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We introduce a concept of asymptotic vector of an entire curve with linearly independent
components and without common zeros and investigate a relationship between the asymptotic
vectors and the Picard exceptional vectors.

A non-zero vector a⃗ = (a1, a2, . . . , ap) ∈ Cp is called an asymptotic vector for the entire
curve G⃗(z) = (g1(z), g2(z), . . . , gp(z)) if there exists a continuous curve L : R+ → C given by
an equation z = z (t), 0 ≤ t < ∞, |z (t)| < ∞, z (t) → ∞ as t → ∞ such that

lim
z→∞
z∈L

G⃗(z)⃗a∥∥G⃗(z)
∥∥ = lim

t→∞

G⃗(z(t))⃗a∥∥G⃗(z(t))
∥∥ = 0,

where
∥∥G⃗(z)

∥∥ =
(
|g1(z)|2 + . . .+ |gp(z)|2

)1/2, G⃗(z)⃗a = g1(z) · ā1 + g2(z) · ā2 + . . .+ gp(z) · āp.
A non-zero vector a⃗ = (a1, a2, . . . , ap) ∈ Cp is called a Picard exceptional vector of an entire
curve G⃗(z) if the function G⃗(z)⃗a has a finite number of zeros in {|z| < ∞}.

We prove that any Picard exceptional vector of transcendental entire curve with linearly
independent components and without common zeros is an asymptotic vector. Here we demon-
strate that the exceptional vectors in the sense of Borel or Nevanlina and, moreover, in the
sense of Valiron do not have to be asymptotic. For this goal we use an example of meromorphic
function of finite positive order, for which ∞ is no asymptotic value, but it is the Nevanlinna
exceptional value. This function is constructed in known Goldberg and Ostrovskii’s monograph
“Value Distribution of Meromorphic Functions”. Other our result describes sufficient conditions
providing that some vectors are asymptotic for transcendental entire curve of finite order with
linearly independent components and without common zeros. In this result, we require that
the order of the Nevanlinna counting function for this curve and for each such a vector is less
than order of the curve.

At the end of paper we formulate three unsolved problems concerning asymptotic vectors
of entire curve.

Analysis of asymptotic properties of meromorphic functions and relationship with defi-
ciency values play an important role in value distribution theory of meromorphic functions.
This topic was first considered in the investigations of F. Iversen [1] and L. Ahlfors [2], etc.
Moreover, the fundamental monograph of A. A. Goldbberg and I.V. Ostrovskii [3] contains a
whole chapter entitled by ”Asymptotic properties of meromorphic functions and deficiencies”.
They wrote a full review of all investigations on this topic conducted at that time. As for
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the entire curves, the results are more modest (see [4]). In the present paper we will try to
close this gap.

We will use main results of theory of entire curves and notation from [4] and [5]. Let
us consider transcendental entire curves with linearly independent components and without
common zeros.

Let f : C → C be a meromorphic function. Remind [3, p. 171] that a finite or infinite
number a is called an asymptotic value of the meromorphic function f(z), if there exists a
continuous curve L : R+ → C given by an equation z = z (t), 0 ≤ t < ∞, |z (t)| < ∞,
z (t) → ∞ as t→ ∞ such that

lim
z→∞
z∈L

f(z) = lim
t→∞

f (z(t)) = a.

For a⃗ = (a1, a2, . . . , ap) ∈ Cp and b⃗ = (b1, b2, . . . , bp) ∈ Cp the notation a⃗⃗b means the dot
product of these vectors, that is a⃗⃗b =

∑p
j=1 ajbj, where bj is complex conjugate to bj. Also,

we define ∥a⃗∥ =
√

|a1|2 + . . .+ |ap|2.
We write the meromoprhic function f(z) as a quotient f(z) = g1(z)

g2(z)
, where g1 and g1 are

entire functions without common zeros. Let us consider an entire curve G⃗(z) = (g1(z), g2(z))

and a vector b⃗a = (1,−ā) for finite a and b⃗a = (0; 1) for a = ∞. It is easy to check that

f(z) → a ⇔ G⃗(z)⃗ba∥∥G⃗(z)∥∥ → 0. (1)

Let G⃗(z) = (g1(z), . . . , gp(z)) be an entire transcendental entire curve [4, p. 7] i.e. every
component gj(z) (j ∈ {1, . . . , p}) is an entire function and at least one gm(z)/gk(z) is a
transcendental meromorphic function (k ̸= m).

Taking into account the property (1) we propose the following generalization of concept
of asymptotic value for entire curves.

Definition 1. A non-zero vector a⃗ ∈ Cp is called an asymptotic vector for the entire curve
G⃗ : C → Cp if there exists a continuous curve L : R+ → C given by an equation z = z (t),
0 ≤ t <∞, |z (t)| <∞, z (t) → ∞ as t→ ∞ such that

lim
z→∞
z∈L

G⃗(z)⃗a∥∥G⃗(z)∥∥ = lim
t→∞

G⃗ (z (t)) a⃗∥∥G⃗ (z (t))
∥∥ = 0. (2)

The pair {a⃗, L} is also called an asymptotic spot (see [3, p. 171]). We suppose that
asymptotic spots {a⃗1, L1} and {a⃗2, L2} are equal if

1. a⃗1 = a⃗2;

2. there exists a sequence of continuous curves γk such that one end of γk belongs to L1,
the other end belongs to L2, and

lim
k→∞

min
z∈γk

|z| = ∞, lim
z→∞

z∈∪kγk

G⃗(z)⃗a∥∥G⃗(z)∥∥ = 0.

In [6], there was introduced a concept of Borel exceptional vector for entire curve. A
vector a⃗ ∈ Cp \ {⃗0} is called a Borel exceptional vector of entire curve G⃗ : C → Cp, if the
growth category of N(r, a⃗, G⃗) is lower than the growth category of T (r, G⃗).
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A non-zero vector a⃗ ∈ Cp is called a Picard exceptional vector of an entire curve G⃗ : C →
Cp if the function G⃗(z)⃗a has a finite number of zeros in {|z| <∞}, i.e. N

(
r, a⃗, G⃗

)
= O (ln r).

In this paper, we will find an answer to the following question: What is a connection
between the asymptotic and the exceptional vectors of entire curves in any sense?

Let us remind other necesary notation and concepts from [4], [3] and [5]. For every p-
dimensional vector a⃗ = (a1, a2, . . . , ap) ̸= 0⃗ the dot product G⃗(z)⃗a =

∑p
k=1 gk(z)ak is an

entire function. Denote by n(t, a⃗, G⃗) a number of zeros of the dot product G⃗(z)⃗a in the disc
{z : |z| ≤ t}, where each zero is counted according to its multiplicity. Every zero of the
function G⃗(z)⃗a is called a-point of entire curve G⃗(z). Let us denote

N(r, a⃗, G⃗) =

∫ r

0

n(t, a⃗, G⃗)− n(0, a⃗, G⃗)

t
dt+ n(0, a⃗, G⃗) ln r,

where n(0, a⃗, G⃗) stands for the multiplicity of zero of the dot product G⃗(z)⃗a at the point
z = 0. The growth characteristic T (r, G⃗) is defined as following

T (r, G⃗) =
1

2π

∫ 2π

0

ln ∥G⃗(reiφ)∥dφ.

We will use the definition of the growth category from [3, p.44]. Let α(r) be a function
defined for r > 0, which is non-negative and non-decreasing for sufficiently large r (if α(r)
satisfies this condition, we write α(r) ∈ Λ).

The number ρ = ρ[α] = limr→+∞
ln+ α(r)

ln r
is called the order of α(r). The order of the

entire curve G⃗ : C → Cp is defined as the order of the function T (r, G⃗). The function α(r)

is of the type σ if σ = σ[α] = limr→+∞
α(r)
rρ

. If σ = 0, we say that α(r) has minimal type; if
0 < σ < ∞, we say that α(r) has normal (or mean) type; if σ = ∞, we say that α(r) has
maximal type.

Let α(r) be a function of finite order, i.e. ρ < +∞. We say that α(r) belongs to the
convergence class or to the divergence class depending on whether the integral

∫∞
1

α(r)
rρ+1dr

converges or diverges.
Also, we use a comparison of growth categories for different functions (see a full definition

in [3, 6]). For a⃗ ∈ Cp and an entire curve G⃗ : C → Cp we denote

δ(⃗a, G⃗) = 1− lim
r→+∞

N(r, a⃗, G⃗)

T (r, G⃗)
and ∆(⃗a, G⃗) = 1− lim

r→+∞

N(r, a⃗, G⃗)

T (r, G⃗)
.

If ∆(⃗a) > 0, then a⃗ is called a Valiron exceptional vector [12,13], if δ(⃗a) > 0, then a⃗ is called a
Nevanlinna exceptional vector, or deficient vector ( [4, p. 9], see also [5,10]). There is a known
concept of averaged deficiency [8]. In addition, there is recent paper [7] on Picard values of
p-adic meromorphic functions, with investigations of Picard-Hayman behavior of derivatives
of meromorphic functions on an algebraically closed field K, complete with respect to a
non-trivial ultrametric absolute value. More modern bibliography on this topic is listed in
review paper of S. Mori [9].

There are many results [3, Ch. 5] on this topic for meromorphic functions. It is known that
there is no connection between asymptotic and exceptional values of meromorphic functions.
In particular, an asymptotic value does not have to be exceptional in any sense. This fact is
easy generalized for a case of entire curves. It is sufficient to consider an entire curve

G⃗(z) =
(
1, z, . . . , zp−2, sin z

z

)
.

The curve has linearly independent components without common zeros and has the first
order. The vector a⃗ = (0, 0, . . . 0, 1) is the asymptotic vector for this curve. It corresponds to
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two different asymptotic spots with asymptotic curves L1 : z (t) = t and L2 : z (t) = −t, but
the vector is not Valiron exceptional and hence it is not an exceptional vector in any other
sense.

There is a known theorem for meromorphic functions due to F. Iversen which is a result
in the opposite direction [3, p. 171]. F. Iversen proved that any Picard exceptional value of
meromorphic funtion is an asymptotic value. The following theorem is our modification of
Iversen’s Theorem in the opposite direction for a case of entire curves.

Theorem 1. Any Picard exceptional vector of transcendental entire curve with linearly
independent components and without common zeros is an asymptotic vector.

Proof. Let a⃗ ∈ Cp\
{
0⃗
}

be a Picard exceptional vector for an entire curve

G⃗(z) = (g1(z), g2(z), . . . , gp(z)) .

Then the function φ(z) = G⃗(z)⃗a has a finite number of zeros in {|z| <∞}. Among the
functions φ(z)

g1(z)
, φ(z)
g2(z)

, . . . , φ(z)
gp(z)

there is at least one transcendental function (for example, it is
φ(z)
gk(z)

= h(z)), otherwise all functions g2(z)
g1(z)

, . . . , gp(z)
g1(z)

are rational and hence the entire curve G⃗
is not transcendental (see considerations in [4]). Obviously, every zero of the function h(z) is
a zero of the function φ(z). Hence, the zero is a Picard exceptional value for h(z). Therefore,
there exists a continuous curve L in C given by equation z = z (t), 0 ≤ t <∞, z (t) → ∞ as
t→ ∞ such that

lim
t→∞

h (z (t)) = 0. (3)

Since
∥∥G⃗(z)∥∥ =

√
|g1(z)|2 + |g2(z)|2 + . . .+ |gp(z)|2 ≥ |gk(z)| , one has∣∣G⃗(z)⃗a∣∣∥∥G⃗(z)∥∥ =

|φ(z)|∥∥G⃗(z)∥∥ ≤ |φ(z)|
|gk(z)|

= |h(z)| .

Then from (3) we obtain lim
t→∞

G⃗(z(t))a⃗

∥G⃗(z(t))∥ = 0. It means that the vector a⃗ is asymptotic.

The exceptional vectors in the sense of Borel or Nevanlina and, moreover, in the sense of
Valiron do not have to be asymptotic. Below we demonstrate this fact.

In [3, p. 181-183], there was constructed a meromorphic function f(z) of finite positive
order, for which ∞ is no asymptotic value, but it is the Nevanlinna exceptional value. Let
ψ(z) be an entire function whose zeros are poles (counting multiplicities) of the function f(z).
Obviously, the functions (ψ(z))p−1 , f(z) (ψ(z))p−1 , (f(z))2 (ψ(z))p−1 , . . . , (f(z)ψ(z))p−1 are
entire and linearly independent functions without common zeros.

Let us consider an entire curve

G⃗(z) =
(
(ψ(z))p−1 , f(z) (ψ(z))p−1 , (f(z))2 (ψ(z))p−1 , . . . , (f(z)ψ(z))p−1) . (4)

For this curve we deduce

T
(
r, G⃗

)
=

1

2π

∫ 2π

0

ln
∥∥G⃗(reiφ)∥∥dφ =

=
1

2π

∫ 2π

0

ln
(∣∣ψ(reiφ)∣∣2p−2

(
1 +

∣∣f(reiφ)∣∣2 + . . .+
∣∣f(reiφ)∣∣2p−2

)) 1
2
dφ =

=
p− 1

2π

∫ 2π

0

ln
∣∣ψ(reiφ)∣∣ dφ+

1

2π

∫ 2π

0

ln
(
1 +

∣∣f(reiφ)∣∣2 + . . .+
∣∣f(reiφ)∣∣2p−2

) 1
2
dφ =
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= (p− 1)N (r, 0, ψ) +
p− 1

2π

∫ 2π

0

ln+
∣∣f(reiφ)∣∣ dφ+O(1) =

= (p− 1) (N (r, f) +m (r, f)) +O(1) = (p− 1)T (r, f) +O(1).

Above we applied the Jensen formula [3, p. 13, Eq. (4.1)] to the function ψ:

N(r, 1/g)−N(r, g) =
1

2π

∫ 2π

0

ln |g(reiθ)|dθ − ln |cλ|,

where f(z) = cλz
λ + cλz

λ+1 + . . . be a meromorphic function (cλ ̸= 0).
For the vector a⃗ = (1, 0, . . . , 0) one has G⃗(z)⃗a = (ψ(z))p−1 . Hence,

N
(
r, a⃗, G⃗

)
= (p− 1)N (r, 0, ψ) = (p− 1)N (r, f) .

Then

δ
(
a⃗, G⃗

)
= 1− lim

r→∞

N
(
r, a⃗, G⃗

)
T
(
r, G⃗

) =

= 1− lim
r→∞

(p− 1)N (r, f)

(p− 1)T (r, f) +O(1)
= 1− lim

r→∞

N (r, f)

T (r, f)
= δ (∞, f) > 0.

It yields that the vector a⃗ = (1, 0, . . . , 0) is the Nevanlinna exceptional vector for the entire
curve of form (4).

Let us show that the vector a⃗ = (1, 0, . . . , 0) is not asymptotic for the entire curve. On
the contrary, we assume that a⃗ = (1, 0, . . . , 0) is asymptotic for the curve G⃗ from (4). Then
there exists a continuous curve L: z = z (t), 0 ≤ t < ∞, z (t) → ∞ as t → ∞ such that (2)
is valid. Since∣∣∣G⃗(z)⃗a∣∣∣∥∥G⃗(z)∥∥ =

|ψ(z)|p−1(
|ψ(z)|2p−2 (1 + |f(z)|2+. . .+ |f(z)|2p−2)) 1

2

=
1√

1 + |f(z)|2 + . . .+ |f(z)|2p−2
,

the equality (2) implies lim
t→∞

f (z (t)) = ∞. Thus, ∞ is also asymptotic value for the function
f(z), but it is a contradiction.

If for any ρ > 1 as the function f(z) in (4) we choose a function of order ρ, for which
δ (∞, f) = 1 and the order N (r, f) is less than ρ then ∞ is the Borel exceptional value. We
obtain an entire curve G⃗(z) of order ρ, for which and for the vector a⃗ = (1, 0, . . . , 0) one
has δ

(
a⃗, G⃗

)
= 1 and the order N

(
r, a⃗, G⃗

)
is less than ρ. However, a⃗ = (1, 0, . . . , 0) is not

asymptotic vector. The following theorem is valid.

Theorem 2. Let G⃗(z) = (g1(z), g2(z), . . . , gp(z)) be a transcendental entire curve of order
ρ <∞ with linearly independent components and without common zeros, the vectors a⃗1, a⃗2,
. . . , a⃗p are linearly independent vectors, the orders of N(r, a⃗1, G⃗), N(r, a⃗2, G⃗), . . . , N(r, a⃗p, G⃗)
are less than ρ. Then all vectors a⃗1, a⃗2, . . . , a⃗p are asymptotic vectors.

To prove the theorem we need the following result from [6]:

Lemma 1. ([6, Theorem 3]) Any transcendental entire curve G⃗ : C → Cp of non-integer
or zero order with linearly independent components and without common zeros has at most
(p− 1) linearly independent Borel exceptional vectors.

Lemma 2. ([3, p. 192,Theorem 2.1.]) Let f(z) be a meromorphic function of order ρ <∞,
and orders of N(r, a) and N(r, b), a ̸= b, be less than ρ. Then a and b are asymptotic values.
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Proof of Theorem 2. Without loss of generality we may assume that

a⃗1 = e⃗1 = (1, 0, . . . , 0), a⃗2 = e⃗2 = (0, 1, 0, . . . , 0), . . . , a⃗p = e⃗p = (0, . . . , 0, 1). (5)

Otherwise, as in [6] we can consider an entire curve G⃗p(z) with linearly independent compo-
nents gpj(z) = G⃗(z)⃗aj without common zeros. Obviously, G⃗p(z)e⃗j = G⃗(z)⃗aj, N(r, e⃗j, G⃗p) =

N(r, a⃗j, G⃗, T (r, G⃗p) = T (r, G⃗) +O(1).
The vectors a⃗1, a⃗2, . . . , a⃗p are the Borel exceptional vectors for G⃗(z). Then by Lemma 1

the order ρ is natural.
In view of proof of Theorem 3 from [6], for each k = {1, . . . , p} one of the functions

g1(z)
gk(z)

, g2(z)
gk(z)

, . . . , gp(z)

gk(z)
(for example, it is gm(z)

gk(z)
) necessarily has the order ρ. Clearly, the functi-

on gk(z)
gm(z)

has the same order. Since gj(z) = G⃗(z)⃗aj, one has

N
(
r, 0,

gk
gm

)
≤ N(r, a⃗k, G⃗), N

(
r,
gk
gm

)
≤ N(r, a⃗m, G⃗).

Thus, the orders of N
(
r, 0, gk

gm

)
and N

(
r, gk

gm

)
are less than ρ. Then by Lemma 2 the values

0 and ∞ are asymptotic values for the function gk(z)
gm(z)

. From the obvious inequality∣∣G⃗(z)⃗ak∣∣∥∥G⃗(z)∥∥ =
|gk(z)|(

|g1(z)|2 + |g2(z)|2 + . . .+ |gp(z)|2
) 1

2

≤
∣∣∣∣ gk(z)gm(z)

∣∣∣∣
we obtain that the vector a⃗k is asymptotic vector for the entire curve G⃗.

We do not know an answer to the following question

Problem 1. Is Theorem 2 valid for smaller number of vectors a⃗k as p ≥ 3? In other words,
is it true or false the next hypothesis
Conjecture 1. Let G⃗(z) = (g1(z), g2(z), . . . , gp(z)) be a transcendental entire curve of
order ρ < 1 with linearly independent components and without common zeros, p ≥ 3, the
vectors a⃗1, a⃗2, . . . , a⃗k are linearly independent vectors (k < p), the orders of N

(
r, a⃗1, G⃗

)
,

N
(
r, a⃗2, G⃗

)
, . . . , N

(
r, a⃗k, G⃗

)
are less than ρ. Then all a⃗1, a⃗2, . . . , a⃗k are asymptotic vectors.

Some interesting problems are arising if we consider relationship between asymptotic
vectors of entire curve and its growth. There is known Ahlfors’ result [2] on relationship
between asymptotic spots of entire function and its growth.

Theorem (A [2]). If an entire function f(z) has n ≥ 2 asymptotic spots {∞, Lj}, j ∈
{1, . . . , n}, then

lim
r→+∞

r−n/2T (r, f) > 0. (6)

This theorem is generalized for meromorphic functions in the following form.

Theorem (B [2]). If a is the Picard exceptional value for meromorphic function f(z) having
n ≥ 2 asymptotic spots {a, Lj}, j ∈ {1, . . . , n}, then inequality (6) is valid.

Thus, the following problems seem natural.

Problem 2. Let a⃗ be the Picard exceptional vector for an entire curve G⃗ which has n ≥ 2
asymptotic spots {a⃗, Lj}, j ∈ {1, . . . , n}. Is it true or false the following inequality

lim
r→+∞

r−n/2T (r, f) > 0. (7)
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Problem 3. Let G⃗ be an entire curve with n asymptotic spots {a⃗j, Lj}, j ∈ {1, . . . , n}. At
least one from the vectors a⃗1, a⃗2, . . . , a⃗n is the Picard exceptional vector for G⃗. Is it true or
false inequality (7)?
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