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Dirichlet series F (s) = es+
∑∞

k=1 fke
sλk with the exponents 1 < λk ↑ +∞ and the abscissa

of absolute convergence σa[F ] ≥ 0 is said to be pseudostarlike of order α ∈ [0, 1) and type
β ∈ (0, 1] if ∣∣∣∣F ′(s)

F (s)
− 1

∣∣∣∣ < β

∣∣∣∣F ′(s)

F (s)
− (2α− 1)

∣∣∣∣ for all s ∈ Π0 = {s : Re s < 0}.

Similarly, the function F is said to be pseudoconvex of order α ∈ [0, 1) and type β ∈ (0, 1] if∣∣∣∣F ′′(s)

F ′(s)
− 1

∣∣∣∣ < β

∣∣∣∣F ′′(s)

F ′(s)
− (2α− 1)

∣∣∣∣ for all s ∈ Π0.

Some conditions are found on the parameters b0, b1, c0, c1, c2 and the coefficients an, under
which the differential equation

d2w

ds2
+ (b0e

s + b1)
dw

ds
+ (c0e

2s + c1e
s + c2)w =

∞∑
n=1

ane
ns

has an entire solution which is pseudostarlike or pseudoconvex of order α ∈ [0, 1) and type
β ∈ (0, 1]. It is proved that by some conditions for such solution the asymptotic equality holds

ln max{|F (σ + it)| : t ∈ R} =
1 + o(1)

2

(
|b0|+

√
|b0|2 + 4|c0|

)
as σ → +∞.

1. Introduction and auxiliary results. An analytic univalent in D = {z : |z| < 1}
function f(z) =

∑∞
n=0 fnz

n is said to be convex if f(D) is a convex domain. It is well known
[1, p. 203] that the condition Re {1+zf ′′(z)/f ′(z)} > 0 (z ∈ D) is necessary and sufficient for
the convexity of f . By W. Kaplan [2] the function f is said to be close-to-convex in D (see also
[1, p. 583]) if there exists a convex in D function Φ such that Re (f ′(z)/Φ′(z)) > 0 (z ∈ D).
Close-to-convex function f has a characteristic property that the complement G of the
domain f(D) can be filled with rays L which go from ∂G and lie in G. Every close-to-convex
in D function f is univalent in D and, therefore, f ′(0) ̸= 0. Hence, it follows that the function
f is close-to-convex in D if and only if the function g(z) = z +

∑∞
n=2 gnz

n is close-to-convex
in D, where gn = fn/f1. Such function g is said to be starlike if f(D) is a starlike domain. It
is well known [1, p. 203] that the condition Re {zf ′(z)/f(z)} > 0 (z ∈ D) is necessary and
sufficient for the starlikeness of g.

S.M. Shah [3] indicated conditions on real parameters β0, β1, γ0, γ1, γ2 of the differential
equation z2w′′ + (β0z

2 + β1z)w
′ + (γ0z

2 + γ1z+ γ2)w = 0, under which there exists an entire
transcendental solution f such that f and all its derivatives are close-to-convex in D. The
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investigations are continued in the papers [4–9]. In [10, 11] it is studied the closeness-to-
convexity of the second order non-homogeneous linear differential equation

z2w′′ + (β0z
2 + β1z)w

′ + (γ0z
2 + γ1z + γ2)w = A(z),

where A(z) =
∑∞

n=1 anz
n and radius of convergence of the last power series is R[A] ≥ 1.

Substituting z = es we obtain the differential equation

d2w

ds2
+ (b0e

s + b1)
dw

ds
+ (c0e

2s + c1e
s + c2)w =

∞∑
n=1

ane
ns, (1)

where b0 = β0, b1 = β1 − 1, cj = γj and Dirichlet series
∑∞

n=1 ane
ns is absolutely convergent

in a half-plane {s : Res < a} with a ≥ 0.
Now, let Λ = (λk) be an increasing to +∞ sequence of positive numbers (λ1 > 1) and

SD(Λ, 0) be a class of Dirichlet series

F (s) = es +
∞∑
k=1

fk exp{sλk}, fk ̸= 0, s = σ + it, (2)

with the exponents Λ and the abscissa of absolute convergence σa[F ] = 0. It is known [12] (see
also [13, p. 135] that each function F ∈ SD(Λ, 0) is non-univalent in Π0 = {s : Re s < 0}, but

there exist conformal in Π0 functions (2), and if
∞∑
k=1

λk|fk| ≤ 1 then function (2) is conformal

in Π0. A conformal function (2) in Π0 is said to be pseudostarlike if Re{F ′(s)/F (s)} > 0 for

s ∈ Π0. In [12] (see also [13, p. 139]) it is proved that if
∞∑
k=1

λk|fk| ≤ 1 then function (2) is

pseudostarlike.
A conformal function (2) in Π0 is said to be pseudostarlike of order α if

Re{F ′(s)/F (s)} > α ∈ [0, 1), s ∈ Π0. (3)

Since the inequality |w − 1| < |w − (2α − 1)| holds if and only if Rew > α, function (3) is
pseudostarlike of the order α if and only if∣∣∣∣F ′(s)

F (s)
− 1

∣∣∣∣ < ∣∣∣∣F ′(s)

F (s)
− (2α− 1)

∣∣∣∣ for s ∈ Π0.

Therefore, as in [14] the conformal function (2) in Π0 is called pseudostarlike of order α ∈
[0, 1) and type β ∈ (0, 1] if∣∣∣∣F ′(s)

F (s)
− 1

∣∣∣∣ < β

∣∣∣∣F ′(s)

F (s)
− (2α− 1)

∣∣∣∣ , s ∈ Π0. (4)

Lemma 1 ( [14]). If

∞∑
k=1

{(1 + β)λk − β(2α− 1)− 1}|fk| ≤ 2β(1− α) (5)

then (2) is pseudostarlike of order α and type β.
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Similarly, a conformal function (2) in Π0 is said to be pseudoconvex if
Re{F ′′(s)/F ′(s)} > 0 for s ∈ Π0.

In [12] and [13, p. 139] it is proved that if
∞∑
k=1

λ2
k|fk| ≤ 1

then function (2) is pseudoconvex. Here we call the function (2) pseudoconvex of the order
α ∈ [0, 1) if Re{F ′′(s)/F ′(s)} > α, and pseudoconvex of order α and type β ∈ (0, 1] if [14]∣∣∣∣F ′′(s)

F ′(s)
− 1

∣∣∣∣ < β

∣∣∣∣F ′′(s)

F ′(s)
− (2α− 1)

∣∣∣∣ , s ∈ Π0.

Since F ′′(s)/F ′(s) = G′(s)/G(s), where G(s) = es +
∑∞

k=1 gk exp{sλk} and gk = λkfk, the
function F is pseudoconvex of order α ∈ [0, 1) and type β ∈ (0, 1] if and only if the function
G is pseudostarlike of order α ∈ [0, 1) and type β ∈ (0, 1]. Therefore, from Lemma 1 one
can easily obtain the corresponding result for pseudoconvex functions.

Lemma 2 ( [14]). If

∞∑
k=1

λk{(1 + β)λk − β(2α− 1)− 1}|fk| ≤ 2β(1− α)

then (2) is pseudoconvex of order α and type β.

Here we investigate the conditions under which equation (1) has solutions that are
pseudostarlike or pseudoconvex of order α and type β. We remark that if b0 = b1 = 0
then such a problem is solved in [12-13] for the case of α = 0, β = 1.

2. Recurrent formulas. Suppose that Dirichlet series (2) satisfies (1). Then

(1 + b1 + c2)e
s + (b0 + c1)e

2s ++c0e
3s +

∞∑
k=1

(λ2
k + b1λk + c2)fk exp{sλk}+

+
∞∑
k=1

(b0λk + c1)fk exp{s(λk + 1)}+
∞∑
k=1

c0fk exp{s(λk + 2)} = a1e
s +

∞∑
n=2

ane
ns. (6)

Since λ1 > 1, hence as s → −∞ we have (1+ b1+ c2)e
s = (1+o(1))a1e

s, i. e. 1+ b1+ c2 = a1.
Therefore, (6) implies

(b0 + c1)e
2s + c0e

3s + (λ2
1 + b1λ1 + c2)f1 exp{sλ1}+

∞∑
k=2

(λ2
k + b1λk + c2)fk exp{sλk}+

+
∞∑
k=1

(b0λk + c1)fk exp{s(λk + 1)}+
∞∑
k=1

c0fk exp{s(λk + 2)} = a2e
2s +

∞∑
n=3

ane
ns. (7)

Since λ1 + 1 > 1 and λ2 > λ1, hence as s → −∞ we have

(λ2
1 + b1λ1 + c2)f1 exp{sλ1}+ o(esλ1) = (a2 − b0 − c1)e

2s + o(e2s).
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Therefore, if λ2
1 + b1λ1 + c2 ̸= 0 then λ1 = 2 and

f1 =
a2 − b0 − c1
4 + 2b1 + c2

. (8)

Therefore, (7) implies

c0e
3s + (λ2

2 + b1λ2 + c2)f2 exp{sλ2}+
∞∑
k=3

(λ2
k + b1λk + c2)fk exp{sλk}+

+(2b0 + c1)f1 exp{3s}+
∞∑
k=2

(b0λk + c1)fk exp{s(λk + 1)}+

+
∞∑
k=1

c0fk exp{s(λk + 2)} = a3e
3s +

∞∑
n=4

ane
ns. (9)

Hence, it follows that

(λ2
2 + b1λ2 + c2)f2 exp{sλ2}+ o(esλ2) = (a3 − c0 − (2b0 + c1)f1)e

3s + o(e3s),

as s → −∞ and if λ2
2 + b1λ2 + c2 ̸= 0 then λ2 = 3 and

f2 =
a3 − c0

9 + 3b1 + c2
− 2b0 + c1

9 + 3b1 + c2
f1. (10)

Therefore, (9) implies

(λ2
3 + b1λ3 + c2)f3 exp{sλ3}+

∞∑
k=4

(λ2
k + b1λk + c2)fk exp{sλk}+

+(3b0 + c1)f2e
4s +

∞∑
k=3

(b0λk + c1)fk exp{s(λk + 1)}+

+c0f1e
4s +

∞∑
k=2

c0fk exp{s(λk + 2)} = a4e
4s +

∞∑
n=5

ane
ns. (11)

Hence, it follows that

(λ2
3 + b1λ3 + c2)f3 exp{sλ3}+ o(esλ3) = (a4 − c0f1 − (3b0 + c1)f2)e

3s + o(e3s),

as s → −∞ and if λ2
3 + b1λ3 + c2 ̸= 0 then λ3 = 4 and

f3 =
a4

16 + 4b1 + c2
− 3b0 + c1

16 + 4b1 + c2
f2 −

c0
16 + 4b1 + c2

f1. (12)

Therefore, (11) implies

(λ2
4 + b1λ4 + c2)f4 exp{sλ4}+

∞∑
k=5

(λ2
k + b1λk + c2)fk exp{sλk}+

+(4b0 + c1)f3e
5s +

∞∑
k=4

(b0λk + c1)fk exp{s(λk + 1)}+
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+c0f2e
5s +

∞∑
k=3

c0fk exp{s(λk + 2)} = a5e
5s +

∞∑
n=6

ane
ns,

whence as above it follows that if λ2
4 + b1λ4 + c2 ̸= 0 then λ4 = 5 and

f4 =
a5

25 + 5b1 + c2
− 4b0 + c1

25 + 5b1 + c2
f3 −

c0
25 + 5b1 + c2

f2.

Continuing this process, we will come to the formulas λk = k + 1 and

fk =
ak+1

(k + 1)2 + (k + 1)b1 + c2
−

− kb0 + c1
(k + 1)2 + (k + 1)b1 + c2

fk−1 −
c0

(k + 1)2 + (k + 1)b1 + c2
fk−2 (13)

for k ≥ 3, provided λ2
k + b1λk + c2 ̸= 0.

Thus, the following statement is correct.

Lemma 3. If 1 + b1 + c2 = a1 and k2 + kb1 + c2 ̸= 0 for all k ≥ 2 then differential equation
(1) has the solution

F (s) = es +
∞∑
k=1

fk exp{s(k + 1)}, (14)

where the coefficients f1 and f2 are defined by formulas (8) and (10), and for k ≥ 3 recurrent
formula (13) is true.

2. Pseudostarlikeness. At the first, we remark that for function (14) condition (5) has the
form

∞∑
k=1

Bk|fk| ≤ 2β(1− α), Bk = (1 + β)k + 2β(1− α). (15)

We put Ak = (k + 1)2 + (k + 1)b1 + c2 and suppose that b1 ≥ 0 and c2 ≥ 0. Then Ak > 0
for all k ≥ 1 and from (8), (10) and (13) we get f1 = a2−b0−c1

A1
, f2 = a3−c0

A2
− 2b0+c1

A2
f1 and

fk =
ak+1

Ak
− kb0+c1

Ak
fk−1 − c0

Ak
fk−2 for k ≥ 3. Therefore,

∞∑
k=1

Bk|fk| ≤ B1|f1|+B2|f2|+
∞∑
k=1

Bk|fk| ≤

≤ B1|f1|+B2|f2|+
∞∑
k=3

Bk
|ak+1|
Ak

+
∞∑
k=3

Bk
k|b0|+ |c1|

Ak

|fk−1|+
∞∑
k=3

Bk
|c0|
Ak

|fk−2| =

= B1|f1|+B2|f2|+
∞∑
k=3

Bk
|ak+1|
Ak

+
∞∑
k=2

Bk+1
(k + 1)|b0|+ |c1|

Ak+1

|fk|+
∞∑
k=1

Bk+2
|c0|
Ak+2

|fk| =

= B1|f1|+B2|f2|+
∞∑
k=3

Bk
|ak+1|
Ak

−B2
|2|b0|+ c1|

A2

|f1|+

+
∞∑
k=1

(
Bk+1

(k + 1)|b0|+ |c1|
Ak+1

+Bk+2
|c0|
Ak+2

)
|fk|.
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Since B2|f2| −B2
2|b0|+|c1|

A2
|f1| ≤ B2

|a3−c0|
A2

, hence we obtain

∞∑
k=1

Bk|fk| ≤ B1
|a2 − b0 − c1|

A1

+B2
|a3 − c0|

A2

+
∞∑
k=3

Bk
|ak+1|
Ak

+

+
∞∑
k=1

(
Bk+1

Bk

(k + 1)|b0|+ |c1|
Ak+1

+
Bk+2

Bk

|c0|
Ak+2

)
Bk|fk|. (16)

If we put

η =
2(1 + β) + 2β(1− α)

1 + β + 2β(1− α)

3|b0|+ |c1|+ 2|c0|
9 + 3b1

and

Q = ‘
1 + β + 2β(1− α)

4 + 2b1 + c2
(|a2 − b0 − c1|+ 2|a3 − c0|) +

∞∑
k=3

(1 + β)k + 2β(1− α)

(k + 1)2 + (k + 1)b1 + c2
|ak+1|

then using (16) we can prove the following theorem.

Theorem 1. Let b1 ≥ 0, c2 ≥ 0 and a1 = 1 + b1 + c2. If

Q ≤ 2β(1− η)(1− α) (17)

then differential equation (1) has solution (14) which is pseudostarlike in Π0 of order α and
type β.

Proof. The conditions b1 ≥ 0 and c2 ≥ 0 imply k2 + kb1 + c2 ̸= 0 for all k ≥ 2 and, thus, the
conditions of Lemma 3 are valid.

Since Bk+1

Bk
= 1 + 1+β

(1+β)k+2β(1−α)
↓ 1 as k → ∞, we have Bk+1

Bk
≤ B2

B1
and Bk+2

Bk
≤ B3

B1
for all

k ≥ 1. Also, for k ≥ 1

(k + 1)|b0|+ |c1|
Ak+1

=
(k + 1)|b0|+ |c1|

(k + 2)2 + (k + 2)b1 + c2
≤ (k + 1)|b0|+ |c1|

(k + 2)2 + (k + 2)b1
≤

≤ (k + 2)|b0|
(k + 2)2 + (k + 2)b1

+
|c1|

(k + 2)2 + (k + 2)b1
≤ |b0|

3 + b1
+

|c1|
9 + 3b1

=
3|b0|+ |c1|
9 + 3b1

and
|c0|
Ak+2

=
|c0|

(k + 3)2 + (k + 3)b1 + c2
≤ |c0|

(k + 3)2 + (k + 3)b1
≤ |c0|

16 + 4b1
.

Thus,
Bk+1

Bk

(k + 1)|b0|+ |c1|
Ak+1

+
Bk+2

Bk

|c0|
Ak+2

≤

≤ 2(1 + β) + 2β(1− α)

1 + β + 2β(1− α)

3|b0|+ |c1|
9 + 3b1

+
3(1 + β) + 2β(1− α)

1 + β + 2β(1− α)

|c0|
16 + 4b1

and, since 3(1+β)+2β(1−α)
16+4b1

≤ 22(1+β)+2β(1−α)
9+3b1

, we have

Bk+1

Bk

(k + 1)|b0|+ |c1|
Ak+1

+
Bk+2

Bk

|c0|
Ak+2

≤ η. (18)
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Since B2

A2
= 2(1+β)++2β(1−α)

9+3b1+c2
≤ 2B1

A1
= 21+β+2β(1−α)

4+2b1+c2
, we have

B1
|a2 − b0 − c1|

A1

+B2
|a3 − c0|

A2

+
∞∑
k=3

Bk
|ak+1|
Ak

=

= (1 + β + 2β(1− α))
|a2 − b0 − c1|
4 + 2b1 + c2

+ (2(1 + β) + 2β(1− α))
|a3 − c0|

9 + 3b1 + c2
+

+
∞∑
k=3

((1 + β)k + 2β(1− α))
|ak+1|

(k + 1)2 + (k + 1)b1 + c2
≤ Q. (19)

From (16), (18) and (19) we get
∑∞

k=1Bk|fk| ≤ Q +
∑∞

k=1 ηBk|fk|. Since condition (17)
implies η < 1, it follows that (1 − η)

∑∞
k=1Bk|fk| ≤ Q ≤ 2β(1 − η)(1 − α) and, thus,

condition (15) holds. By Lemma 1 function (14) is pseudoconvex in Π0 of order α and type
β.

3. Pseudoconvexity. By Lemma 2 function (14) is pseudoconvex of order α and type β if∑∞
k=1 kBk|fk| ≤ 2β(1− α). As above instead (16) we have

∞∑
k=1

kBk|fk| ≤ B1
|a2 − b0 − c1|

A1

+ 2B2
|a3 − c0|

A2

+
∞∑
k=3

kBk
|ak+1|
Ak

+

+
∞∑
k=1

(
(k + 1)Bk+1

kBk

(k + 1)|b0|+ |c1|
Ak+1

+
(k + 2)Bk+2

kBk

|c0|
Ak+2

)
kBk|fk|. (20)

As above, we have (k+1)Bk+1

kBk
≤ 2B2

B1
and (k+2)Bk+2

kBk
≤ 3B3

B1
for all k ≥ 1 and, therefore,

(k + 1)Bk+1

kBk

(k + 1)|b0|+ |c1|
Ak+1

+
(k + 2)Bk+2

kBk

|c0|
Ak+2

≤

≤ 4(1 + β) + 4β(1− α)

1 + β + 2β(1− α)

3|b0|+ |c1|
9 + 3b1

+
9(1 + β) + 6β(1− α)

1 + β + 2β(1− α)

|c0|
16 + 4b1

≤ η∗, (21)

where
η∗ =

4(1 + β) + 4β(1− α)

1 + β + 2β(1− α)

3|b0|+ |c1|+ 2|c0|
9 + 3b1

.

Finally, since B2

A2
≤ 2B1

A1
, as above we get

B1
|a2 − b0 − c1|

A1

+ 2B2
|a3 − c0|

A2

+
∞∑
k=3

kBk
|ak+1|
Ak

≤ Q∗, (22)

where

Q∗ =
1 + β + 2β(1− α)

4 + 2b1 + c2
(|a2 − b0 − c1|+ 4|a3 − c0|) +

∞∑
k=3

(1 + β)k2 + 2β(1− α)k

(k + 1)2 + (k + 1)b1 + c2
|ak+1|.

Using (20), (21) and (22) easy to prove the following theorem.

Theorem 2. Let b1 ≥ 0, c2 ≥ 0 and a1 = 1 + b1 + c2. If Q∗ ≤ 2β(1 − η∗)(1 − α) then
differential equation (1) has solution (14) pseudoconvex in Π0 of order α and type β.
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4. Growth. If a1(z) and a0(z) ̸≡ 0 are entire functions then every solution of the homoge-
neous linear differential equation w′′ + a1(z)w

′ + a0(z)w = 0 is entire, and in order to study
its growth there is preferably used the value distribution theory of memorphic functions or
results of the Wiman-Valiron method (see, for example, [15, p. 114–144]). For Dirichlet series
such results are obtained in [16–19].

Using formula (13) here we considerably simpler will obtain information about the growth
of entire solution of differential equation (1). Suppose that b1 ≥ 0, c2 ≥ 0, b0 ≤ 0, c0 ≤ 0,
a2 − b0 − c1 > 0 and ak+1 = 0 for all k ≥ k0 ≥ 3. Then fk > 0 for all k ≥ 1 and (13) implies
for k ≥ k0

fk =
k|b0|+ |c1|

Ak

fk−1 +
|c0|
Ak

fk−2 =
(1 + o(1))|b0|

k
fk−1 +

(1 + o(1))|c0|
k(k − 1)

fk−2

as k0 ≤ k → ∞, whence

kfk
fk−1

= (1 + o(1))|b0|+ (1 + o(1))|c0|
fk−2

(k − 1)fk−1

, k → ∞. (23)

We put A = lim
k→∞

kfk
fk−1

and a = lim
k→∞

kfk
fk−1

. Then from (23) we get A = |b0| + |c0|/a and

a = |b0| + |c0|/A, i. e. A2 − |b0|A − |c0| = 0 and a2 − |b0|a − |c0| = 0. Thus, A ≥ 0 and
a ≥ 0 are the roots of the quadratic equation x2 − |b0|x − |c0| = 0 and, therefore, A = a =

= 1
2

(
|b0|+

√
|b0|2 + 4|c0|

)
. Hence, it follows that fk = (1+o(1))afk−1

k
as k → ∞. Therefore,

for every ε ∈ (0, a) and k ≥ k1 = k1(ε)

(a− ε)k

k!
≤ fk ≤

(a− ε)k

k!
. (24)

For entire Dirichlet series (2) we put M(σ, F ) = sup{|F (σ + it)| : t ∈ R}. The values
ϱR = lim

σ→+∞
ln ln M(σ,F )

σ
, λR = lim

σ→+∞

ln ln M(σ,F )
σ

, TR = lim
σ→+∞

e−ϱRσ ln M(σ, F ) and tR =

lim
σ→+∞

e−ϱRσ ln M(σ, F ) are called R-order, lower R-order, R-type and lower R-type accordi-

ngly. Since fk > 0 for all k ≥ 1, we have M(σ, F ) = F (σ) = O(ek1σ) + eσ
∑∞

k=k1
fke

kσ as
σ → +∞. From (24) it follows that

O(ek1σ) + exp{(a− ε)eσ} =
∞∑

k=k1

(a− ε)k

k!
ekσ ≤

∞∑
k=k1

fke
kσ ≤

≤
∞∑

k=k1

(a+ ε)k

k!
ekσ = O(ek1σ) + exp{((a+ ε)eσ}, σ → +∞,

whence (a − ε)eσ + o(1) ≤ ln M(σ, F ) ≤ (a + ε)eσ + o(1) as σ → +∞, and in view of the
arbitrariness of ε we get ϱR = λR = 1 and TR = tR = a. Thus, the following statement is
proved.

Proposition 1. Let b1 ≥ 0, c2 ≥ 0, b0 ≤ 0, c0 ≤ 0, a2 − b0 − c1 > 0, a1 = 1 + b1 + c2 and
ak+1 = 0 for all k ≥ k0 ≥ 3. Then differential equation (1) has entire solution (14) such
that ln M(σ, F ) = 1+o(1)

2

(
|b0|+

√
|b0|2 + 4|c0|

)
as σ → +∞. If Q ≤ 2β(1− η)(1− α) then

function (14) is pseudostarlike in Π0 of order α and type β. If Q∗ ≤ 2β(1− η∗)(1− α) then
function (14) is pseudoconvex in Π0 of order α and type β.
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