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We study a local and semi-local convergence of Kurchatov’s method and its two-step modi-
fication for solving nonlinear equations under the classical Lipschitz conditions for the first-
order divided differences. To develop a convergence analysis we use the approach of restricted
convergence regions in a combination to our technique of recurrent functions. The semi-local
convergence is based on the majorizing scalar sequences. Also, the results of the numerical
experiment are given.

1. Introduction. Let us consider an equation

F (x) = 0. (1)

Here F : Ω ⊆ X → Y is a nonlinear operator, X and Y are Banach spaces, Ω is an open
convex subset of X. Newton’s method is very used for numerical solving of equation (1)
[3, 5, 6]

xk+1 = xk − F ′(xk)
−1F (xk), k ∈ Z+ := {0, 1, 2, . . .}. (2)

Newton’s method has a quadratic convergence order. However, its disadvantage is the need
of analytically specified derivatives. Therefore, methods without derivatives are used [3, 5].
Some of difference methods are not inferior to Newton’s method in the rate of convergence.
One of them is Kurchatov’s method (method of linear interpolation) [1, 7, 8, 9, 10, 11]

xk+1 = xk − A−1
k F (xk), k ∈ Z+, (3)

where Ak = [2xk − xk−1, xk−1;F ], [·, ·;F ] : Ω× Ω → L(X, Y ) denotes the first-order divided
difference.

Definition 1 ([12]). Let F be a nonlinear operator defined on a subset Ω of a Banach space
X with values in the Banach space Y and let x, y be two points of Ω. A linear operator from
X to Y which is denoted by [x, y;F ] and satisfies the conditions:

1) for all fixed two points x, y ∈ Ω

[x, y;F ](x− y) = F (x)− F (y),

2) if there exists the Fréchet derivative F ′(x), then
[x, x;F ] = F ′(x),

is called a divided difference of F at the points x and y.
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In order to accelerate the convergence of single-step methods, their multi-step methods
are often developed. The computational complexity of such methods is slightly greater than
that of one-step methods. However, the solution of the problem is obtained in the smaller
number of iterations. Some of them were studied in the works [2, 4].

In this paper, we develop such a two-step modification of the Kurchatov-type method

yk = xk − A−1
k F (xk),

xk+1 = yk −B−1
k F (yk), k ∈ Z+,

(4)

where Bk = [2yk − xk, xk;F ]. We study a semi-local and local convergence of methods (3)
and (4) under classical Lipschitz conditions. Moreover, we give a uniqueness of the solution
result.

The paper is organized as follows: Section 2 deals with the convergence of scalar majori-
zing sequences. Sections 3 and 4 give the semi-local and the local convergence analysis of
methods (3) and (4), respectively.

2. Convergence of majorizing sequence. We base the convergence of method (3) and
method (4) on scalar sequence called majorizing.

Definition 2. Let {ūk} be a sequence in X. We say that a nondecreasing sequence {uk} is
majorizing for the sequence {ūk} if

(∀ k ∈ Z+) : ∥ūk+1 − ūk∥ ≤ uk+1 − uk. (5)

Notice that according to (5) the study of {ūk} reduces to that of {uk} [3].
Let c ≥ 0, n ≥ 0, L0 > 0 and L > 0 be given parameters. Define a sequence {vk}, {bk}

by
v−1 = 0, v0 = c, v1 = c+ n,

(∀ k ∈ Z+) : vk+2 = vk+1 +
L(vk+1 − vk + 2(vk − vk−1))(vk+1 − vk)

1− 2L0(vk+1 + vk − c)

(6)

and
(∀ k ∈ Z+) : bk =

L(vk+1 − vk + 2(vk − vk−1))

1− 2L0(vk+1 + vk − c)
.

Notice that (6) can be written as

vk+2 − vk+1 = bk(vk+1 − vk). (7)

Next we present a general result for the convergence of sequence {vk}.

Lemma 1. Suppose that for each k ∈ Z+

2L0(vk+1 + vk − c) < 1. (8)

Then, the sequence {vk} is nondecreasing, bounded from above by v∗∗ = 1
2

(
1
L0

+ c
)

and as
such it converges to its unique least upper bound v∗ ∈ [0, v∗∗].

Proof. The assertion of Lemma 1 follows directly from the definition by (6) of the
sequence (bk).
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Remark 1. Condition (8) can be verified only in the special cases. That is why we develop
convergence criteria that can be earlier be verified. Define a sequence of polynomials fk(t)
and cubic polynomial on the interval [0, 1) by

fk(t) = L(tk−1 + 2tk−2)n+ 2L0((1 + t+ . . .+ tk)n+ (1 + t+ . . .+ tk−1)n+ c)− 1

and g(t) = 2L0t
3 + (2L0 + L)t2 + Lt − 2L. We have g(0) = −2L and g(1) = 4L0. Then, it

follows by the mean value theorem that g has zeros in (0, 1). Denote by α the smallest such
a zero.

Lemma 2. Suppose

0 ≤ b0 ≤ α < 1− 4L0n

1− 2L0c
, 2L0c < 1. (9)

Then the conclusions of Lemma 1 hold for the sequence {vk} with

0 ≤ vk+1 − vk ≤ α(vk − vk−1) ≤ αkn (10)

and v∗∗ replaced by v̄∗∗ =
n

1− α
+ c.

Proof. We shall show
bk ≤ α. (11)

Estimate (11) holds for k = 0 by (9). Then, by equality (7), we have

0 ≤ v2 − v1 ≤ α(v1 − v0) ⇒ v2 ≤ v1 + α(v1 − v0) ⇒ v2 ≤ c+ n+ αn = c+ (1 + α)n ⇒

v2 ≤
1− α2

1− α
n+ c ≤ n

1− α
+ c = v̄∗∗.

Suppose (10) holds for all k smaller or equal to n. We also get

vk+2 ≤ vk+1 + αk+1n ≤ vk + αkn+ αk+1n ≤ v1 + αn+ . . .+ αk+1n ≤

≤ 1− αk+2

1− α
n+ c ≤ n

1− α
+ c = v̄∗∗.

Endently, (11) holds if

L(αkn+ 2αk−1n) + 2L0α((1 + α + . . .+ αk)n+ (1 + α + . . .+ αk−1)n+ c)− α ≤ 0, (12)

or
fk(α) ≤ 0. (13)

We need a relationship between two consecutive polynomials fk. We get

fk+1(t) = L(tk + 2tk−1)n+ 2L0((1 + t+ . . .+ tk+1)n+ (1 + t+ . . .+ tk)n+ c)− 1−
−L(tk−1 − 2tk−2)n− 2L0((1 + t+ . . .+ tk)n− (1 + t+ . . .+ tk−1)n+ c) + 1 + fk(t) =

= fk(t) + g(t)tk−2n. (14)

In particular, by the definition of α we have

fk+1(α) = fk(α). (15)
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Define a function f∞ = lim
k→∞

fk(t). Then, we have

f∞(t) = 2L0

(
2n

1− t
+ c

)
− 1. (16)

By (13), (15) and (16), we can show instead that

f∞(α) ≤ 0 (17)

which is true by the right hand side double condition in (9). The induction for (10) and (11)
is completed. The rest is proved as in the proof of Lemma 1.

Remark 2. Clearly, conditions (9) implies (8) but non necessarily vice versa.

Next, we similarly study majorizing sequences for methods (4). Define the sequences {tk},
{sk} by

t−1 = 0, t0 = c, t1 = c+ n,

sk = tk +
L(tk − sk−1 + 2(sk−1 − tk−1))(tk − sk−1)

1− 2L0(tk + tk−1 − c)
,

tk+1 = sk +
L(sk − tk + 2(tk − tk−1))(sk − tk)

1− 2L0(sk + tk − c)
.

(18)

These equalities can also be rewritten in the following form
sk − tk = γk(tk − sk−1), tk+1 − sk = δk(sk − tk),

where
γk =

L(tk − sk−1 + 2(sk−1 − tk−1))

1− 2L0(tk + tk−1 − c)
, δk =

L(sk − tk + 2(tk − tk−1))

1− 2L0(sk + tk − c)
.

Lemma 3. Suppose that

2L0(sk + tk − c) < 1 for each k ∈ Z+. (19)

Then, the sequences {tk}, {sk} are nondecreasing, bounded from above by t∗∗ = 1
2
( 1
L0

+ c)
and converge to their unique least upper bound t∗ ∈ [0, t∗∗].

Proof. See the proof of Lemma 1.

Remark 3. Condition (19) can also be verified in the special cases. That is why next we
present the stronger convergence criteria but it is easier to verify.

Define the sequences of polynomials f
(1)
k , f (2)

k , g1, g2 on the interval [0, 1) by

f
(1)
k (t) = Lt2kn+ 2Lt2k−1n+ 2L0((1 + t+ . . .+ t2k+1)n+ (1 + t+ . . .+ t2k−1)n+ c)− 1,

f
(2)
k (t) = Lt2k+1n+ 2L(t2k + 2t2k−1)n+

+2L0((1 + t+ . . .+ t2k+2)n+ (1 + t+ . . .+ t2k+3)n+ c)− 1,

g1(t) = 2L0t
4 + (2L0 + L)t3 + 2(L0 + L)t2 + (2L0 − L)t− 2L,

g2(t) = 2L0t
6 + 4L0t

5 + (2L0 + L)t4 + 2Lt3 + Lt2 − 2Lt− 2L.

We get g1(0) = g2(0) = −2L and g1(1) = g1(0) = 8L0.
Denote by ρ1, ρ2 the smallest zeros of functions g1 and g2, respectively on the interval

(0, 1). We put ρ0 = max{γ1, δ1}, δ0 = min{ρ1, ρ2}, δ1 = max{ρ1, ρ2}.
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Lemma 4. Suppose that

ρ0 ≤ δ0 ≤ δ ≤ δ1 < 1− 4L0n

1− 2L0c
, 2L0c < 1. (20)

Then the sequences {sk}, {tk} are nondecreasing, bounded from above by t̄∗∗ = n
1−δ

+ c and
converge to t∗ ∈ [0, t̄∗∗], so that

0 ≤ tk+1 − sk ≤ δ(sk − tk) ≤ δ2k+1n, (21)
0 ≤ sk − tk ≤ δ(tk − sk−1) ≤ δ2kn, (22)

and

tk ≤ sk ≤ tk+1. (23)

Proof. Inequalities (21)–(23) hold if

0 ≤ γk ≤ δ, (24)
0 ≤ δk ≤ δ, (25)

and

0 ≤ tk ≤ sk ≤ tk+1. (26)

It follows from the definition of these sequences and (20) that (21)–(23) hold for k = 0.
Suppose (24)–(26) hold for k ∈ {1, 2, . . . , n}. Then, using the induction hypotheses (21)

and (22), we obtain in turn that

sk ≤ tk + δ2kn ≤ sk−1 + δ2k−1n+ δ2kn ≤ . . . ≤ t0 + n+ δn+ . . .+ δ2kn ≤

≤ 1− δ2k+1

1− δ
n+ c ≤ n

1− δ
+ c = t̄∗∗,

and

tk+1 ≤ sk + δ2k+1n ≤ tk + δ2kn+ δ2k+1n ≤ . . . ≤ t0 + n+ δn+ . . .+ δ2k+1n ≤

≤ 1− δ2k+2

1− δ
n+ c ≤ n

1− δ
+ c.

Therefore, the sequences {sk} and {tk} are nondecreasing.
Then, (24) holds if

Lδ2k+1n+ 2Lδ2kn+ 2L0δ((1 + δ + . . .+ δ2k+1)n+ (1 + δ + . . .+ δ2k−1)n+ c)− δ ≤ 0 (27)

or
f
(1)
k (δ) ≤ 0. (28)

But we get in turn that

f
(1)
k+1(t) = Lt2k+2n+ 2Lt2k+1n+ 2L0((1 + t+ . . .+ t2k+3)n+ (1 + t+ . . .+ t2k+1)n+ c)− 1

−Lt2kn− 2Lt2k−1n− 2L0((1 + t+ . . .+ t2k+1)n+ (1 + t+ . . .+ t2k−1)n+ c) + 1 + f
(1)
k (t) =

= f
(1)
k (t) + g1(t)t

2k−1n.
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In particular, we get by the definition of ρ1 that

f
(1)
k+1(ρ1) = f

(1)
k (ρ1). (29)

Define a function f
(1)
∞ = lim

k→∞
f
(1)
k (t). Then we have by (27) that

f (1)
∞ (t) =

4L0n

1− t
+ 2L0c− 1. (30)

It follows from (28)–(30) that we can show instead (27) that f
(1)
∞ (ρ1) ≤ 0, which is true by

(20).
Similarly, (25) holds if

Lδ2k+2n+2L(δ2k+1n+δ2kn)+2L0δ((1+δ+. . .+δ2k+2)n+(1+δ+. . .+δ2k+3)n+c)−δ ≤ 0 (31)

or
f
(2)
k (δ) ≤ 0. (32)

In this case, we get

f
(2)
k+1(t) = Lt2k+3n+ 2L(t2k+2n+ t2k+1n) + 2L0((1 + t+ . . .+ t2k+4)n+

+(1 + t+ . . .+ t2k+5)n+ c)− 1− Lt2k+1n− 2L(t2kn+ t2k−1n)−
−2L0((1 + t+ . . .+ t2k+2)n+ (1 + t+ . . .+ t2k+3)n+ c) + 1 + f

(1)
k+1(t) =

= f
(1)
k (t) + g2(t)t

2k−1n.

In particular, we have f
(2)
k+1(ρ2) = f

(2)
k (ρ2).

Define a function f
(2)
∞ = lim

k→∞
f
(2)
k (t). Then, we have by (31) that f (2)

∞ (t) = f
(1)
∞ (t). Hence,

we can show instead (32) that f (2)
∞ (ρ2) ≤ 0, which is true by (20). The induction is completed.

Therefore, sequences {sk}, {tk} are nondecreasing, bounded from above by t∗∗ and such they
converge to t∗ ∈ [0, t∗∗].

3. Semi-local convergence.We first study method (3) using majorizing sequence (6),
Lemma 1 or Lemma 2 and conditions (H):

(H1) There exist x−1, x0 ∈ Ω such that A−1
0 ∈ L(Y,X), ∥x−1−x0∥ ≤ c and ∥A−1

0 F (x0)∥ ≤ R.
(H2) ∥A−1

0 ([w1, w2;F ]− A0)∥ ≤ L0(∥w1 − (2x0 − x−1)∥+ ∥w2 − x−1∥) for each w1, w2 ∈ Ω.

Set Ω0 = U
(
x0,

1
2

(
1

2L0
+ c

))
∩ Ω.

(H3) ∥A−1
0 ([w1, w2;F ]− [2y−x, x;F ])∥ ≤ L(∥w1− (2y−x)∥+∥w2−x∥) for each w1, w2, x, y,

2y − x ∈ Ω0.
(H4) U(x0, 3v

∗) ⊂ Ω (or U(x0, 3v̄
∗) ⊂ Ω).

(H5) Conditions of Lemma 1 or Lemma 2 hold.

Next, we show the semi-local convergence analysis of method (3).

Theorem 1. Suppose the conditions (H) hold. Then the sequence {xn} generated by method
(3) is well-defined in U(x0, v

∗), remains in U(x0, v
∗) for each n ∈ Z+ and converges to a

solution x∗ ∈ U(x0, v
∗) of the equation F (x) = 0. Moreover, the following estimates hold for

each n ∈ Z+

∥xk − x∗∥ ≤ v∗ − vk.
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Proof. Let xk, xk−1 ∈ U(x0, v
∗). Then, using conditions (H1) and (H2), we get

∥A−1
0 (Ak+1 − A0)∥ ≤ L0(∥2xk+1 − xk − (2x0 − x−1)∥+ ∥xk − x−1∥) ≤

≤ L0(2∥xk+1 − x0∥+ 2∥xk − x−1∥) ≤ 2L0(∥xk+1 − x0∥+ ∥xk − x0∥+ ∥x0 − x−1∥) ≤
≤ 2L0(∥xk+1 − x0∥+ ∥xk − x0∥+ c) ≤ 2L0(vk+1 + vk − c) < 1. (33)

It follows from (33) and the Banach lemma on invertible operator [6] that the linear operator
Ak+1 is invertible and

∥A−1
k+1A0∥ ≤ 1

1− 2L0(vk+1 + vk − c)
. (34)

Iterated xk+1 is also well-defined. We can also write

F (xk+1) = F (xk+1)− F (xk)− Ak(xk+1 − xk) = ([xk+1, xk;F ]− Ak) (xk+1 − xk), (35)

so by (H3), we obtain

∥A−1
0 F (xk+1)∥ ≤ L(∥xk+1 − (2xk − xk−1)∥+ ∥xk − xk−1∥)∥xk+1 − xk∥ ≤

≤ L(∥xk+1 − xk∥+ 2∥xk − xk−1∥)∥xk+1 − xk∥ ≤ L(vk+1 − vk + 2(vk − vk−1))(vk+1 − vk).
(36)

Then, we have by method (3) and (36) that

∥xk+2 − xk+1∥ = ∥(A−1
k+1A0)(A

−1
0 F (xk+1))∥ ≤ ∥A−1

k+1A0∥∥A−1
0 F (xk+1)∥ ≤

≤ L0(vk+1 − vk + 2(vk − vk−1))(vk+1 − vk)

1− 2L0(vk+1 + vk − c)
= vk+2 − vk+1.

Notice that we also have
∥2xk+1 − xk − x0∥ ≤ ∥xk+1 − x0∥+ ∥xk+1 − xk∥ ≤ 2∥xk+1 − x0∥+ ∥xk − x0∥ ≤ 3v∗,

so 2xk+1 − xk ∈ U(x0, 3v
∗). It follows that the sequence {xk} is Cauchy (since {vk} is as

convergent). Hence, it converges to some x∗ ∈ U(x0, v
∗). By tending k → ∞ in the estimate

(36), and using the continuity of F , we conclude F (x∗) = 0.

Concerning the uniqueness of the solution we have:

Proposition 1. Suppose:

(i) x∗ ∈ Ω is a solution of the equation F (x) = 0.
(ii) ∥A−1

0 ([x∗, z;F ]− A0)∥ ≤ L1(∥x∗ − (2x0 − x−1)∥+ ∥z − x−1∥) for all z ∈ Ω.
(iii) There exists v̄∗ ≥ v∗ such that L1(v

∗ + v̄∗ + 2c) < 1.

Set Ω1 = U(x0, v̄
∗) ∩ Ω. Then, the only solution of the equation F (x) = 0 in the region Ω1

is x∗.

Proof. Set T = [x∗, x̄;F ] for some x̄ ∈ Ω1 with F (x̄) = 0. Then, using (ii) and (iii), we obtain

∥A−1
0 ([x∗, x̄;F ]− A0)∥ ≤ L1(∥x∗ − (2x0 − x−1)∥+ ∥x̄− x−1∥) ≤

≤ L1(∥x∗ − x0∥+ ∥x0 − x−1∥+ ∥x̄− x0∥+ ∥x0 − x−1∥) ≤ L1(v
∗ + 2c+ v̄∗) < 1,

so x∗ = x̄ follows from the invertibility of T and the identity
T (x̄− x∗) = F (x̄)− F (x∗) = 0− 0 = 0.
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We present the semi-local convergence analysis of method (4) in a similar way under the
(H) conditions with v∗ replaced by t∗ and using Lemma 3 or Lemma 4.

Theorem 2. Suppose the (H) conditions hold. Then, the sequences {xn}, {yn} generated
by method (4) is well-defined in U(x0, t

∗), remain in U(x0, t
∗) for each n ∈ Z+ and converge

to a solution x∗ ∈ U(x0, t
∗) of the equation F (x) = 0. Moreover, the following estimates hold

for each n ∈ Z+

∥xk − x∗∥ ≤ t∗ − tk.

Proof. We follow the proof of Theorem 1. In this case, we get

∥A−1
0 (Bk+1 − A0)∥ ≤ L0(∥2yk+1 − xk+1 − (2x0 − x−1)∥+ ∥xk+1 − x−1∥) ≤

≤ L0(2∥yk+1 − x0∥+ 2∥xk+1 − x−1∥) ≤ 2L0(∥yk+1 − x0∥+ ∥xk+1 − x0∥+ ∥x0 − x−1∥) ≤
≤ 2L0(sk+1 + tk+1 − c) < 1,

so ∥B−1
k+1A0∥ ≤ 1

1− 2L0(sk+1 + tk+1 − c)
. We also have

∥A−1
0 ([xk+1, yk;F ]−Bk)∥ ≤ L(∥xk+1 − 2yk + xk)∥+ ∥yk − xk∥) ≤
≤ L(∥xk+1 − yk∥+ 2∥yk − xk∥) ≤ L(tk+1 − sk + 2(sk − tk)).

Hence, we get

∥yk+1 − xk+1∥ ≤ ∥A−1
k+1A0∥∥A−1

0 ([xk+1, yk;F ]−Bk)∥∥xk+1 − yk∥ ≤

≤ L(tk+1 − sk + 2(sk − tk))(tk+1 − sk)

1− 2L0(tk+1 + tk − c)
= sk+1 − tk+1.

Moreover, we have F (yk) = F (yk)− F (xk)− Ak(yk − xk) = ([yk, xk;F ]− Ak) (yk − xk), so

∥A−1
0 F (yk)∥ = ∥A−1

0 ([yk, xk;F ]− Ak) (yk − xk)∥ ≤
≤ L(∥yk − 2xk + xk−1∥+ ∥xk − xk−1∥)∥yk − xk∥ ≤

≤ L(∥yk − xk∥+ 2∥xk − xk−1∥)∥yk − xk∥ ≤ L(sk − tk + 2(tk − tk−1))(sk − tk).

Hence, we get

∥xk+1 − yk∥ = ∥(B−1
k A0)(A

−1
0 F (yk))∥ ≤ L(sk − tk + 2(tk − tk−1))(sk − tk)

1− 2L(sk + tk − c)
= tk+1 − sk.

The rest follows as in the proof of Theorem 1.

Remark 4. (a) Condition 2y − x ∈ Ω is satisfied if Ω = X. (b) The element 2y − x can be
replaced by the more general u ∈ Ω. But in this case, the conditions can become stronger
and the Lipschitz constants become larger, leading to a less precise convergence analysis.

4. Local convergence.We first study method (3) under conditions (C):

(C1) There exists a simple solution x∗ of the equation F (x) = 0.

(C2) For each x, y, 2x− y ∈ Ω
∥F ′(x∗)−1([2y − x, x;F ]− F ′(x∗))∥ ≤ l0(∥2y − x− x∗∥+ ∥x− x∗∥).

(C3) For each x, y, 2x− y ∈ Ω2 := U
(
x∗, 1

4l0

)
∩ Ω

∥F ′(x∗)−1([2y − x, x;F ]− [y, x∗;F ])∥ ≤ l(∥y − x∥+ ∥x− x∗∥).
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(C4) U(x∗, 3r) ⊂ Ω, where r =
1

4l0 + 3l
.

Theorem 3. Under the conditions (C) further suppose that x−1, x0 ∈ U(x∗, r)−{x∗}. Then
the sequence {xn} generated by method (3) is well-defined in U(x∗, r), remains in U(x∗, r)
for each n ∈ Z+ and converges to x∗.
Proof. We have by (C1) and (C2) that ∥F ′(x∗)−1(Ak − F ′(x∗))∥ ≤ l0(∥xk − x∗∥ +
+∥xk − xk−1∥+ ∥xk−1 − x∗∥) ≤ 2l0(∥xk − x∗∥+ ∥xk−1 − x∗∥) ≤ 4l0r < 1, so

∥A−1
k F ′(x∗)∥ ≤ 1

1− 2l0(∥xk − x∗∥+ ∥xk−1 − x∗∥)
.

We also get by (C3), ∥F ′(x∗)−1(Ak − [xk, x
∗;F ])∥ ≤ l(∥xk − x∗∥+ 2∥xk−1 − x∗∥), so

∥xk+1 − x∗∥ = ∥xk − x∗ − A−1
k F (xk)∥ ≤

≤ ∥A−1
k F ′(x∗)∥∥F ′(x∗)−1(Ak − [xk, x

∗;F ])(xk − x∗)∥ ≤
≤ ∥A−1

k F ′(x∗)∥∥F ′(x∗)−1(Ak − [xk, x
∗;F ])∥∥xk − x∗∥ ≤

≤ l(∥xk − x∗∥+ 2∥xk−1 − x∗∥)∥xk − x∗∥
1− 2l0(∥xk − x∗∥+ ∥xk−1 − x∗∥)

< ∥xk − x∗∥ < r,

so xk+1 ∈ U(x∗, r) and lim
k→∞

xk = x∗.

We also have a uniqueness of the solution result.
Proposition 2. Suppose:
(i) x∗ ∈ Ω is a simple solution of the equation F (x) = 0.
(ii) For each z ∈ Ω ∥F ′(x∗)−1([x∗, z;F ]− F ′(x∗))∥ ≤ l1∥z − x∗∥.

Set Ω3 = U(x∗, 1
l1
) ∩ Ω. Then, the only solution of the equation F (x) = 0 in the region Ω3

is x∗.
Proof. Set T = [x∗, x̄;F ] for some x̄ ∈ Ω3 with F (x̄) = 0. Then, using (ii) and (iii), we obtain

∥F ′(x∗)−1(T − F ′(x∗))∥ ≤ l1∥x̄− x∗∥ < 1,

so x∗ = x̄ by the invertibility of T and the identity T (x̄−x∗) = F (x̄)−F (x∗) = 0−0 = 0.

We can also show the local convergence analysis of method (4) under conditions (H).
Theorem 4. Under the conditions (C) further suppose that x−1, x0 ∈ U(x∗, r)−{x∗}. Then,

lim
n→∞

xk = x∗.

Proof. As in Theorem 3, we get

∥yk − x∗∥ ≤ l(∥xk − x∗∥+ 2∥xk−1 − x∗∥)∥xk − x∗∥
1− 2l0(∥xk − x∗∥+ ∥xk−1 − x∗∥)

< ∥xk − x∗∥ < r.

Moreover, by estimates ∥F ′(x∗)−1(Bk − F ′(x∗))∥ ≤ l0(∥2yk − xk − x∗∥ + ∥xk − x∗∥) ≤
≤ 2l0(∥yk − x∗∥+ ∥xk − x∗∥) ≤ 4l0r < 1, so ∥B−1

k F ′(x∗)∥ ≤ 1

1− 2l0(∥yk − x∗∥+ ∥xk − x∗∥)
,

and F ′(x∗)−1(Bk − [yk, x
∗;F ])∥ ≤ l(∥yk − x∗∥+ 2∥xk − x∗∥), we get

∥xk+1 − x∗∥ = ∥yk − x∗ −B−1
k F (yk)∥ ≤ ∥(B−1

k F ′(x∗))(F ′(x∗)−1(Bk − [yk, x
∗;F ]))×

×(yk − x∗)∥ ≤ ∥B−1
k F ′(x∗)∥∥F ′(x∗)−1(Bk − [yk, x

∗;F ])∥∥yk − x∗∥ ≤

≤ l(∥yk − x∗∥+ 2∥xk − x∗∥)∥yk − x∗∥
1− 2l0(∥yk − x∗∥+ ∥xk − x∗∥)

< ∥yk − x∗∥ < r,

so yk ∈ U(x∗, r) and lim
k→∞

yk = lim
k→∞

xk = x∗.
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