − 1)2
− p2βp

(βp − 1)2

)
,

we have to determine the sign of φ′(β). Fix β > 1 and consider another auxiliary function
φ1(t) :=

t2βt

(βt−1)2
, t ∈ (−∞,+∞). Set u = βt > 0, i.e. t = (lnu)/(ln β) and obtain

φ1

(
lnu

ln β

)
=

1

ln2 β
· u ln2 u

(u− 1)2
≡ 1

ln2 β
· φ2(u), u > 0.

In order to study the monotonicity of φ2(u) := u ln2 u
(u−1)2

we compute φ2(1 ± 0) = 1,
φ2(0+) = 0, φ2(+∞) = 0, and

φ′
2(u) = −(u+ 1) lnu

(u− 1)3

(
lnu− 2 · u− 1

u+ 1

)
.

Using the notation φ3(u) := lnu− 2 · u−1
u+1

we show that

φ3(1) = 0, φ′
3(u) =

1

u
− 4

(u+ 1)2
=

(u− 1)2

u(u+ 1)2
> 0,

which yields signφ3(u) = sign(u− 1). This means that the function φ2(u) strictly increases
on (0, 1) and (1,+∞) from 0 to 1 and from 1 to 0, respectively. Therefore, φ′(β) < 0 if
0 < p < q and φ′(β) > 0 if p < q < 0, and assertions a) and b) of Theorem 3 are proven.

In order to consider the case c), i.e. the situation p < 0 < q, we set r = −p > 0 and note
that p2βp

(βp−1)2
= r2βr

(βr−1)2
.
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Now we can use the already proven strict decreasing of φ1(t) = t2βt (βt − 1)
−2 on (0,+∞)

and obtain: 1. φ′(β) < 0 for q > r = −p, 2. φ′(β) > 0 for q < r = −p, 3. φ′(β) ≡ 0 for q =
r = −p, which implies assertion c).

In order to show assertion d), we determine the derivative

d

dβ
θ0<q(β) =

1

q (ln β (βq − 1))2
×

×
[(
qβq−1 − q

β

)
ln β (βq − 1)− (βq − 1− q ln β)

(
1

β
(βq − 1) + ln β · qβq−1

)]
.

The expression in the square brackets above can be written as

φq(β) :=
1

β

[
q2βq ln2 β − (βq − 1)2

]
.

Introducing the notation t = βq > 1, we observe that the inequalities φq(β) < 0 and
ψ(t) := ln t−

√
t+ 1√

t
< 0 (t > 1) are equivalent. However, the last one immediately follows

from the obvious relations ψ(1) = 0, ψ′(t) = 1/t − 1/(2
√
t) − 1/(2t

√
t) < 0 which are valid

both for t > 1 and t ∈ (0, 1).
In the proof of assertion e), we obtain

d

dβ
θp<0(β) =

φp(β)

p (ln β (βp − 1))2
.

In order to show the inequality φp(β) < 0, we again set t = βp ∈ (0, 1) and note that for
0 < t < 1 the inequality φp(β) < 0 is equivalent to ψ(t) > 0, and the latter is obviously
true.
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