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Denote by S0(Λ) the class of Dirichlet series F (s) =
∑∞

n=0 an exp{sλn} (s = σ + it) with
an increasing to +∞ sequence Λ = (λn) of exponents (λ0 = 0) and the abscissa of absolute
convergence σa = 0. We say that F ∈ S∗0 (Λ) if F ∈ S0(Λ) and lnλn = o(ln |an|) (n → ∞).
Let µ(σ, F ) = max{|an| exp (σλn) : n ≥ 0} be the maximal term of Dirichlet series. It is proved
that in order that

ln(1/|σ|) = o(lnµ(σ)) (σ ↑ 0)

for every function F ∈ S∗0 (Λ) it is necessary and sufficient that

lim
n→∞

lnλn+1

lnλn
< +∞.

For an analytic in the disk {z : |z| < 1} function f(z) =
∑∞

n=0 anz
n and r ∈ (0, 1) we put

Mf (r) = max{|f(z)| : |z| = r < 1} and µf (r) = max{|an|rn : n ≥ 0}. As a corollary we get the
following statement: if there exists a sequence (nj) such that

lnnj+1 = O(lnnj) and lnnj = o(ln |anj |) as j →∞,
then the functions lnµf (r) and lnMf (r) are or are not slowly increasing simultaneously.

1. Introduction. For an analytic in the disk {z : |z| < 1} function

f(z) =
∞∑
n=0

anz
n, z = reiθ, (1)

letMf (r) = max{|f(z)| : |z| = r < 1} and µf (r) = max{|an|rn : n ≥ 0} be the maximal term.
A positive continuous and increasing to +∞ on [0, 1) function l is called slowly increasing if
l((x+ 1)/2)) ∼ l(x) as x ↑ 1. It is known [1] that if

ln
1

1− r
= o(lnµf (r)), r ↑ 1, (2)

then lnµf (r) and lnMf (r) are or are not slowly increasing simultaneously. If the condition
(2) does not hold then [1] the slow growth of lnMf (r) does not follow from the slow growth
of lnµf (r), and vice versa [2]. The following question arises: under which conditions on an
the relation (2) is true?
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If ln |an| ≤ K lnn (n ≥ n0) then

lnµf (r) ≤ max{K ln t+ t ln r : t ≥ 1}+O(1) = K ln
1

− ln r
+O(1) = K ln

1

1− r
+O(1)

as r ↑ 1. Therefore, in order that (2) holds, it is necessary that lnnk = o(ln |ank |)
(k → +∞) for some increasing sequence (nk) of integers, and our question is reduced to findi-
ng of conditions on this sequence (nk). A result proved below for Dirichlet series absolutely
convergent in half-plane implies that such condition is lnnk+1 = O(lnnk) (k →∞).

2. Main result. So, let Λ = (λn) be an increasing to +∞ sequence of positive numbers
(λ0 = 0), and Dirichlet series

F (s) =
∞∑
n=0

an exp{sλn}, s = σ + it, (3)

has the abscissa of absolute convergence σa = 0. For σ < 0 let
µ(σ, F ) = max{|an| exp (σλn) : n ≥ 0}

be the maximal term of series (3). We investigate conditions on (an) and (λn), under which

ln
1

|σ|
= o(lnµ(σ)), σ ↑ 0. (4)

To that end we denote by S∗0(Λ) the class of Dirichlet series (3) absolutely convergent in the
half-plane {s : Re σ < 0} such that lnλn = o(ln |an|) (n→∞).

Theorem 1. In order that (4) holds for every function F ∈ S∗0(Λ), it is necessary and
sufficient that

lim
n→∞

lnλn+1

lnλn
< +∞. (5)

Proof. Let us start with the sufficiency. Let Ω(0) be the class of positive unbounded on
(−∞, 0) functions Φ such that the derivative Φ′ is positive, continuously differentiable
and increasing to +∞ on (−∞, 0). We denote by ϕ the inverse function to Φ′, and let
Ψ(x) = x − Φ(x)/Φ′(x) be the function associated with Φ in the sense of Newton. It is
clear that the function ϕ is continuously differentiable and increasing to 0 on (0,+∞). The
function Ψ is ([3, 4], [5, p.30]) continuously differentiable and increasing to 0 on (−∞, 0).

For Φ ∈ Ω(0) and 0 ≤ a < b < +∞ we put

G1(a, b,Φ) =
ab

b− a

b∫
a

Φ(ϕ(t))

t2
dt, G2(a, b,Φ) = Φ

( 1

b− a

b∫
a

ϕ(t)dt
)
.

Then ([6], [5, p.34]) G1(a, b,Φ) < G2(a, b,Φ). It is clear that G2(λn, λn+1,Φ) = Φ(κn), where

κn =
1

λn+1 − λn

λn+1∫
λn

ϕ(t)dt.

Theorem 3.1 in [4], [5, p. 34-35] implies that if ln |an| ≥ −λnΨ(ϕ(λn)) (n ≥ n0) then

lnµ(σ, F ) ≥ Φ(σ)
G1(λn, λn+1,Φ)

G2(λn, λn+1,Φ)
(6)
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for all σ ∈ [ϕ(λn), ϕ(λn+1)] and n ≥ n0. We remark also that if a function f is positive,
continuous and increasing to +∞ on [0,+∞) such that f(x) > x and λn+1 ≤ f(λn) then
([7], [5, p. 34])

G1(λn, λn+1,Φ)

G2(λn, λn+1,Φ)
≥ G1(λn, f(λn),Φ)

G2(λn, f(λn),Φ)
. (7)

Now, let T > 0 be an arbitrary number and Φ(σ) = T ln 1
|σ| . Then ϕ(x) = −T

x
,Ψ(σ) =

−|σ| ln e
|σ| , and Ψ(ϕ(x)) = −T

x
ln ex

T
. Therefore,

G1(λn, λn+1,Φ) = T
λn+1 lnλn − λn lnλn+1

λn+1 − λn
+ T ln

e

T

and
G2(λn, λn+1,Φ) = T ln

λn+1 − λn
lnλn+1 − lnλn

− T lnT.

From the definition of S∗(Λ) we have ln |an| ≥ T lnλn ≥ T ln(eλn/T ) = −λnΨ(ϕ(λn))
for arbitrary T ≥ e and all n ≥ n0(T ), and from condition (5) it follows that there exists a
number β > 0 such that λn+1 ≤ λ1+βn (n ≥ n0). Therefore, (7) implies

G1(λn, λn+1,Φ)

G2(λn, λn+1,Φ)
≥ G1(λn, λ

1+β
n ,Φ)

G2(λn, λ
1+β
n ,Φ)

=

λ1+βn lnλn−(1+β)λn lnλn

λ1+βn −λn
− ln T

e

ln λ1+βn −λn
β lnλn

− lnT
=

1 + o(1)

1 + β

as n→∞ and, thus, from (6) we get

lnµ(σ, F ) ≥ (1 + o(1))T

1 + β
ln

1

|σ|
, σ ↑ 0.

i. e. in view of the arbitrariness of T we obtain (4).
Now we prove the necessity. Suppose that condition (5) does not hold, i. e. there exists

an increasing to +∞ sequence of integers such that lnλnk+1/ lnλnk → ∞, k → ∞. We
choose a slowly increasing to +∞ on [0,+∞) continuously differentiable function α such
that α(lnλnk+1

) ≤ lnλnk+1

lnλnk
(k ≥ k0) and the function Φ(σ) = α(ln 1

|σ|) ln 1
|σ| belongs to

Ω(0). We choose the coefficients of Dirichlet series such that ln |an| = −λnΨ(ϕ(λn)). Then
κn = ln |an|−ln |an+1|

λn+1−λn , because (xΨ(ϕ(x)))′ = ϕ(x). Since the function α is slowly increasing,
we have xα′(x)/α(x)→ 0 as x→ +∞. Therefore,

Φ′(σ) =
1

|σ|

{
α′
(

ln
1

|σ|

)
ln

1

|σ|
+ α

(
ln

1

|σ|

)}
=

1 + o(1)

|σ|
α
(

ln
1

|σ|

)
, σ ↑ 0,

and in order to find the asymptotical behaviour of ϕ it is necessary to solve the equation

ln
1

|σ|
+ lnα

(
ln

1

|σ|

)
= lnx+ o(1), x→ +∞. (8)

We find a solution σ = σ(x) of (8) in the form

ln
1

|σ|
= lnx− β, β = β(x) = o(lnx), x→ +∞. (9)
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Substituting (9) in (8) we obtain β = lnα(lnx − β) + o(1), x → +∞. But for some ξ ∈
(lnx − β, lnx) we have α(lnx) − α(lnx − β) = α′(ξ)β = o(ξα′(ξ)) = o(α(ξ)) = o(α(lnx))
(x → +∞), i.e. β(x) = lnα(lnx) + o(1), x → +∞, and, therefore, from (9) we obtain
ln 1
|σ| = lnx− lnα(lnx) + o(1), x→ +∞. Thus,

ϕ(x) = −(1 + o(1))α(lnx)

x
, x→ +∞. (10)

Using L’Hôspitale rule and relation (10) we see that Dirichlet series (3) with choosen coeffi-
cients belongs to S∗0(Λ). From (10) it follows also that

κnk =
1

λnk+1 − λnk

λnk+1∫
λnk

ϕ(x)dx = − 1 + o(1)

λnk+1 − λnk

λnk+1∫
λnk

α(lnx)

x
dx ≥

≥ −(1 + o(1))α(lnλnk+1)(lnλnk+1 − lnλnk)

λnk+1 − λnk
= −(1 + o(1))α(lnλnk+1) lnλnk+1

λnk+1

,

ln
1

|κnk |
≥ ln

λnk+1

α(lnλnk+1) lnλnk+1

+ o(1) = (1 + o(1)) lnλnk+1 (11)

as k → +∞. On the other hand, since [4]

lnµ(κn, F ) = −λnΨ(ϕ(λn)) + κnλn = G1(λn, λn+1,Φ)

and in view of (10)

Φ(ϕ(x)) = α(lnx− lnα(lnx) + o(1))(lnx− lnα(lnx) + o(1)) = (1 + o(1))α(lnx) lnx

as x→ +∞, we get

lnµ(κnk , F ) = (1 + o(1))λnk

λnk+1∫
λnk

Φ(ϕ(x))

x2
dx =

= (1 + o(1))λnk

λnk+1∫
λnk

α(lnx) lnx

x2
dx ≤ (1 + o(1))λnkα(lnλnk+1)

λnk+1∫
λnk

lnx

x2
dx =

= (1 + o(1))λnkα(lnλnk+1)
( lnλnk + 1

λnk
− lnλnk+1 + 1

λnk+1

)
=

= (1 + o(1))α(lnλnk+1
) lnλnk , k →∞. (12)

From (11) and (12) it follows that

lnµ(κnk , F )

ln(1/|κnk |
≤ (1 + o(1))

α(lnλnk+1
) lnλnk

lnλnk+1

≤ 1 + o(1), k →∞,

i. e. relation (4) does not hold. The necessity of condition (5) is proved.

3. Corollaries. Since max{|an| exp (σλn) : n ≥ 0} ≥ max{|anj | exp (σλnj) : j ≥ 1} for any
sequence (nj), Theorem 1 implies the following statement.
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Corollary 1. If there exists a subsequence (λnj) of the sequence (λn) such that
lnλnj+1

= O(lnλnj) and lnλnj = o(ln |anj |) as j →∞ then (4) holds.

If in power series (1) we make the substitution z = es then we obtain Dirichlet series (3)
with λn = n, |σ| = | ln r| = (1 + o(1))(1 − r), r ↑ 1, and µf (r, F ) = µ(ln r, F ). Therefore, if
there exists a sequence (nj) such that lnnj+1 = O(lnnj) and lnnj = o(ln |anj |) as j → ∞
then (2) holds. Hence and from above-mentioned result in [1] the following corollary follows.

Corollary 2. If there exists a sequence (nj) such that
lnnj+1 = O(lnnj) and lnnj = o(ln |anj |) as j → +∞,

then the functions lnµf (r) and lnMf (r) are or are not slowly increasing simultaneously. In
particular, if lnn = o(ln |an|) as n→∞ then the functions lnµf (r) and lnMf (r) are or are
not slowly increasing simultaneously.
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