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In this paper we solve two problems of optimal recovery based on information given with

an error. The first one is the problem of optimal recovery of the class
W(;T = {(tlhhtghq, .. ) : ||h||1gq S ].},
where 1 < ¢ < oo and t; > t5 > ... > 0 are given, in the space {;. Information available about
a sequence T € WqT is provided either (i) by an element y € R™, n € N, whose distance to the
first n coordinates (x1,...,2,) of = in the space £, 0 < r < oo, does not exceed given £ > 0,
or (ii) by a sequence y € {, whose distance to z in the space ¢, does not exceed £. We show
that the optimal method of recovery in this problem is either operator @, with some m € Z
(m < nin case y € £1), where
* t(rzn-l-l tfrln-i-l n
¢m(y) = {yl (1_ tT)v)ZJTTL(l_ tq)aov"'}) Y eR ory Efoo’
1 m

or convex combination (1 —\)®; . + A®} .

The second one is the problem of optimal recovery of the scalar product operator acting
on the Cartesian product Wg:;ls of classes W];‘F and W(f, where 1 < p,q < o0, % + % =1 and

81 > 89 > ... > 0 are given. Information available about elements = € WE and y € qu is
provided by elements z,w € R™ such that the distance between vectors (z1y1, Z2Y2, - - -, Lnln)
and (z1w1,. .., z,wy) in the space £ does not exceed e. We show that the optimal method of
recovery is delivered either by operator ¥}, with some m € {0,1,...,n}, where
m
tnL+1S7n+1
B, = 3 s (1 )

or by convex combination (1 — X)Wy, + U7 .

As an application of our results we consider the problem of optimal recovery of classes in
Hilbert spaces by the Fourier coefficients of its elements known with an error measured in the
space £, with p > 2.

1. Introduction. Let X, Z be complex linear spaces, Y be a complex normed space, A: X —
Y be an operator, in general non-linear, with domain D(A), W C D(A) be some class of
elements. Denote by B(Z) the set of non-empty subsets of Z, and let I: span W — B(Z) be
a given mapping called information. When saying that information about element x € W is
available we mean that some element z € I(x) is known. An arbitrary mapping ®: Z — Y
is called a method of recovery of the operator A. Define the error of method of recovery ® of
the operator A on the set W given information I:

E(A,W,I,®) =sup sup [[Az — (2)]|y - (1)

zeW zel(x)

2010 Mathematics Subject Classification: 41A65, 46A45.

Keywords: optimal recovery of operators; method of recovery; recovery with non-exact information; sequence
spaces.

doi:10.30970/ms.56.2.193-207

(© V. F. Babenko, N. V. Parfinovych, D. S. Skorokhodov, 2021



194 V. F. BABENKO, N. V. PARFINOVYCH, D. S. SKOROKHODOV

The quantity
E(AW,I)= inf E(A W, I, P) (2)
®: ZY

is called the error of optimal recovery of the operator A on elements of class W given
information I. The method ®* delivering inf in (2) (if any exists) is called optimal.

The problem of recovery of linear operators in Hilbert spaces based on exact information
was studied in [14]. In the case when information mapping I has the form [z = i(z) + B,
where 7 is a linear operator and B is a ball of some radius defining information error, recovery
problem (2) was considered in [12] (see also [15]-[16]). Alternative approach to the study of
optimal recovery problems based on standard principles of convex optimization was proposed
in [10]. In [12] it was shown that among optimal methods of recovery there exists a linear
one, and in [10] explicit representations for optimal methods of recovery were found in cases
when the error of information is measured with respect to the uniform metric. For a thorough
overview of optimal recovery and related problems we refer the reader to books [17, 16] and
survey [1].

Remark that results of the present work supplement and generalize results of paper [10]
on optimal recovery of functions and its derivatives and paper |7].

2. Elementary lower estimate. Let us present a trivial yet effective lower estimate for
the error of optimal recovery (2). Denote by 6 the null element of the space Z and let I be
some information mapping.

Lemma 1. Let 0, € I(W). Then

EAWD > sup |Az— Ayly.

1
2 z,yeW:
0zelznly

Proof. Indeed, for every method of recovery &: 7 — Y,

1
E(A,W,1,®) > sup ||[Ax — D (02)|y > —( sup |[Ax — @ (02)]y +
zeEW: 2 zeW:
Oyclx (AL
1
+ sup Ay =@ (0, ) =5 sup [ Av — Ayly.
yeW: z,yeW :
0z€ly 0zc€lznly

Taking inf over methods ® we finish the proof. O]

From Lemma 1 we easily derive the following consequences.

Corollary 1. Let A be an odd operator, & € W be such that —z € W and 8, € I(Z)NI(—Z).
Then
E(AW,I) = || AZ] x.

Corollary 2. Let Y = C, R be a (complex) normed space, X = R x R*, W; C R and
Wy C R* be given classes. Also, let A be the scalar product of elements in R x R*, i.e.
A(z,y) = (y,x), z € R and y € R*. Assume that there exist &, € W; and To € Wy such that
either

-T2, €W, and 0z ¢ I(.’El,jfg) N [(—.i'l,.fﬁg)
or

—T9€ Wy and 0z € ](531,12‘2) N ](i‘l, —i’g) .
Then

E (A, W1 X WQ,I) > ’<Zi’2,i’1>| .
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Remark that similar and related lower estimates were established in many papers (see,
e.g., [10, 5]).

3. Optimal recovery of sequences. Let us present notations used in the rest of the paper.
Let 1 < p,q < o0, ¢, be the standard space of sequences z = {x;}72,, complex-valued in

general, with corresponding norm ||z||,, and £, n € N, be the spaces of finite sequences.

Denote by 6 the null element of £, and by 6" the null element of £}
For a given non-increasing sequence t = {¢;}32; of non-negative numbers, consider a
bounded operator T': ¢, — ¢, defined as follows

Th := {tkhk}liozp h € gq,

and the class
W) :={x=Th: hel, ||hl, <1}

In this section we will study the problem of optimal recovery of identity operator A =
idx on the class WqT , also called the problem of optimal recovery of class WqT , when the
information mapping I is given in one of the following forms:

1. Iz = IZx = (x1,...,2,) + Ble1] X Ble,), where n € N, ¢q,...,¢, > 0 and Blg;] =
[—&j:&5l;

2. Ix = Il v = (21,...,7,) + B [5,4’;}, where n € N, ¢ > 0 and B [5,62] is the ball of
radius ¢ in the space £ centered at 0";

3. Iz = I.,x = x + Ble,{,], where € > 0 and B [e, {,] is the ball of radius ¢ in the space
¢, centered at 0.

To simplify further notations, we set
EW,I) :=E(Gdx, W, 1), EW,I,®):=E(Gdx, W, 1,9),

and, for m € N and ¢ < oo, introduce the method of recovery ®; : £, — {,:

tl e
@fn(a):{m(l— m+1),...,am(1— m+1),o,...}, acl,

7 1,

that would be optimal in many situations. Also, we set ®f(a) :=0, a € (,,.

In what follows we define 22:1 ay = 0 for numeric a;’s. In addition, for simplicity we
assume that ¢, > 0 for every k& € N. Results in this paper remain true in the case when t;
can attain zero value with the substitution of 1/t; with +oo and ¢,/ty, s > k with 1.

3.1. Information mapping I2(x) = (z1,...,2,) + Ble1] X ... X Ble,].

Theorem 1. Let n € N, 1 < ¢ < oo and €q,...,e, > 0. Ifl—zzzli—é(iZO, we set m = n.
k

q q
Otherwise we choose m € Z.., m < n, to be such that 1 —3% ;" | i—!}: >0and1-Y 7 i—(’g < 0.

Then
1/q
)et)

q
tm+1
q
tk

EWT, M) =& (WX, 12,87, = (tznﬂ + i (1 -
k=1
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Proof. Using convexity inequality, relations |xy — agx| < e, k = 1,...,n, and monotony of
the sequence t, we obtain that, for x = Th € WqT and a € I?(x),

m q e

tq
* q __ m+1 _
o= w5l =3 [o o (1= 2 )+ Y -
k=1 k=m+1
m tq 1 q q 00
= (1 — ";; )(:ck —ay) + ”;j wr| + Y thl? <
k=1 k k k=m-+1
< (1= ol + Bl 2 D =
k=1 k k k=m-+1
=3 (1 B e — el + Yl Dl <
k=1 k k=1 k=m-+1
S t2n+1 q q
<3 (1- ),
k=1 k
To obtain the lower estimate, we choose
" g\ 1/q
ukzzg—k, k=1,...,m, and um+1::<1—zg—§> ,

and consider h* = (u1,...,Um+1,...) € l,. It is clear that Th* € WqT, as [[h|, < 1.
Furthermore, by the choice of number m we have that 6 € I (T'h*). Hence, by Corollary 1,

(€ (WL I2) 2 TR (I = Dt + th gy =
k=1
. q q - 52 q - q tgn-H
:Z€k+tm+l<1_zt_q>:tm+1+zgk<1_ tq )7
k=1 k=1 F k=1 k
which finishes the proof. m

3.2. Information mapping I7,(z) = (z1,...,2,) + B [5,62} .
We consider three cases separately: p =00, p < ¢ and p > q.

3.2.1. Case p = 0.
Setting ¢ = ... = ¢, = ¢, we obtain from Theorem 1 the following corollary.

n

1
Theorem 2. Let n € N, 1 < ¢ < oo and € > 0. Ifl—sqzt—qzothenwesetm:n.

k=1 k

m 1 m—+1 1
Otherwise we choose m € Z., m < n, to be such that 1 —&? Z o >0and1—¢& Z o < 0.

k=1 k k=1 'k

Then

m

EWI It) = (Wl 12, ;) = (. +2>0 (1- tg”—“))l/q.

tq
k=1 k
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3.2.2. Case 0 < p <gq.
Theorem 3. Let n € N, 1 < g< oo and 0 <p < q. Ife € [0,t;] then

t 1/q
E M/T’Ig =& M/T7]g ’q)* = tgz +el(1 — “n41 :
( q p) ( qtep ) ( +1 ( 17 >>

and if e > t; then & (WF, 1) =& (WT, I, ®F) = t.

g tep g tep
Proof. First, consider the case € € [0,1]. For # = Th € W', ||h[l; < 1, and a € I, (z), we

have
||x_q)>k Hq_Z’xk_ak<1_ n+1>’ Z |~Tk|q_

k=n-+1
=3 |( ;;1)(xk—ak)+—xk\ + 3t <
k=1 k k=n+1
< 1_t7qm+1 |£L' —CL‘q Zfn-i-l‘x| Z ’h |q_
< tq k k n+1 k
k=1 , k=n+1
- tq+1
=3 (1= (o —anp)” nHZW <
k=1

n tn
< < H)(Z‘xk_akv)) tpi1 < (1_ t+1>5q+tn+1
1

Now, we establish the lower estimate for £ (WT, I ?p) Let u; and u,1 be such that t;u; =
cand uf +ul ; =1, 4.e uwy =¢/ty and ul ;, =1—¢?/t]. Set h* := (u1,0,...,0,Up41,0,...).
Obviously, [|h|l; <1 and 6 € I7,(Th*). Then by Corollary 1,

(W 12,))" 2 NITh (|8 = thuf + 1) yushy =

qtep
gl td
—5q+tn+1<1 t) tq+1+EQ(1—t—j>.
1 1

Finally, consider the case € > t;. For x =Th € WqT and a € I7 (), we have

|z = D5(@)|Z = TR =D td]hal? < 1> |ha|* < 1.
n=1 n=1

Taking h* := (1,0,...), it is clear that ¢ € I (T'h*) and by Corollary 1,
EWSIL) > ||Th |, = t1.

Theorem 3 is proved. O

3.2.3. Case 1 < ¢ < p < oo. This case is the most technical one. We introduce some

preliminary notations. For m = 1,...,n, define
tq L
Sjm = (1— ’:;1>” j=1,...,m—1,

and set ¢; := t; and, for m > 2,

m 5q/p

- (Za) (25 ®

Jj=1 Jj=1
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The sequence {c,,}" _, is non-increasing. Indeed, let 0;,,(¢) = (1 — %Jr(lt—;f)tg”“>ﬁ and
consider the function ‘
i 1p [ Cn 610 (E)\—1/a
= (X aa©@) () L geb
i=1 =1
Differentiating g and applying the Cauchy-Swartz inequality we have
51 O () 1/
GE (Zajm )2 v )
j=1
m 5!1/]3( m m 5211/17 1<€)
() (Somi) (S ) 20
j=1 j=1 J
Hence, cyi1 = g(0) < g(1) = cp.
For convenience, for A € [0, 1] denote ¢ | == (1 — M)t 4 + Atf.
Theorem 4. Let n € N and 1 < ¢ < p < o0.
1. If e < ¢, then
T 1n T 1n * q q - t?H—l ﬁ pl'%q 1/a
EWS . 12,) = EW 12, 0,) = (i, +=0 (3 (1-=24)7") 7 )

]=1 J

2. If e € (¢p, 1] then there exist m € {1,...,n— 1} such that € € (11, cm) and A = A(e) €
[0,1) such that

m q)\ﬁ% m (1—1 >H —1/q
() e
j=1 J j=1 J
Then
. . m N 55 5 1/q
EW],IM) =EW] I, @) = ( Atel (Z (1— —) ) ) :
7j=1
where
t 2
@;A(a):<a1<1—t—q’>,. ,am<1—tT>,0, >, CLEKI,
1 m
3. Ife > ¢y then EW],I7) = EW] I, §F) = t.
Proof. Let m € {0,...,n}, A € [0,1] and ® be either @}, or ®j, or ®* . For x € W and
a € Igp(x),
m A tq q 00
fe— 2@y < 3 |(1- ) (0 - + 2]+ 3 <
k= k=m+1

[e.e]

32(1_ﬂ) \xk—ak|q—|—2t NS

k=m+1
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Using the Holder inequality with parameters p/(p — ¢) and p/q to estimate the first term
and the inequality t] <t \ k=m+1,m+2,..., we obtain

m,A\?
m 4 217/ o a/p
m,A\
Hx—@(a)Hgg{Z (1—t—q) } {Z|xk—ak|p} +thth
k=1 k k=1
» N 1-q/p
m tq P—q
LS (-5 e
k=1 b

which proves the estimate from above.
Now, we turn to the proof of the lower estimate. First, let ¢ < ¢,,, and define

651/;7 n -1/p n 1/q
L0 (Z(Sjn> ., j=1,...,n, and Upyy = (1—21@) .
j=1

Consider h* := (uq,...,Up41,0,...). Evidently, u,; is well-defined as

n n —a/P n cq/p
o el
4 _ q , Yjn &7
D uj=e (Z%) G T ast
=1 —1 =1 j n

Ih*]ly =1 and 6 € 12 (Th*) as Y 7, t5hY = eP. Hence, by Corollary 1,

n n —q/p q/p n —q/p
(€ (W 1)) = T = ot (zaj,n) . z ( ) .
Jj=1 Jj=1 7=1

pP—q

n —a/p p n p N =4
2 tar1 )77\
~o (0] S (1) - n+1+s"-<2(1—£) )"
=1 J

j=1 j=1 J

Next, let m € {1,2,...,n—1} be such that ¢,,,1 <& < ¢, and A\ = A\, € [0, 1) be defined

by (4). Set
—-1/p
551/p m
uj' (Z ) Y j:17"'7m7

and consider h* = (uy, ..., Up,0,...). Clearly, ||h||, = 1 and ¢ € I (Th*). Using Corollary 1,

we obtain the desired lower estimate for £ (W], I7).

Finally, let ¢ > ¢;. Consider h* := (1,0,0,...). Since ¢; = t1, we have 0 € I7 (Th*).
Hence, by Corollary 1, £ (W], I2,)) > ITh*||, = t'{. O
3.3. Information mapping [(z) = I.,(x) = x + Ble, {,]. As a limiting case from

Theorem 2, 3 and 4 we can obtain the following corollaries.

Theorem 5. Let 1 < ¢ < oo and € > 0. Choose m € Z. to be such that

m m+1

1 1
1—5‘1215—(]20 and 1—5qzt—q<0

Then




200 V. F. BABENKO, N. V. PARFINOVYCH, D. S. SKOROKHODOV

Theorem 6. Let 1 < ¢ < oo and 0 < p < ¢. If 0 < & < t; then €(W],I.,) =
EW] I.p,id) =€, and ife > t1 then E (W], I.,) =& (WT, I, ®}) = t1.

q”’ q

Define the sequence {c,} -, using formulas (3). It is not difficult to verify that {c,} -,
is non-increasing and tend to 0 as n — oo.

Theorem 7. Let 1 < g < p < oo. If ¢ € (0,¢4] then there exists m € N such that
€ € (mt1,m) and A = A(e) € [0,1) such that

» l/p t \ qu *1/61
om0 )
=\ (-5 > (5)
j=1 J j=1
Then
» P—q 1/q
a7
N 1) = £ L i) = v (32 (1 52) )
j=1 J

where the method @y, , is defined in Theorem 3. Otherwise, if € > ¢, then &£ (Wl 1.,) =
8 (WqT,Isyp, (I)S) = tl-

4. Recovery of scalar products. Following [3] (see also [4, 6, 7]), let us consider the
problem of optimal recovery of scalar product. Let 1 < p,q < oo and given operators
T:¢, = {, and S : {, — {, be defined as follows: for fixed non-increasing sequences ¢ =

{te}p2, and s = {s}i2,,
Th:={tyhi}ie1, hel,, and Sg:={spgr}ic1, g€,
Consider classes of sequences
W) :={x=Th: hel, ||, <1}, qu ={y=Tg: gely, |gll, <1}.

and define the scalar product A = (-,-) : £, x {, = C as usually:
(z,y) = Zxkyk, rel, yel,.
k=1

For brevity, we denote (z,y), = > ;_, TxYk.

In this section we will consider the problem of optimal recovery of the scalar product
operator A on the class ijj ;IS = WpT X qu , when information mapping I is given in one of
the following forms:

L I(z,y) = J2(z,y) = {(a,b) € C" x C": Yk =1,....,n = |zxyr — agbr| < ek}, wheren €
N and &4,...,¢, > 0;

2. I(z,y) = Jgfr(:c,y) ={(a,b) e C" x C": |(x,y), — (a,b),
1 <r<oo.

m < e}, where n € N and
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Finally, for m € N, we define methods of recovery ¥y : C* x C" — C:

Z aby (1 - m—|—18m+1>, a,be C",

tiSk

that will be optimal in many situations and set W§(a, b) := 0.

4.1. Information mapping J”.

Theorem 8. Letn e N, 1 <p<oo,q=p/(p—1),¢e1,...,en>0and &€ = (&1,...,,). If

1-— >0
;tksk -

we set m = n. Otherwise we choose m € Z, m < n, to be such that

WOy UCNy Em
—Z—kZO and l—z LI 0.
— trSk — Sk tmy1Sma
Then
= tm41S
T, n\ _ T.S n * ) _ m+1°9m+1
& (A qu 7‘]5) =& (A qu ,Jg,‘y ) = tm+15m+1 +25k<1 - W>
k=1
Proof. Using the triangle inequality, relations |z yr — arbr| < e, k =1, ..., n, and monotony

of sequences t and s, we obtain that, for (x,y) = (Th, Sg) € Wg;ls and (a,b) € J2(z,y),

Zakbk (1 _ m+15m+1>
i Sk

e tm Sm m+1Sm -
SZ 1—M) ‘xkyk_akbk“"z%’ajkyk"{' Z [zrye| <
— kSk

{2, y) = ‘P*ab\—

k=1 tksk k=m+1

" t S

15m+1

< Z (1 — M) €k + tint1Sm+1 Z |higr| + Z tesklhege] <

k=1 LSk k=m—+1

1Sm+1
< (1 — %) €k T tnt15m+1 Z |heg| <
k=1 kk =1

m
Lrnt1Sm—+1
< bm1Smat + D <1 - M) £,
P Lk Sk

which proves the upper estimate.
To establish the lower estimate, we set
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and consider u* = (uy,...,Un+1,0,...) and v* = (v1,...,0p41,0,...). It is clear that
(Tur, Sv*) € W5 and 0 € J2(Tu*, Sv*) N JZ(=Tu*, Sv*) due to the choice of number m.
Hence, by Corollary 2,

E(AWES, J2) > [(Tu*, S0")| = > tispurvr + tns15mit (1 = i) _

trs
k=1 k=1 K7k
e t S
m+19m—+1
= tmi1Sme1 + E 11— ——— ) &
— ik

This proves the sharpness of the upper estimate. O

4.2. Information mapping J”,. We consider three cases separately: r = oo, 0 < r <1
and 1 < r < o0.

4.2.1. Case r = 0. Setting e; = ... = ¢, = &, we obtain the following corollary from
Theorem 8.

Theorem 9. Letne N, 1 <p<oo,q=p/(p—1) ande > 0. If

n

1
1—¢ — >0,
— tiSk

we set n = m. Otherwise we choose m € Z., m < n, to be such that
m—+1

i% and 1—8Z—<0

5
o Sk

Then

£ (A qus’ Jgoo) =¢£ (A WI?(]S’ Jz—?ooﬂ jn) - m+15m+1 +5Z ( - m—;;z:—’—l) .

4.2.2. Case 0 <r <1.

Theorem 10. Letn € N, 1 <p<oo,q=p/(p—1) andr € (0,1]. If ¢ < 15, then

E(AWLS Jr) =& (AWLE Jl L UE) = tyy1sni1 + 6 (1 — —t"“S"“) :

D,q e, p,q Ve, 1151

and if e > t1s) then € (A, W55 Jr ) = & (A, WES Jr, Ws) = t1s.

D, ) Yer D, ) Ve

Proof. First, we consider the case ¢ < #151. Let (x,y) = (Th,Sg) € W5 and (a,b) €
JI',(2,y). Similarly to the proof of Theorem 8 in the case m = n we obtain

* n S’I’L =
[(z,y) — ¥, (a,b)] < Z < - +l H) | ey — arbr| + tny1Snia th9k~ (8)
k=1
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1/r

Using the Holder inequality and inequality 5}” F.o.4al"< (e14+...4+¢€,)"", we have

* tn 1Sn+1 -
[(z,y) — ¥r(a, b)] Séiﬂ?X(l —--—iggzi-> > laryk — axbrl + tnasnia | Blplglly <
- k=1

the1S
< (1 _ M) €+ tpi1Snsi.
t181

The upper estimate is proved.
Now, we establish the lower estimate. Let

B e\ /7P _{(, e\ /P N 1/q _{, e\ Ve
Uy = Sltl ) Unpt+1 = t131 ) U1 = Sltl ) Up41 = t131 )

and consider elements u* = (u1,0,...,0,u,11,0,...), v* = (ug,0,...,0,up41,0,...). Obvi-
ously, (Tu*, Sv*) € W% and (0,0) € JI'.(Tu*, Sv*) N JI(=Tu*, Sv*). Then by Corollary 2,

£ (AWES Jn) > (T, Sv*)| = tys, - ti F 1St (1 . i)

pq 0 Yer
151 t151

the1S
_ (1 _ M) b,
t1$1

which finishes the proof of the desired estimate.
Next, we let & > t1s1. For (x,y) = (Th,Sg) € W5, and (a,b) € J2,(x,y), we have

p,q

(@, y) = Wi(a, ) = | (2, 9) | <D trsilhugil < tisil[Bllpllglly < tisi-
k=1
Taking v* = v* = (1,0,...), it is clear that (0,0) € JZ (Tu*,Sv*) N JI (=Tu*, Sv*). By
Corollary 2,
€ (A, WpT’S JI) > |[(Tu*, Sv*)| = tysy.

7q ) 877‘
m
4.2.3. Case 1 < r < oo. First, we introduce some preliminary notations. For m =1,...,n,
we define )
t S r—1
Tim = (1= 22— m— 1,
t3s;

and set dy := t1s7 and, for m > 2,
m 1/r m -1
P T Tj7m
e (S) (S
J=1 j=1 J°7

The sequence {d,,}" _, is non-increasing, which can be verified using the arguments similar
to those applied to prove monotony of sequence {c,,}" _, in subsection 3.2.3. In addition,
for convenience, for A € [0, 1], we denote

bt = (1 = Ntpmg1 + At and sy i= (1 — NSyt + ASp.
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Theorem 11. Letn e N, 1 <p<oo,q=p/(p—1) and 1 <r < c0.
1. Ife <d,, then

E(AWLS T = E (AW T W) =ty Sng e (Z (1 - t"?%) ”)
et 35

2. If ¢ € (dpn,d;] then there exists m € {1,...,n — 1} such that ¢ € (dy41,dn] and
A= Xe) €10,1) such that
1 —1

r 1/’!" o t'm,/\sm,)\ r—1
e = i 1 tm,/\sm,)\ rl i 1 tjsj (9)
N tjs; tjs; '

J=1 J=1

Then

5(A WTTQS’JST):g(A WI;‘FQS,JST’ mA >_t )\Sm)\+€<2( m)\smA) 1) ;

‘= t;s;
where
o & tm,)\sm,)\
A (a,0) = Zajbj (1 s ) . abel,.
7j=1
3. If ¢ > d; then & (A WquS, JE"T) =& (A WquS, J *) = 1157.

Proof. Let m € {0,...,n}, A € [0, 1] and ¥ be either U or Wy, or Wy . Using the Holder
inequality with parameters rand =, for (z,y) = (Th,Sg) € W5 and (a,b) € JI.(z,y),
we have

= tm,ASm,)\ < Z5Y; .
[(z,y) — ¥ (a,b)] < Z (1 - —8) |[25y; — ajbi] + i asmoa Z ﬁ + Z TiY; <

j=1 tjsi j=1 9% j=m1
m + \Sma ﬁ Tr;l
<t ASmop + € Z (1_%> 7
7=1
which proves the upper estimate.
Now, we turn to the proof of the lower estimate. We let ¢ < d,,, and, for j = 1,...,n, set
1/ —7 1/ ~7q
D n TP q n rq
ET; ET;
u= () () =) (B
727 k=1 7 k=1
Uprr = (1—uf —... — uﬁ)l/p, and v, = (1—0vf—...— vg)l/q. In addition, we define
u* = (U1, .., Up, Upt1,0,...) and v* := (v1,..., Uy, Uny1,0,...). By the choice of £, numbers

Up+1 and v,4; are well defined and, hence, (T'u*, Sv*) € Wg ;JS . Also,

n n

* |7 T ___r
E T ~Svj| = E tisjujv;|” =€
Jj=1 Jj=1
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yielding that (0,0) € JZ, (Tu*, Sv*) N JZ,(=Tu*, Sv*). By Corollary 2,

£ (AWES, J8,) > |(Tu!, 5v%)| =

pg 0 Yer
n —1/r —1/r
n+18n+1T]n
—62%(2 ) s -3 et (z ) _
7j=1 j=1 J
, r—1
n —_— T
tht18 r—1
:tn+13n+1+5<z (1—M> ) ;
— t;sj
j=1

which proves the desired lower estimate.
Next, let m € {1,...,n — 1} be such that d,,;; <e <d,, and A = A\, € [0,1) be defined

by (9). Set
e \ P (& o er \ V1 (& “
u]' = (t_j> ZT]: and Uj = (t—j) ZT]: s
353 1 35; 1

and define u* := (uq,...,Un,0,...) and v* := (v1,...,0,0,...). It is not difficult to veri-
fy that (0,0) € JZ, (Tu*, Sv*) N JZ,(=Tu*, Sv*). Using Corollary 2 we obtain the desired
estimate for € (A, WTS Jr).

P, ) YEr

Finally, let € > t;s1. Consider u* = v* = (1,0,...). Since d; = t;s1, we have (0,0) €
J2 (Tu*, Sv*) N J2,(=Tu*, Sv*). Hence, by Corollary 2, € (A, WL, Jr) > (Tu*, Sv*)| =
t181. ]

4.3. Applications. Let H be a complex Hilbert space with orthonormal basis {¢,} — .
{tx}72, be a non-increasing sequence; T': f5 — {5 be an operator mapping sequence x =
(1,9, ...) into sequence Tz = (tx1, oz, . ..). Consider the class

T.— {x = itncngpn : i |cn|2 < 1},

and information operator Z,.: H — {,, with 2 < p < oo, mapping an element z =

> > Tnpn into the set ngx = (21,29,...) + Ble,{,] € {,. Due to isomorphism between
¢y and H, under notations of Section 3 we have

EW" L.,) =€ (W, ,I2). (10)
Moreover, methods of recovery Fy y := 200 ®; , are optimal, where A: lo — H is the

natural isomorphism between ¢, and H A (z1,29,...) = Yo Tnpn. Remark that F,,  are
triangular methods of recovery that play an important role in the theory of ill-posed problems
(see, e.g. [11, Theorem 2.1] and references therein).

Consider an important case when t,, = n™*, n € N, with some fixed > 0. It corresponds
e.g., to the space H = Ly(T) of square integrable functions defined on a period and the class
WT = WJ'(T) of functions having Ly-bounded Weyl derivative of order x. Using equality (10)
and Theorems 7 and 5, we obtain

L + 8\ (572\* p
| A T oy (& =
ELI(I)I_FE & (W s a,p) ( 5 ) al/p 5 A i+ 1/2 — 1/p7
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where

1 2p—2 1 1 2p — 2 1
a:_B(p a_)7 ﬁ:_B(p 72+_)7
24 P 2u 24 p 24

and B(a, ) is the Euler beta function. Indeed, in case 2 < p < oo, by selecting n =n. € N
and A\ € [0,1) such that equation (5) is satisfied, we can easily verify that

51/2 /A
lim n//*c,. = lim n**c,_41 = P72 and  lim e p_F = —7 .
e—0+ e=0t e=0t allr

Similar arguments are applicable for p = 0o, in which case 1/p should be replaced with 0.

10.

11.

12.

13.

14.
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