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In the present study we investigate all repdigits which are expressed as a difference of two
Fibonacci or Lucas numbers. We show that if F;, — F},, is a repdigit, where F,, denotes the n-th
Fibonacci number, then (n,m) € {(7,3),(9,1),(9,2),(11,1),(11,2),(11,9), (12,11), (15,10)}.
Further, if L, denotes the n-th Lucas number, then L, — L,, is a repdigit for (n,m) €
{(6,4),(7,4),(7,6),(8,2)}, where n > m. Namely, the only repdigits that can be expressed
as difference of two Fibonacci numbers are 11,33,55,88 and 555; their representations are
11 = F, —F3, 33 =Fy—F = Fy—Fy, 55 = F;1 — Fg = F1o — F;, 8 = F — F =
Fi1 — Fy, 555 = Fi5 — Fip (Theorem 2). Similar result for difference of two Lucas numbers:
The only repdigits that can be expressed as difference of two Lucas numbers are 11,22 and 44;
their representations are 11 = Lg — Ly = Ly — Lg, 22 = Ly — Ly, 4 = Lg — Lo (Theorem 3).

1. Introduction. The Fibonacci sequence {F,},>o and the Lucas sequence {L,},>¢ are
recursively defined by the binary recurrences F, o = Fj,;1 + F,,, Fo =0, Fy =1 and L,,5 =
Ly1+ Ly, Ly = 2,L; = 1, respectively. The Binet’s formulas for both the sequences are
given by F,, = a:;:gn and L, = a" + ", where a = # and g = %5 are the roots of the
characteristic equation x>

= 2 + 1. One can observe that for n > 1,

Q"< E, <avt o oavi< L, <20

A natural number N is known as a repdigit if all of its digits are equal. Mathematically, it is
in the form d(10* —1)/9, where d € {1,2,...,9}. For k = 1, it is a trivial repdigit. Recently,
searching of repdigits in linear recurrence sequences have been seen in several papers. For
example, Luca [9] proved that 55 and 11 are the largest repdigits in the Fibonacci and Lucas
sequences respectively. Marques and Toghé [10] showed that if F), - - - F}, | (x_1) is a repdigit,
with at least two digits, then (k,n) = (1,10). In [1], Adegbindin et. al determined all Lucas
numbers that are sums of two repdigits. Alahmadi et. al [2] found all the Fibonacci numbers
which are concatenation of two repdigits. In [7], Erduvan et. al found all Fibonacci and
Lucas numbers which can be written as a difference of two repdigits. Here, they studied the
Diophantine equations

Fy = d1<10n9_ 1) - d2<10n9_ 1)’ L = d1<10n9_ 1) _d2<10n9_ 1)’

where (k, m,n) are positive integers with n > 2 and showed that F}; = 89 = 111 — 22 and
Lig = 5778 = 6666 — 888 are the largest Fibonacci and Lucas numbers which can be written
as a difference of two repdigits.
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In this study we search repdigits which can be expressed as a difference of two Fibonacci
or Lucas numbers. For this purpose, we consider the following two equations

k _

k _
Ln—Lm—d(lO9 1>, (2)

withn>mand 1 <d <9.
Assume k£ > 2 to avoid trivial solutions.

2. Preliminaries. Baker’s theory of linear forms in logarithms of algebraic numbers plays
an important role while solving various Diophantine equations. We start by recalling some
basic notations and results from algebraic number theory.

Let n be an algebraic number with minimal primitive polynomial

F(X) =ao(X =) (X —9®) e Z[X],

where ag > 0, and 1?’s are conjugates of 7. Then

k
1 .
h(n) = E(log ap + E max{0, log ]77(3)\})
Jj=1

is called the logarithmic height of n. If n = a/b is a rational number with ged(a,b) = 1 and
b > 1, then h(n) = log(max{|al|, b}). Some properties of the logarithmic height, needed in our
proofs, are the following:

h(n+~) < h(n) + h(y) +log2, h(ny™) < h(n) + h(y), h(n*) = |klh(n).

With the above notations, Matveev (see [11] or [3, Theorem 9.4]) proved the following
result.

Theorem 1. Let I be an algebraic number field of degree dy,. Let ny,ns,...,m € L be
positive real numbers and by, by, ..., b be non zero integers. If I' = Hézl 77?" — 1 is not zero,
then
log |T'| > —1.4-30"3 15 . d2(1 + logdy)(1 + log D)A 1 Ay . .. Ay,
where D > max{|bi], |ba|,...,|bi|} and Ay, Ay, ..., A, are positive integers such that
A; > b (n;) = max{dph (n;),|logn;|,0.16} forj=1,...,1

The following result of Baker-Davenport due to Dujella and Pethd [6] is another tool in
our proofs. It will be used to reduce the upper bounds of the variables on (1) and (2).

Lemma 1 ([6]). Let M be a positive integer and p/q be a convergent of the continued
fraction of the irrational number T such that 7 > 6M. Let A, B, u be some real numbers
with A > 0 and B > 1. Let ¢ := ||uq|| — M||7q||, where ||.|| denotes the distance from the
nearest integer. If ¢ > 0, then there exists no solution to the inequality

0<|ur —v+p < AB™,

log(Ag/e)

in positive integers u,v,w with u < M and w >
log B

When p = 0, we get € < 0. In this case, we cannot apply Lemma 1. We use the following
result due to Legendre.
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Lemma 2 (Legendre, [4,5]). Let A be a real number and x,y integers such that
‘)\ - f] <L
yl 2y
Then x/y = py/q; is a convergent of \. Further, let M and N be nonnegative integers such
that gy > M. Then putting a(M) = max{a; : i = 0,1,2,..., N}, the inequality

x
A——’> ,
‘ yl = + 2)y?
holds for all pairs (x,y) of positive integers with 0 <y < M.

The following lemma will also be used in order to prove our subsequent results.

Lemma 3 (|8]). Let r > 1 and H > 0 be such that H > (4r*)" and H > L/(log L)". Then
L<2H(ogH)".

3. Repdigits as difference of two Fibonacci numbers. Our first result is the following.

Theorem 2. The only repdigits that can be expressed as difference of two Fibonacci numbers
are 11,33,55,88 and 555. Their representations are

11=F—F;, 33=Fy—F =Fy—F,, 55=1F—Fy=1F)—F,
88 :F11 _Fl == Fll —FQ, 555 - F15 —Flo.

Proof. Using Mathematica, we obtain all the solutions of (1) for n € [1,200] as listed above.
From now, assume that n > 200. The inequality 10*~! < F,, < ™! implies klog10 — 3 <
nlog .. Using Binet’s formula for the Fibonacci sequence, (1) can be written as

g Q™ — g™ 10F — 1
a\/g _aﬁ :d( 9 )

which further implies 7% _ diot % + 8 5 _d Takmg absolute values on both sides,

9 N
we obtain

(3)

m

a le _)\/_‘+3 \/_

V5o

Dividing both sides by f/—% gives

h-—a—"uﬁ(dgg>‘< [ (4)

an—m

Weset I'=1— a‘"10k<M> We need to show I' ## 0. On the contrary, suppose I' = 0,

then o?" = 5”’28%%. Since 54210%% 10 € Q, a® € Q, which is a contradiction to the fact that a®
is irrational for any n > 0. Therefore I' # 0. Now, take

d
771:&/,772:10,’/73 \/_ bl —n,bgzk,b3:1,123,

9

where n1, 12, 73 € Q(«) and by, be, b3 € Z. Observe that Q(n1,m2,13) = Q(«), so dy, = 2.
Since k < n, we take D = max{n,k,1} = n. The logarithmic heights of 7,7, and 73 are
calculated as

h(m) = g , h(1) = log 10 and h(ns) < h(dV/5) + h(9) < 5.2.
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Thus,

max{2h(ny), |logn|,0.16} = loga = A,
max{2h(ns), |logna],0.16} = 2log 10 = A,,
max{2h(n3), | logns|,0.16} < 10.5 = A;.

Now, applying Theorem 1, yields
log || > —1.4-30°%-3%5 . 22%(1 +log 2)(1 + log n)(log a)(21og 10)(10.5).
Comparing the above inequality with (4) gives
(n —m)loga < log7+2.3-10"(1 +logn) < 2.4-10"(1 + logn).
We rewrite (3) to obtain

a oo™ dl()k:ﬁ g d

ot ™ lek‘ 5
Vb v5 9 1T
Dividing both sides by f/—%(l — o™ ") implies
‘1 - a_”10k<d—\/5>‘ <L
9(1 — am—) an
Now, set
I'=1- a_”10k<d—\/g>.
9(1 — am—)

In a similar manner, one can check that IV # 0. As before, we have h(n;) = h(a) =
and h(n2) = h(10) = log 10. Let n3 = (d—‘/g> Then,

91—am—m)

hns) < (@V5) +h(9(1 = a™ ")) <

1 1
< 210g9+10g(\/3)+(n—m)% +1log2 <594 (n—m) oga

Hence, from (5) we obtain
h(ns) < 1.3-10"(1 + logn).
Thus, we take A3 = 2.6 - 10'3(1 + logn). By virtue of Theorem 1

log [T > —1.4-30°- 3% . 22(1 + log 2)(1 + logn)(log o) (210og 10)(2.6 - 10**(1 + logn)).

log v

2
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Comparing the above inequality with (6) gives
nloga < log7 + 5.6 - 10%(1 +logn)* < 5.7 - 10%°(1 + log n)>.

With the notations of Lemma 3, we take r =2, L =n and H = 5'170&%25 to get

5.7-10% 5.7-10%5\\ 2
w2 (BT (10 (BTN g ygm
og og

Now, we reduce the bound by using the Baker-Davenport reduction method due to Dujella
and Pethd. Let

d
A = —nloga + klog 10 + log (%)

The inequality (4) can be written as

7

an—m'

leh — 1] <

Observe that A # 0 as e® — 1 =T # 0. Assuming n — m > 6, the right-hand side in the
18 < L1 The inequality |e* — 1| < y for real values of z and

above inequality is at most

(1+/5)6
y implies z < 2y. Thus, we get |A| < =, which implies that
dv/'5 14
‘—nlogoz+klog10+log(i)‘< .
9 an—m
Dividing both sides by log a gives
log 10 log(d+/'5/9 30
p(RB10) (V) S0 @
log o log o Qn—m

To apply Lemma 1, let

log 1 log(d
8 0), v=mn, u:<M>, A=30, B=a, w=n—m.
log a log a

u:k,T:(

We can take M = 1.8 - 10%. We find g5 = 25723116487424714265759180025093, the
denominator of 61-th convergent of 7 exceeds 60 with 0 < ¢ = ||pge|| — M||7ge1] =
0.221688. Applying Lemma 1 to the inequality (7) for 1 < d <9, we get n —m < 160. Now,
for n —m < 160, put

dv/5

N = —nloga + klog 10 + log (—\/_>
9(1 — am—m)

The inequality (6) can be written as |e*’—1| < -&. Observe that A’ # 0 ase® —1 =T # 0.

Assuming n > 6, the right-hand side in the above inequality is at most (1f§g)e < % The
14

inequality |e* — 1| < y for real values of z and y implies z < 2y. Thus, we get |A'| < -7,
which implies that

CUET

_nloga+k10g10+log<ﬁ .
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Dividing both sides by log a gives

log 10 log(dv5/(9(1 — a™™ " 30
)k<og )_n+<0g( V5/(9(1 — )))>‘<_. ®)
log o log o an
Let
log 10 log(dv/5/(9(1 — a™™™
u:k:,T:<Og >,v:n,,u: o8 \/_/(< a ))),A:30,B:a,w:n.
log o log
Choose M = 1.8 -10%°. We find g0 = 20589775267077186120582738407535948, the
denominator of 70-th convergent of 7 exceeds 6M with 0 < e := ||ugrwl — M||7qn| =
0.000138226. Applying Lemma 1 to the inequality (8) for 1 < d < 9 and n —m < 160, we
get n < 189. This contradicts the assumption that n > 200. ]

4. Repdigits as difference of two Lucas numbers. Our second result is the following.

Theorem 3. The only repdigits that can be expressed as difference of two Lucas numbers
are 11,22 and 44. Their representations are

W=Ls—Ly=1Lr—Ls, 22=1L;— Ly, 4=Lg— Ly.

Proof. Using Mathematica, we obtain all the solutions of (2) for n € [1,200] as listed above.
From now, assume that n > 200. The inequality 10¥~! < L, < 2a™ implies klog10 — 2 <
nlog a. Using Binet’s formula for the Lucas sequence, (2) can be written as

107 — 1
R Lt} o
We write (9) to obtain
d10* d
n __ — A m_ gn o 2 10
a I A A (10)
Taking absolute values and dividing by o™ on both sides, we get
d 4
1 —"10’““(—)‘ < . 11
‘ “ 9 qn—m (11)

We set I' = 1 — a‘"10’“<§>- If ' = 0, then 0" = dQé(l)%. It is easily checked that o™

is irrational for every positive integer n. The irrationality of o™ immediately implies the
non-vanishing of T'.

Take n; = «, no = 10, n3 = g, by =—n, by =k, by =1, | =3, where 0y, m2, 13 € Q(«)
and by, by, by € Z. Observe that Q(n,7m2,m3) = Q(«), so d = 2. Since k < n, we take
D = max{n, k, 1} = n. The logarithmic heights of 7;,7, and n3 are calculated as

log a
2

h(m) = , h(n2) =log 10 and h(ns) < h(d) + h(9) < 4.4.

Thus, we take A; =loga, Ay = 2log 10 and A3z = 8.8. Applying Theorem 1, we have

log [T > —1.4-30°- 3% . 2%(1 + log 2)(1 + logn)(log o) (2 log 10)(8.8).
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Comparing the above inequality with (4) gives
(n—m)loga < log4 +1.9-10"(1 +logn) < 2-10"(1 + logn). (12)
We rewrite (9) to obtain

1k
an_am_do :ﬁm_ﬁn_g.

9

Taking absolute values and dividing by a™(1 — a™~™) on both sides, we get

d 3
k(" -
‘1 a 10 <9(1 —am”)>‘ S (13)

Put

I —1- a”lok(gu%‘lam_n))

It is easily checked that I # 0. As before, we have h(n;) = 10% and h(ny) = log 10. Let
N3 = (WM) Then,

! 1
h(ns) < h(d) +h<9(1 —Oémfn)> <2log9 + (n—m)% +log2 <514 (n—m) Og@.

Hence, from (12) we obtain h(n3) < 1.1-10'3(1+logn). Thus, we take Az = 2.2-1013(1 +
logn). By virtue of Theorem 1
log [T'| > —1.4-30°- 3% . 22(1 + log 2)(1 + logn)(log o) (21og 10)(2.2 - 10**(1 + log n)).
Comparing the above inequality with (13) gives
nloga < log3 + 4.8 - 10%(1 + logn)* < 4.9 - 10%°(1 + log n)>.

With the notations of Lemma 3, we take r = 2, L = n and H = 49 10 . Applying the

lemma, we have
4.9-10% 4.9-10%°\\2
n < 22<—) (10g (—)) < 1.5-10%,
log log a

Now, we reduce the bound by using the Baker-Davenport reduction method due to Dujella
and Pethd. Let A = —nloga + klog10 + log <4> The inequality (11) can be written as
et —1] < Observe that A # 0 as et —1 = F # 0. Assuming n —m > 5, the right-hand
side in the above inequality is at most ( 14&%7) < <. The inequality |e* — 1| < y for real values

anm

of z and y implies z < 2y. Thus, we get |A| < 2, which implies that
8

aqn—m '

d
‘ —nloga + klog 10 + log <§>‘ <
Dividing both sides by log a gives
log 1 1 1
‘k(ﬂ> —n+ ( Og(d/g))‘ <2 (14)
a

log o log n-m
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Let

log 10 log(d/9
u:k,T:<Og ),v:n,u:<M>,A:17,B:a,w:n—m.
log a log «

We can take M = 1.5-10%. We find gg, = 28291878740422696593104794201645 satisfies
q > 6M with € := 0.0247517. Applying Lemma 1 to the inequality (14) for 1 < d < 8, we
get n —m < 164.

For the case d = 9, we have that p(d) = 0. In this case, we apply Lemma 2. The inequality
(14) can be rewritten as

logl0 n 17 1

gkl = kanm = 2k

because k < 1.5-103° = M. It follows from Lemma 2 that 7 is a convergent of lloog?lce. So 7 is
of the form p;/q, for some t =0,1,2,...,62. Thus,

1
() + 2% =

log 10 n‘ 17

kan—m :

log v k
Since a(M) = max{a; : 1 =0,1,2,...,62} = 106, we get

. . 1039) .
n—m < log(17 - (1.5-10°°) - 108) < 160,
log

Thus n — m < 164 in both cases.
Now, for n —m < 164, put

d
AN = —nloga + klog 10 + log (W)

The inequality (13) can be written as [e* —1| < 2. Observe that A’ #0as eV =1 =T # 0.
Assuming n — m > 4, the right-hand side in the above inequality is at most —33 1

var S 2
The inequality |e* — 1| < y for real values of z and y implies z < 2y. Thus, we get |A/| < &

which implies that i
|~ nloga +klog 10+ log )| < 0
—nloga 0 og|——"-—"7-— —.
& & & 9(1 — am—m) an
Dividing both sides by log a gives
log 10 log(d/(9(1 — ™™™ 13
log o log « am

To apply Lemma 1, let

log 1 log(d/(9(1 — a™™™
08 0>,v:n,u: og(d/(9(1 —a ))),A:B,B:a,w:n.
log « log a

u =k, T:(

Choose M = 1.5 -10%°. We find g7y = 20589775267077186120582738407535948 satisfies
q > 6M with ¢ := 0.000607235. Applying Lemma 1 to the inequality (15) for 1 < d <9 and
n—m < 164 , we get n < 184. This contradicts the assumption that n > 200. ]
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