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For an entire function f(z) = > pe,arz®, ar > 0, we define its second quotients of Taylor

coefficients as ¢ (f) := aﬁ;;k,k > 2. In the present paper, we study entire functions of
order zero with non-monotonic second quotients of Taylor coefficients. We consider those entire
functions for which the even-indexed quotients are all equal and the odd-indexed ones are
all equal: gor, = @ > 1 and gox41 = b > 1 for all K € N. We obtain necessary and sufficient
conditions under which such functions belong to the Laguerre-Pélya I class or, in our case, have

only real negative zeros. In addition, we illustrate their relation to the partial theta function.

1. Introduction. To begin with, we provide the definitions of the Laguerre—Pélya class and
Laguerre—Pdlya class of type L.

Definition 1. A real entire function f is said to be in the Laguerre—Pdlya class, written
f € L-P, if it can be expressed in the form

oo
z -1

) = Czne—az2+,8z 1— =) e*%k
e [[(1-2 )

k=1

where ¢, o, 5,7, € R, 2, # 0, @ > 0, n is a nonnegative integer and Y-, ac,;2 < 0.
Definition 2. A real entire function f is said to be in the Laguerre— Pdlya class of type I,
written f € L-PI, if it can be expressed in the following form

f(2) = cz"e” H (1 + xik) ,

k=1

where ¢ € R, 3 > 0,z > 0, n is a nonnegative integer, and Y .-, x,;l < 00.

Note that the product on the right-hand sides in both definitions can be finite or empty
(in the latter case, the product equals 1).

These classes are essential in the theory of entire functions since it appears that the
polynomials with only real zeros (or only real and nonpositive zeros) converge locally uni-
formly to these and only these functions. The following prominent theorem provides an even
stronger result.
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Theorem A (E. Laguerre and G. Pdlya, see, for example, |5, p.42-46], [19, Ch.VIII, §3|).
(i) Let (P,):y, P.(0) = 1, be a sequence of real polynomials having only real zeros whi-
ch converges uniformly on the disc |z| < A, A > 0. Then this sequence converges locally
uniformly in C to an entire function from the L-P class.

(17) For any f € L-P there exists a sequence of real polynomials with only real zeros, which
converges locally uniformly to f.

(1ii) Let (P,)2,, P,(0) = 1, be a sequence of real polynomials having only real negative
zeros which converges uniformly on the disc |z| < A, A > 0. Then this sequence converges
locally uniformly in C to an entire function from the class L-P1.

(1v) For any f € L-PI there is a sequence of real polynomials with only real nonpositive

zeros, which converges locally uniformly to f.

Further, we define the second quotients of Taylor coefficients of f.

Let f(z) =Y 7, axz" be an entire function with real nonzero coefficients, then

a2

Ap—20n
From this definition it follows straightforwardly that
a1 1
an = a1<—> proy e 5 , n>2.
o @ a3 "G 1n

In general, the problem of understanding whether a given entire function has only real
zeros is not trivial. However, in 1926, J. I. Hutchinson found the following simple sufficient
condition in terms of coefficients for an entire function with positive coefficients to have only
real zeros.

Theorem B (J. I. Hutchinson [6]). Let f(z) = > po,arz”, ax > 0 for all k. Then q,,(f) > 4,
for all n > 2, if and only if the following two conditions are fulfilled:
(1) The zeros of f(x) are all real, simple and negative,
ii) the zeros of any polynomial Y ._ apz® m < n, formed by taking any number of
consecutive terms of f(z), are all real and non-positive.

For some extensions of Hutchinson’s results see, for example, |3, §4].

Next, we define the multiplier sequence.

Definition 3. A sequence ()2, of real numbers is called a multiplier sequence if, whenever
the real polynomial P(z) = >_}_; axz" has only real zeros, the polynomial >;_;vxa;2" has
only real zeros. The class of multiplier sequences is denoted by MS.

The following theorem fully describes multiplier sequences.

Theorem C (G. Pélya and J.Schur, cf. 28], [27, p.100-124], |26, p.29-47]). Let ()3, be a
given real sequence. The following three statements are equivalent:

1. ()52, is a multiplier sequence.

2. For every n € N the polynomial P,(z) = > ;_, (Z)%zk has only real zeros of the same

sign.
3. The power series (z) 1=y -, %zk converges absolutely in the whole complex plane and
the entire function ®(z) or the entire function ®(—z) admits the representation

d z
cen ] (14 ),
e’z ]!—Il +xk

where C € R,0 > 0,m € NU{0},0 <z, < o0, and Y p | 1/x) < 0.
Strikingly, the following fact is an obvious consequence.
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Corollary of Theorem C. The sequence (Vy,71,---,M, 0,0,...) is a multiplier sequence if
and only if the polynomial P(z) = ZL:O 2k has only real zeros of the same sign.

Further, let us introduce the notion of a complex zero decreasing sequence. For a real
polynomial P we denote by Z¢(P) the number of nonreal zeros of P counting multiplicities.

Definition 4. A sequence ()32, of real numbers is said to be a complex zero decreasing
sequence (we write ()32, € CZDS), if

n

Zc < z": %akzk> < Zc ( > ak;Zk) ;
k=0

k=0

for any real polynomial > 7, a2
The existence of nontrivial CZDS sequences is a consequence of the following remarkable
theorem proved by Laguerre and extended by Pélya.

Theorem D (E. Laguerre, see |27, p.314-321]). Let f be an entire function from the Laguerre-
Pélya class having only negative zeros. Then (f(k));—, € CZDS.

As it follows from the theorem above,

2\ ° 1 e
(a_k ) €CZDS, a>1, (—) ecCzDs.
k=0 K)o

A special entire function g,(z) = 3250, 2*a™*", a > 1, known as the partial theta function
(the classical Jacobi theta function is defined by the series 6(2) := 3220 2Fa=*), was
investigated by many mathematicians. Note that ¢,(g,) = a® for all n. The survey [30] by
S.0. Warnaar contains the history of investigation of the partial theta-function and some of
its main properties.

Note that, since <a"“2> € CZDS for a > 1, we conclude that for every n > 2

there exists a constant ¢, > 1 such that S,(z,9.) = D1, ko R e LP o a® >,
The following theorem answers the question for which values of a parameter a the partial
theta-function and its Taylor sections belong to the £L—P class.

Theorem E (O. Katkova, T. Lobova, A. Vishnyakova [7]). There exists a constant gu
(Goo ~ 3.23363666 . ..) such that:

(1) gu(2) € LP & a® > ¢oo;

(2) gu(2) € L~P & there exists zy € (—a®, —a) such that g,(z) < 0;

(3) for a given n > 2, we have S, (z,9,) € L~P < there exists z, € (—a®,—a) such that
Su(2n, 9a) < 0;

(4) d=1cy>cy>c6 >+ and lim, o0 Con = Goo;

(5)3=1c3 <5<y <--- and limy, o0 Cont1 = Goo-

We would like to mention a series of works by V. P. Kostov dedicated to the interesting
properties of zeros of the partial theta-function and its derivative (see [9-17]). Besides, a
wonderful paper [18] among the other results explains the role of the constant ¢, in the
study of the set of entire functions with positive coefficients having all Taylor truncations
with only real zeros. See also [29] for the properties of the leading root of the partial theta
function.

Subsequently, we need the following Lemma from the work [21].

Lemma F (see 21, Lemma 2.1] or [22, Lemma 1.2]). If f(2) = > 7, ax2", ax > 0, belongs
to L~PI, then q3(qo — 4) + 3 > 0. In particular, if g3 > g2, then g > 3.
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It appears that for many important entire functions with positive coefficients f(z) =
> oo arz® (for example, the partial theta function from |7], functions from [2] and [1], the
g-Kummer function ;¢1(q; —¢; ¢, —z) and others) the following two conditions are equivalent:
(4) f € L-PI; (ii) there exists xg € [, 0] such that f(zo) < 0.

The following theorem is a necessary condition for an entire function to belong to the
Laguerre-Polya class of type I, in terms of the closest to zero roots. We will further use it
in our proofs.

Theorem G (T. H. Nguyen, A. Vishnyakova [22]). Let f(z) = > royarz®, ax > 0 for all
k, be an entire function. Suppose that the quotients g, (f) satisfy the following condition:
@(f) < g(f). If f € L-PI, i.e. belongs to the Laguerre-Pdlya class of type I, then there
exists 2o € [—51, 0] such that f(z) < 0.

Many important entire functions with monotonic second quotients of Taylor coefficients
were previously studied. For instance, f(z) = > .o, (kf)%, a > 1, has qx(f) = ﬁaQ which
are decreasing in k. It is known that f € £ — PZ for all a > 1. In [8], it is proved that all

Taylor sections of this function belong to the Laguerre-Pdlya class of type I if and only if
a? > goo. The following function is known as the second g-exponential function E,(z) with

g=1/a:

> k

—1+Z ak121). o1 ﬁ<1+ >,a>1.

We have gx(h,) = %, and gx(h,) are decreasing in k. Note that this function has only
real negative zeros, i.e. it belongs to the Laguerre-Pdlya I class. Next, the function ¢,, .(2) =
Yo kQ( D™ a > 1,m > 1 was studied by A. Bohdanov and A. Vishnyakova in [2]. Note
that qk(cpma) are increasing in k. The necessary and sufficient conditions for this function to

belong to the Laguerre-Pdélya class of type I were investigated. The function
00 k

ya(Z):];(a+1)(a2+1)....-(ak+1)’a>1’

is also known as the ¢-Kummer function ,¢;(¢; —¢; ¢, —2), where ¢ = 1/a (see [4], formula
(1.2.22)). Note that its g; are increasing in k. The question of its belonging to the Laguerre—
Pélya class of type I was investigated by T.H. Nguyen in [25].

In [20], we have proved that if an entire function with positive coefficients has a decreasing
sequence of second quotients of Taylor coefficients and the limit of this sequence is greater
than or equal to ¢, then this function belongs to the Laguerre-Pélya class of type I. In
[21], [23] and [24], we have found the conditions for entire functions with increasing second
quotients of Taylor coefficients to belong to the Laguerre—Pdlya class of type I.

In this paper, we study the entire functions with non-monotonic second quotients and
find the conditions for them to belong to the Laguerre-Pélya class of type I. We present
our first attempt at investigating entire functions with non-monotonic second quotients and
consider the following function

ok
Zoqé”“ e
Whereq2:q4:q6:...:a>1,q3—q5—q7—...:b>1,0r
R z? x°
r)=14+2+—+ — + + + ...
/() a a*b  adb’a  a*bPa?b

We look into the case when a # b. Note that when a = b, we obtain the case of the
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partial-theta function. We find the new conditions for which (a,b) the entire function f
belongs to the Laguerre-Pélya I class.

By Lemma F, if f € L-PI, ¢2(f) = a,q3(f) = b and a < b, then a > 3.

Therefore, we look for (a,b) such that a < b and a > 3. The case 4 < a < b was studied
by Hutchinson (see Theorem B), so we find new conditions for a € [3,4).

We present our main result.

Theorem 1. Let f(z) = > o axz®, ar, > 0 for all k, be an entire function. Suppose that
the quotients q,(f) satisfy the following condition: ¢(f) = qu(f) = ¢6(f) = ... = a, and
(f)=q¢(f) =q(f)=...=b,1 <a<b. Then the function f € L—-PI if and only if there
exists 2o € [—51, 0] such that f(z) < 0.

The following theorem contains a sufficient condition for the existence of such a point z
for the case ¢o(f) < 4.

Theorem H (T. H. Nguyen, A. Vishnyakova [22]). Let f(z) = > po, ax2”, a > 0 for all k,
be an entire function and 3 < qa2(f) < 4,q3(f) > 2, and qu(f) > 3. If ¢3(f) < ﬁ, where
d = min(gz(f), qa(f)), then there exists 2y € [~2*,0] such that f(z) < 0.

Hence, in our case, the sufficient condition is b < ﬁ.

The following theorem gives a necessary condition for an entire function to belong to the
Laguerre—Polya class of type I, in terms of the second quotients of its Taylor coefficients g,,.

Theorem I (T. H. Nguyen, A. Vishnyakova [22]). Let f(z) = > po,arz®, ar, > 0 for all k.
If f € L-PI, q2(f) < 4 and ¢5(f) < g5(f), then
as(f) < —a(f)2q(f) = 9) + 2(q2(f) = 3)v/ @ (f)(@2(f) — 3)

- 02(f)(4 = q2(f)) '

Thus, in our case, the necessary condition is

—a(2a —9) +2(a — 3)\/a(a — 3)
a(4 —a) '

Our next result is the Theorem 2 below.

b<

Theorem 2. Let f,,(2) = Y poyarz”, ar, > 0 for all k, be an entire function such that
e(f)=qu(f)=q(f)=...=a, and ¢3(f) = g5(f) = qz(f) = ... =0, 1 < a < b. Then the

following statements are valid:

1. If f € L-PI, then a > .

2. If the numbers a,b, ¢ < a < b, are such that f,, € L-PI, then for every c,a < c < b we
have f,.€ L-PI.

3. If the numbers a,b, g < a < b, are such that f,, € L-P, then for every d,a < d < b we
have fq, € L-PI.

Note that, by Theorem C and Theorem D, every new entire function from the £-PI
class generates a new multiplier sequence and a new complex zero decreasing sequence. So,
we obtain the following direct corollary from Theorem 1.

Corollary 1. Let f(z) = Yo arz", ax > 0 for all k, be an entire function. Suppose that
the quotients q,(f) satisfy the following condition: ¢(f) = qu(f) = ¢s(f) = ... = a, and
g3(f) =a5(f) = qz(f) = ... = b, 1 <a <b. Suppose that there exists z € [—2*,0] such that
f(z0) <0 (for example, this condition is fulfilled if a < b < a(f%a)). Then (klay)32, € MS
and (f(k))2, € CZDS.
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2. Proof of Theorem 1.

Proof. For an entire function f(z) = > -, axz® with real positive coefficients, without loss
of generality, we can assume that ap = a; = 1, since we can consider a function g(x) =
ag' f(apa; 'z) instead of f(x), due to the fact that such rescaling of f preserves its property
of having real zeros and preserves the second quotients: ¢,(g) = ¢,(f) for all n. Throughout
the paper, we use notation p, and g, instead of p,(f) and ¢,(f).

Thereafter, we consider a function

p(z) = f(—2) —1—x+Z

— &2 C Qi1

ka’k

instead of f.

Firstly, in our case, ¢ = a,q3 = b,a < b, according to Theorem F, if ¢ € L-PI, then
there exists such a point zg € [0, —¢t] = [0, a] that ¢(z) < 0.

To prove the converse statement, we need the following lemma.

Lemma 1. Let p(x) = Zk ol —DFaga*, ap > 0,k = 0,1,2,..., be an entire function such
that ¢ = q4 = @ = ... = a > 3,93 = ¢5 = qr = ... = b > a. For an arbitrary integer
J > 2, we define p; := qaqs - ... - ¢j\/qj+1. Then, for all even j = 2s,s € N, the function ¢

has exactly j zeros on the disk {z : |z| < p;} counting multiplicities.

Proof of Lemma 1. For j > 2, we have

j—=3 Jj+2 00
Z k1k2 _ ( +Z+Z>_EIJ )+ gj(z) + X9 (7).
=0 42 oo Gk k=0  k—j—2 k—jt3
In more details,
(1)~ (-1y (-1t
gj(z) = -3 j-4 s 2 Ry 3 9 +
B G G2 B G e 45—29-1 42 43 .- Q5 295 145
(_1)j+1xj+1 (_1)j+2xj+2
+ — — —+ 1 =
B GG TG B B G193 11542
(—1)7722772 x
= 3 4 ' (1 B
q2 q3 ) q2q3 - ... qj—245—1
N x? 23 N x? ) 1)
BB Coli a1l BB Col GG B G0l G2
By the definition of p;, we have gagqs - ... ¢; < p; < q2q3 - ... - qjqj+1. We get
9i(pje?) = (=1 2043 - @ g a7 (1 — T 1€ + g% —
i qi i o (i i=2
—q; /—queS 0 ?;64 0) = (~1) 2 € 2)9q2q§ ) q; gqg %qg 2qg+1 «

(1 —¢ QJ\/QJ+1 + &% q]Qj+1 w%‘\/q]‘ﬂ + 64i0>7 (2)

since, by our assumptions, q; = ¢;4a.
Our aim is to show that for every even j the following inequality holds:

omin 1g;(p;e”)] > max |(pje’’) = g;(pse)l;
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so that the number of zeros of ¢ in the circle {z : |z| < p;} is equal to the number of zeros
of g; in the same circle. Subsequently in the proof, we also find the number of zeros of g; in
this circle. First, we find ming<g<a, |g;(p;e?)|. We obtain

, i=2
91(pse") = (~1) e g} - q] 3]t 0, (200520 — 200800, /T + gy ) =
i 3 =
= (17505 - g vgy 4 E - 9i(0).

We consider 9;(6) as following: (6 ) = %( ) == 4t — 2¢;\ /Gt + (¢j¢j+1 — 2), where
t := cosf, and where we have used that cos 20 = 2¢* — 1.

The vertex of the parabola is t; = q;,/q; 1 /4. Under our assumptions, ¢o = q4 = ¢s =
..=a>3,and g3 = ¢ = ¢r = ... = b > a, so that ¢; > 1. Hence, miny[_y {/ij(t) =
(1) =2 — 2¢j\/Ti1 + 4%+ = 4j\/G+1(y/Gr1 — 2) + 2. We want to show that ¢;(1) > 0,
whence minye(_q ] Wj( )| = %( )- I g1 > 4, then ;. /G (\ /@1 —2) +2 > 0. If g1 < 4,
taking into account the fact that j is an even integer, we have ¢; = a,qj41 = b,a < b < 4,
and then

UG (VG — 2) +2=aVb(Vb —2) +2 > ava(va —2) + 2 = a* — 2av/a + 2.

Next, denote by y = y/a > 0, and g(y) = y* — 23> + 2. It is easy to calculate that
ming,>o g(y) = g(%) = % > 0. Consequently, we get 2 — 2¢;,/qj11 + ¢;q;+1 > 0. Thus,
{/;j (t) >0 for all t € [—1, 1], and we have obtained the estimate from below:

. . . 2

Second, we estimate the modulus of El from above. We have
k:

k k
bes' q]qj+1
|21 (ps€’ |<§
=T T

We rewrite the sum from right and estimate the finite sum from above by the sum of the
infinite geometric progression

> 0| < 2 4 j-3 j—3 j—3 3° 2 4 j—4_j—4_j—4 5
S1(pi€) < (@G5 - O30S0 AT G+ B O T 3T T a4+
i=5
g3 qﬁ_gq] R U A BN ) =
i3 1 1
. 2 7—3 j—3 j—3
— o} AT g (14 + +)
3 =302 51y ( 4i-295-195\/G+1 %—3%2_2%2'_1%2'(\/%)2
4 j—3 j-3 j-3 5 1
< i - - Cﬁ 3(]5 2Q§ 1qj Qi1 1 1

q5—295-195+/95+1
Finally, we obtain

0 —4 j-3 j-3 j-3 57 1
Z1(pje”)] < qads - .. 95 3Q§ 2615 1‘15 4t 1— 1 :
) q5—295-195/95+1
Next, the estimation of [Xg(p;e)| from above can be made analogously:

ko

j—3

< dhdk i eded gh
if + +
Sa(pie) < Y G = Lk RV
k=13 9y q3 ... Gk qj+2%+3
X (1 + ! + ! + )
VGnGiv2di+3Giva  (VTG11)2C ol 130 145+5 '
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The latter can be estimated from above by the sum of the geometric progression, so, we

obtain iy
i
R G 1

2
qj1245+3

|Sa(pje”)| < - :
VG+195+295+395+4
Therefore, the desired inequality ming<g<or |g;(pje)| > maxo<g<ar |p(p;e?) — g;(p;e?)|

follows from

g g g I22
A At e/ A B (2 — 24j1/qj11 +qjqj+1> >
2 i—4 j-3 j-3 j-3 52 1
> 03 - Q0219 Qi1 T i +
45—2095-1495+/95+1
2 j-1 150
4295 - G; Qj+1. 1

1
1 —
V45+195+295+3495+4

2
45 295+3

Or, equivalently,
1

4j-195v/Qj+1 (2 — 2¢j\/qj+1 + qjqj+1> S P S

qj—295-1495/Ti+1

4-14; 1 1 1

. 1 — 1 = 1 1 + . 1
Vi +195+245+34)+4 4j-295-195/4j+1 V+195+295+395+4

by our assumptions on the sequence (g)%2,. Since j is an even number, we have qj—2 =@q; =

¢j+2 = Qj4a = @ and gj_1 = ¢j+1 = ¢j+3 = b, so the last inequality has the form

2
45 1295+3

1 \-1
bvba(2 — 2vba + ab) > 2(1 — . 4
( )>2(1- ) 4)
Since a > 3,b > 3, the desired inequality (4) follows from 9v/3(2 — 2v/ba + ab) >
=l
2(1 — ﬁg) or, equivalently, ab — 2vba + 2 — W% > 0. After refactoring, we have
a(vVb—1)? —a+2— # > 0. Next, we divide both sides of the inequality by a and get

(\/5_ 1)2 > 1+ 8—54v/3

a(27V3-1)"
Since 8 — 54+/3 < 0, the inequality above follows from (yv/a — 1) > 1 + j;—j?g.
Numerical calculations show that 1+ 4&32_75—\‘/%‘)/3’1) < 0.53279. Thus, the inequality is fulfilled

for \/a > 1.72993, and, therefore, for a > 2.99266. Under our assumptions, a > 3, so the
inequality (4) is valid.
Consequently, we have proved that for all even j
omin 1g;(p;e”)] > max [(pje’’) = g;(pse)l;
so the number of zeros of ¢ in the circle {z : |z| < p,} is equal to the number of zeros of g,
in this circle.
In the next stage of the proof, it remains to find the number of zeros of g; in the circle
fo:lal < oy
Let us use the denotation w = zp; ", so that |w| < 1. This yields
j—2

o i i—3 j—92 j—9 ==
gi(pjw) = (=17 2w/ g5 - .- @3¢ 10 i ¥
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X (1 = giy/Gw + ¢ginw’ — gy/Gaw’ + w').

Therefore, it follows from (3) that g; does not have zeros on the circumference {z :
|z| = p;}, whence g;(pjw) does not have zeros on the circumference {w : |w| = 1}. Since
Pj(w) = 1— qj\/Gw + ¢gj1w? — ¢j/Graw® + w* is a self-reciprocal polynomial in w,
we can conclude that P; has exactly two zeros in the circle {w : |w| < 1}. Hence, g;(x) has

exactly j zeros in the circle {z : |z| < p;} for all even j. O
Lemma 2. Let p(z) = Y 7o (—=1)*arz®, ar, > 0,k = 0,1,2,..., be an entire function such
that o = qu=¢qs =...=a >3,q3 =qs = q = ... = b > a. For an arbitrary integer j > 2

we define p; := q2q3 - . . .- qj\/q+1- Then for every even j = 2s,s € N, the following inequality
holds: p(p;) > 0.

Proof. Since p; € (g2q3 - ... qj,q2G3 - - - - - ¢;qj+1), We have
2 J
1<pj<p—3<---<j_1j_gj :
42 49 q3 .-G
A - L
/ /
=172 =1 1
GGG GG Gl @G GO G
Therefore, we get for even 7 > 2
Jj+3 (_1)k k
p.
o) > Y =: 115(pj),
k=j—3 dy 43 ' gk

and it is sufficient to prove that for every even j > 2 we have p;(p;) > 0. After factoring out

p§_3 / q§_4q§_5 - ...-qj—3 the desired inequality is expressed in the following form
2
-1+ & 2.2 : 2 +
4293+ - .- 4j-34j—2 4243 " ... 45 _o0j-1
P - i N
BG-GBl B GG
5 6
pj o pj > 0
4Bq3 - Q?_2Q§‘_1q;q]2‘+1%+2 aqs - qg—Qq}r‘]—lq;‘lq?+1qu'+2‘1j+3 B
or, using that p; = q2qs - ... - ¢j\/Qjt1,

2 2
45-145/45+1 4;-19;
vi(pj) == =14 @14/ Gt — 2451454541 + G214 G/ T + Ve 2 >0,
qj+2 451 295+3

By our assumptions on the sequence (gx)%2,, and, since j is an even number, we have
¢; = gj+2 = a and ¢j_1 = gj+1 = gj+3 = b, so the last inequality has the form
vi(p;) = —1 + abVb — 2a%0* + a*0*Vb + abVb — 1 = —2 + 2abvV'b — 2a°b* + a*b*Vb > 0.
So we need the inequality v;(p;) = a®0*(v/b — 2) + 2(abvb — 1) > 0.
Firstly, we consider the case when b > 4. We have a?b*(v/b—2) > 0, and (abv/b—1) > 0.

Consequently, in the case b > 4, the desired inequality vy (px) > 0 is proved.
Further, we consider the case 3 < a < b < 4. Under our assumptions we have 2 < %ab.

2
Therefore, v;(p;) > a?b*Vh — 2a°0* + 2abVb — §ab. So, we want to check that
¥(a,b) = abv/b — 2ab+ 2v/b — % > 0. Since 3 < a < b <4, we get
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w(a,b):ab(\/l_)—2)+2\/l_9—g2b2(\/_—2)+2\/5—§.

Set v/b = t,t > 0, then we obtain the following inequality: t> — 2t* + 2t — 2>0.
This inequality holds for t > 0.11126 (we used numerical methods to find that the greatest
real root of the polynomial on the left-hand side is less than 0.11126). Thus, it follows that

it holds for b > 0.01238. O
To prove Theorem 1, we need one more lemma.

Lemma 3. Let p(z) = Y 7 (—=1)*arz®, ar, > 0,k = 0,1,2,..., be an entire function such

that o = @ = ¢ = ... = a > 3,93 = ¢s = q7 = ... = b > a. Suppose that there

exists z9 € [0, ] = [0,a] such that p(20) < 0. For an arbitrary integer j > 2 we define

Tj = q2qs - ... qj2. Then the inequality p(r;) < 0 holds for every odd j =2m+1,m € N.

Proof. Let us fix an arbitrary j = 2m + 1,m € N. For = € [0, 1] we have
2 B o
1>2z>—> S5 > 35~
42 4393 434394
whence p(z) >0 forall z € [0,1].

Thus, we have zy € (1,a], whence gags3 - ... q; <7 < qoq3 - ... - ¢iqj+1.
For all z € (gags - - .. - ¢j, 2G5 - - - - - ¢jqj+1], we have
x? 2’
<< =< <=5 ,
42 4 43 ... 4j
i it £it?
- - — > — - > -
) = = 1
B GG BB GG BB GGG
Thus, for every = € (gaqs - .. ¢j,42G3 - - - - - ¢jqj+1) We have
(x)=1 + v v + o
ple)=1-24+——... - == — —
0 G g5 G2 @G5 Gl
-1 -2 3 2 j i—1 4 3 92 = _j-2 j-3 2
4 43 4509509 243 o 40919595+ o 43 |
zd an ri—1
T 5 5 T 1 s 3 T a3 2 x
@ 43 - Q5045195 993 - Q529 19595+1 @ 43 .- 45001

2 3

X x X
X (1 — + — + .. >
@4 GG BB GGl BB GG 1+

Pasting © = r; = q2q3 - . .. - ¢;20, we obtain the inequality
J—1 2 3
r; Z Z
@(Tj>§ i—2 ;-3 ’ B '<1_ZO+ 0 _ 5 0 +>:
I W/ A/ 4j+1  954+195+2
j—1 9 3 j—1
T Z z T
j 0 0 j
= — |1 —==x +————|—...): —— ~(z9) <0.
—2 j-3 < 0 —2 j-3 0) =
A A a a T SRR
O

Now, we are in a position to prove Theorem 1. Suppose that ¢(z) = Y ;7 (—1)*arz",
ar>0,k=0,1,2,....,. o =qu=q¢=...=a>3,q3=q =¢q7; = ... = b > a, and there
exists zg € (1, 2] = (1, a] such that ¢(z) < 0.

Let us fix an arbitrary even j = 2s, s € N. By Lemma 1, the function ¢ has exactly j zeros
in the circle {z : [z] < p;}, pj = q2q3°- . .- ¢j1/qj+1- Our aim is to show that all this zeros are
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real. We observe that zy € [1,q2), p2 = @2\/@3 > 20, T3 = QG320 > P2, P4 = G2G3G4+/T5 > T3,
s = (243414520 > Pa; - -5 Tjm1 = G2q3 - - - .~ Qj—120 > Pj—2, Pj ‘= Q2G5 - - - j/Tj+1 > Tj—1 (see
Lemma 2 and Lemma 3 for the definitions of p; and r;). Finally, we get
O<ZO<p2<7"3<p4<’l“5<...<’l"j_1<pj,
and, by Lemma 2 and Lemma 3 we have
©(0) >0, ¢(20) <0, @(p2) 20, p(rs) <0, p(pa) =0,
o(rs) <0, ..., @(pj—2) 20, ¢(rj—1) <0.
Thus, we find at least j — 1 real zeros of ¢ in the circle {z : |z| < p;}, and, since ¢ has

exactly j zeros in this circle, all the zeros in the circle are real. By the fact that p; — oo for
j — o0, we conclude that all the zeros of ¢ are real. O

3. Proof of Theorem 2.

Proof. During the proof we will consider the function ¢, (%) = fos(—2) instead of f, 4.

If . € L-P, i.e. belongs to the Laguerre-Pdlya class, then there exists z, € [0, Z—;] =
0, a], such that ¢, 4(20) < 0.

As we mentioned in the proof of Lemma 3, for x € [0, 1] we have

2 23 7
1Z$>—>2—>3—2>"',
42 G293 434344

whence @, p(z) >0 forall z € [0,1].

Thus, we have zy € (1,a]. For any = € (1, a] we have

z? x3 z! x° 8
a =1- — ——7 t =5 -
Pas(e) v a i < a®b * a3b2a) * ( a*b3a?b i a5b4a3b2a) i
4

We need the inequality: 2 (—;Tg}) + afm) = % - % > 0, which is equivalent to z < %,

that is correct for x € (1, a]. Therefore, <—;Tgb + %) is increasing in b, which follows that

x3 xt 3zt

T R
a?b + a3b?a — a3 + ab’
since, under our assumptions, a < b.
Analogously, for all £ > 2

9 L2k—1 L2k
ob \ a2k—2p2k-3. . q2p + 2122 p2q )

o I'Qk_l iIZ'Qk (l{ _ 1)2 . :EZk—l (k _ 1)/€ . ka -
= ob \ T aDkpk—1)? + APk | T gDk . pk—1241  gk? . plh-Dktl — 0,
or, equivalently, z < £-1a*b*~!, which is correct for z € (1,a] and k > 2. Therefore,
L2k—1 L2k L2k-1 22k
=Dk p(k—1)2 + ak2pk—Dk = @k-1)(@k-2) + ey
a 2 a2
Thus, for any = € (1, al,
2 3 A 2 g3 gl
. —1_ S A R A S R L b =g (- ,
©ap(T) Tk — =t > Th— -+ 9ya(—Vax)

where g, is the partial theta-function.

Since @qp(20) < 0 for 2y € (1, a}, we have g z(—+/az) < 0. Denote by yo := —+/az, then
Yo € (va, (v/a)?]. So, for the partial theta-function g 5 there exists a point yo € (v/a, (v/a)?]
such that g z(yo) < 0. By Theorem E, g 5 € L-P, whence (v/a)? > ¢u.
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Thus, we have proved statement 1 of Theorem 2.

Statement 2 follows from the reasoning above. Suppose that the numbers a, b, ¢, < a < b,
are such that ¢, € £L~P. By Theorem 1, there exists a point 2z € (1, a] such that ¢,;(20) <
0. As we have proved below, for every fixed a and = € (1, a], the expression for ¢, is non-
decreasing in b. Thus, if a < ¢ < b then ¢, (20) < @ap(20) < 0. By Theorem 1, ¢, . € L-P,
and we have proved the statement 2 of Theorem 2.

Statement 3 can be proved analogously. For every x € (1, a|, we have

2 P 7 5 26 2
. —1— T _ _ ...
Pas(2) T ( a aQb) * (&3172@ a4b3&2b) * (a5b4a362& a6b5a4b3a2b) +

We need the inequality % (ﬁ — %) = —i—z + iig,z < 0, which is equivalent to = < %b, that

a

. 2 3 . .
is correct for x € (1, a]. Therefore, (% - a%) is decreasing in a.

Analogously, for all £ > 2

a l’% .1'2k+1 8 l’% $2k+1
da (a2k1b2k2 T b2a akp21. . b3a2b) ~ a (akak(kl) - ak(k+1)bk2> -

k2. 2%k k(k+1) . 2!
= T e Rt (k2 ) — =0,
ak?+1 . ph(k—1) ak*+k+1 . pk
or, equivalently, z < ﬁakbk , which is correct for = € (1,a] and k > 2. Therefore, for every

fixed b,b0 > a, and x € (1,a] the expression for ¢, is non-increasing in b. Suppose that the
numbers a,b, ¢goc < a < b, are such that ¢,;, € L-P. By Theorem 1, there exists a point
2o € (1,a] such that y,4(20) < 0. Thus, if @ < d < b then @q5(20) < @ap(z0) < 0 and
20 € (1,a] C (1,d]. By Theorem 1, ¢, € L-P, and we have proved the statement 3 of
Theorem 2. O
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