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We found a solution of Henry E. Dudeney’s star puzzle (a path on a chessboard from c5
to d4 in 14 straight strokes) in 14 queen moves, which was claimed impossible by the puzzle
author. Generalizing this result to other board sizes, we obtained bounds on minimal number
of moves in a board filling queen path with given source and destination.

About ten years ago I spent many nice hours with the old book [3] of puzzles by Henry
E. Dudeney. I still remember one of them. This is the star puzzle [1] (X36 = AM329,
according to the list [5] by Donald E. Knuth), published more than a century ago in The
Strand Magazine. It was based in London from 1891 to 1950 and is famous as the place
where Arthur Conan Doyle’s Sherlock Holmes stories were published. The task of the puzzle
is the following

On this field of stars, draw a
path from one light star to
the other, crossing all stars
and constituted by 14 strai-
ght strokes.

This is the proposed solution
and there was claimed that
there is no required paths
constituted by 14 queen
moves.

But, surprisingly, I found this
path constituted by 14 queen
moves: c5-f8-c8-h3-b3-g8-g3-
b8-b2-g2-a8-a1-h1-h8-d4.

I was searching a solution by hand, as in the good old days. But later Carlos Rivera
posed a related puzzle, see [6] for this and next results from this paragraph. Answering
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the questions of Carlos Rivera (and also of Janos Barat and Konstantin Knop), Giovanni
Resta wrote a program. Assuming its correctness, he found five other solutions (which are
twins of mine), verified that for each pair of cells it is not possible to cover all the cells
with a path of length 13 (or less) going from one cell to the other, and analyzed all the
source-destination pairs of cells, to see which admitted a board filling 14-moves path joining
them. He provided a detailed and graphical description of this analysis, based on which I
showed that any pair of cells can be connected by a board filling queen path constituted
by at most 15 moves.

We also considered related problems and discussed a generalization of the above results
to other board sizes. Let B be an m×n board, that is a rectangular board with m rows and
n columns and t(n,m) be the minimum number of moves of a closed queen path, which
covers each cell of B. In the solution of Puzzle 416 (“Sinking the fishing-boats”) from [2] is
shown that t(7, 7) ≤ 12. In its comment is claimed that t(m,m) = 2m− 2 when m ≥ 7.

For rectangular boards, simple bounds for t(m,n) are provided by the following

Proposition 1. Let m ≤ n be natural numbers. Then t(m,n) ≤ 2m if m is even or m = n,
and t(m,n) ≤ 2m+ 1 if m is odd.

Proof. We use rook paths to provide the required bounds. For this purpose, place a rook
at a top corner of an m× n board and move it along a sweeping path from the top to the
bottom, constituted by horizontal moves from one board side to the other, interleaved by
moves by one cell down. When the constructing path will fill the bottom row, the rook will
need one or two moves (depending on the parity of m) to return to the start cell. Note that
when m = n then the rook can return to the start cell by one queen move anyway.

For any cells P and Q of B, let f(P,Q) be the minimum number of moves of a board
filling queen path from P to Q.

Proposition 2. Let B be an m×n board and P , Q be any cells of B, connected by a queen
move. Then t(m,n) ≤ f(P, P ) ≤ t(m,n) + 1 and t(m,n)− 1 ≤ f(P,Q) ≤ t(m,n) + 2.

Proof. Since any board filling queen path from P to P is closed, we have t(m,n) ≤ f(P, P ).
On the other hand, let P be any closed board filling queen path on B, constituted of t(m,n)
moves. Then there exists a move M of P , which covers the cell P . Let M = P ′P ′′ be a
move from a cell P ′ to a cell P ′′. If either P ′ or P ′′ equals P then choosing this cell as
a new start cell of P , provides us a board filling queen path from P to P , constituted of
t(m,n) moves. Otherwise we split the move P ′P ′′ into moves P ′P and P ′P ′′, and put P as
the start cell of the split path. This provides us a board filling queen path from P to P ,
constituted of t(m,n) + 1 moves.

Let P be an arbitrary board filling queen path from P to Q, constituted of f(P,Q)
moves. Extending P by a move from Q to P , we obtain a closed board filling queen path
on B, constituted of f(P,Q) moves. On the other hand, let P be any closed board filling
queen path on B, constituted of t(m,n) moves. Then there exists a move M of P , which
covers the cell P . Let M = P ′P ′′ be a move from a cell P ′ to a cell P ′′. Replacing the
move P ′P ′′ by moves P ′P , QP , and PP ′′ (if some of these moves are empty then we skip
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them) and adjusting the order of moves, we obtain a board filling queen path from P to Q,
constituted of at most t(m,n) + 2 moves.

In fact, t(m,n) = min{f(P,Q) : P,Q are cells of B connected by a queen move}+ 1 =
= min{f(P, P ) : P is a cell of B}. The above bounds suggest the following

Problem 1. Find minimum and maximum values of f(P,Q) when P and Q are cells of B.

Proposition 3. Let m ≤ n be natural numbers, B be an m × n board, and P and Q be
any cells of B. Then f(P,Q) ≤ 2m + 1 if P and Q lie in distinct rows or m is even, and
f(P,Q) ≤ 2m+ 2 otherwise.

Proof. The idea of the proof is similar to that of Proposition 1. Place a rook at a P and
move it to the leftmost cell of the row. Then move the rook, traversing rows from one board
side to the other, switching rows in arbitrary order, but ending at the row containing the
cell Q, and finishing the path by moving the rook to Q. Counting the number of moves of
the path, we obtain the required bounds. Note that when P is not at the left of Q and in
the same row and m is even then we do not need to traverse this row, so we can save one
move.

On the other hand, similarly to the proof by John Selfridge from [4], we can show the
following

Proposition 4. Let m ≤ n be natural numbers, B be an m×n board, and P and Q be any
cells of B. Then f(P,Q) ≥ 2m− 1 if m < n and f(P,Q) ≥ 2m− 2 if m = n. Moreover, if
P = Q and n ≥ 2m then f(P,Q) ≥ 2m.
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