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Let f(z1, 22) be a bivariate entire function and C be a positive constant. If f(z1, z2) satisfies
the following inequality for non-negative integer M, for all non-negative integers k, [ such that
k+1€{0,1,2,..., M}, for some integer p > 1 and for all (21, 2z2) = (r1€'%, 72€1%2) with r; and
ro sufficiently large:

=

2 f27r |f(i+kvj+l)(rlei91,7‘2€i92)|pd91d92)

M
0 0
) >
ilj! =

i+5=0

o (f27r 27 |f(i+k7j+l)(7‘1€i91,Tgeiez)‘pd91d92>

> Z 0 0

i+j=M+1

S

ilj] ’

then f(z1,22) is of exponential type not exceeding
1
2+ 2log (1+ 5) +log[(2M)!/M1].

If this condition is replaced by related conditions, then also f is of exponential type.

1. Introduction. Let f(z,23) be a bivariate entire function. Then the function at any
point (a,b) € C? has a bivariate Taylor expansion

where

F*0(a,b).

1 {8’“”]”(21, Zg) 1
Ckl = A ko = T

PIRCETE: La;w_km

Recently, theory of functions having bounded index obtained the second breath. A great
contribution was done by Lviv school of complex analysis. In particular, A. Bandura and
O. Skaskiv extended the notion of bounded index to various classes of analytic function
in multidimensional complex space. They used two approaches in their multidimensional
generalizations. The first approach is based on a directional derivative in a definition of
function having bounded index and leads to the notion of function of bounded L-index
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in direction where L is some positive continuous function defined in a unit ball or in C".
They implemented this approach for entire functions of several complex variables [7,17]
and for functions analytic in the unit ball (see [2,6]). Another approach used all possible
partial derivatives in a definition of a function having bounded index and led to the notion
of functions of bounded L-index in joint variables, where L is some vector-valued positive
continuous function. This approach was proposed for entire functions of several complex
variables [3,8,9], analytic functions in the unit ball [1], for analytic functions in the polydisc
[4], for functions analytic in the Cartesian product of the complex plane and the unit ball
[5]. These functions have applications in analytic theory of ordinary differential equations
[11,28-30], partial differential equations [6] and their system [9,20]. In [7] last cited papers
there were presented conditions providing boundedness of index for every analytic solution.

Similar to Gross [14] and Lepson [18] we presented in [21,22] the following notion of
bounded index of a bivariate entire function.

A bivariate entire function f(z,29) is said to be of bounded index provided that there
exist integers M and N independent of z; and 25 such that

|09 (24, 2)]
ilj!

(k1)
max{m:ng%—lSM%—N}z (1)

k!

for all i and j and for all (21, z5) € C2.

Actually, the multi-dimensional generalization was firstly appeared in the papers of
Salmassi, Krishna and Shah [19,25].

We shall say the bivariate function f is of bounded index M + N, if M + N is the smallest
integers such that the above inequality holds. The least such integer N + M is called the
index of the function f and is denoted by N(f). A bivariate entire function which is not
of bounded index is said to be of unbounded index (see more details on unbounded index
n [10]). One should observe that if f is a bivariate entire function of bounded index then
there exist integer M > 0 and some C > 0,

" .
| FED (21, 20)| | FOD (21, 20)]
a2 2)

k+1=0

where i 4+j € {M + 1, M +2,...}. In addition, if the inequality (1) in the Definition 1 holds
then

|f(k’l)(21> ZQ)! 1 ‘f(i’j)(zla 22)‘
VB2l g c k< Mo<i< N>
max{ Kl 0<k=MO=is “M+O(N+1) iyl

where i,7 € Z,.
Let f(z1,22) be a bivariate entire function. Let us define
— logM
r= Tm 22T f(T1,7“2)7
71,7200 1+ 7o
where
M¢(r1,m2) = max{|f(z1,22)|: |21| = 11, |22| = 12}

The functions for which 7 # 0 is finite are said to be functions of exponential type 7. The
definition slightly differs from a classic definition (see, for example, in [24, p.64-65]) where



158 A. BANDURA, F. NURAY

there is considered a ball exhaustion of C2. Here we consider a bidisc exhaustion of two-
dimensional complex space in our definition (other interesting properties generated by the
ball and the polydisc exhaustion in theory of functions having bounded index are obtained
in [1]). In a recent paper Nuray and Patterson [21] considered interesting variations of
condition (2) and proved the following theorem with slightly another definition of the type
A~ Tm long(rl,TQ)'
T1,72—00 T1T2

Theorem 1. Let f(z1,22) be a bivariate entire function and C' be a positive constant. If
f satisfies one of the following for k € {0,1,2,3,...,M}, 1 € {0,1,2,3,..., N} and for all
(21, z9) with |z1| and |zy| sufficiently large:

>y Ual. oy 3 el

i=M+1j=N+1

B =

izjv: < 0271' 027r|f(i+k7j+l)(7‘16i91,T2€i02)|pd91d92>

1

f27r fo f(z+k,]+l) (7" 6191 T26192)|pd91d92>
7!

N . .
M(Th’f’z,f(l’]) 7’1;"‘2, J)>
Z TR >y T

i=M+1j=N+1

il

for some integer p,

then f is of exponential type 71 < +00.

Shah [27] and Hayman [16] is known that every entire functions of bounded index is of
exponential type. Therefore, the functions of bounded index has properties of functions of
exponential type (for example, see [12,13,23,26,31]).

2. Main result. The following results for functions of a sing variable having bounded index
was firstly obtained in [26]. Here we deduce a two-dimensional analog.

Theorem 2. Let f(z1, z2) be a bivariate entire function, C' be a positive constant. If f(z1, z2)
satisfies the following inequality for non-negative integer M, for all non-negative integers k, |
such that k+1 € {0,1,2,..., M}, for some integer p > 1 and for all (21, zy) = (11!, r9e1%2)
with ri >} > 1 and ry > 1}, > 1 sufficiently large:

=

M ( 2 27w ‘f(i-i-k,j-f—l) <r16i91’ T2€i92)|pd61d92) !

Z 0 0

i+j=0

ilj!
1

2 27 |f(i+k,j+l) (Tl@iel , r2@i92) |pd91d92> !

ZCi(oo

i+j=M+1

: (3)

il

then f(z1, z2) is of exponential type

(2M)!

1
7 <2+ 2log(l+ 5)+210g 7
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Proof. One should observe that (k+’) = (i + 1) (i +2) -+ k) < % for k,i €
{0,1,2,..., M}. We have for r; > rl and ry > 19

=

. ( 2 027r’f(i+k,j+l)(rlei01>7’26i€2)‘pd91d92>p

> - -

141
i+35=0 v

1

i <f27r f27r |f(z+k ]+l)(r eif1 7’26192)|pd91d92> (k? + Z) (l +j) <
=, (v 1+ ) M

B =

oM (027r ozﬂ|f(i’j)(7“1€i01,T2€i92)|pd01d92>

< ((2M)1/M1)?* Y — =

171
i+5=0 v

=

- ) < 027r 027T|f(i,j)(r16191,T26i92)|pd91d92)P _

= ((2M)/M)? (Z+ > i

i+35=0 i+j=M+1

=

M 2m 2T (i) i0 02\ |p »

1 (0 0 | f57) (r1€!r, ree!®?))| d91d92>
2

< ((2M)1/M)) (1+5> 3

i+5=0

(4)

an
Here we have used the hypothesis (3) with £ = 0 and [ = 0 to obtain the last inequality. In

the Taylor expansion of the function f*! in the variable z

f(kJrzl (a b)

7!

"D (a + hy,b) = hi
f ,

=0
we put a = (r; — 1)ei%, h; = €l% and obtain

2 FUHRD (1) — 1)ei0 | pyeif2) it p

2!

|f(k’l)(7“1€i91, 7”2€i02) |p =

=0

2 27 %
(/ / |f(k’l) (rleiel , 7’2€i92) ‘pd91d92> <
0 0
2 p2m [ ‘f(i+k,l)(<rl _ 1)ei91,7,2ei62)| p
< (/0 /0 {; g dodoy | . (6)

Applying Minkowski’s inequality [15, p. 148] to right-hand side of inequality (6), we have for

ry > 1)+ 1 and ro > 1
2 2w . . %
(/ / ./ (k’l)(ﬁ@lel,Tze‘GQ)]pdeldez) <
o Jo

00 2 p2m (i+k,1) — 1)t 102 p v
<y I = D rae™) L 46, ) —
—\Jo Jo i

)

and so

3=
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-

21 21 ‘f(”k’l)((h _ 1)6101’7,26192”12 d91d62)5

(f}i)“ . - . (7)
=0 =M1

Applying inequality (3) with j = 0 in the right-hand side to the sum > >, ., in (7) we

deduce
27 2m ) ‘ %
( / / | FED (1€l rpel?) |pd01d92) <
0 0

I 27 e (ibk, ) i0 i0 e
(3 LSO (= 1), ) Py,

= <1+é) Z (0 O iljl ' (®)

i+5=0

Applying inequality (4) to (8), we obtain

1
2w 2 ) ) m
(/ / |f(k?,l) (,,,,16191 , ,,,.26192) |pd91d92) S
0 0

O s s . . 1/p
02 02 |f(l’])<<7”1 — 1)6191,7’26102)|pd91d€2>

<(1+ é)Q(@M)!/M!)Q i (

191
i+j=0 v

Hence,

Jun

< 027r 027l' |f(k,l) (rlei9177“26i62)|pd91d02> ’
k!

<
k+1=0
M M 2w (27 £(i,) _ i01 i62 |p
12 1 (fo fo |f @ ((r — 1)e, ree’®?))| d01d02>
< - /M2 . -
<(1+ &) (@yyan? 3 - > A <
k-+1=0 i+35=0
: . . 1/p
M 2m 2w (7‘7.7) — 191 192 P
142 (0 o U ((rr = 1), rpe®))] d01d92>
<1+ M2 |
< (14 2) (2M)/M)

(9)

=, ilj!
Denote 1 2
= s )
and
M < 02” 0277 | fED (rleiel,T26i92)|pd91d92> v
Erira) = ) il

k+1=0

Then inequality (9) can be rewritten as £(r1,72) < A(r; — 1,72). Applying this inequality
[r1 — 7}] times, we obtain

E(r,ma) < APTE () — [y — 7] ) < ATE( 4 {m — 1)), (10)

where [z] is the entire part of a real x, {x} is the fractional part of a real z.
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Replacing the Taylor expansion in the variable z; by the Taylor expansion in the variable
2z in equation (5) and repeating other considerations from (6) up to (9) it can be proved
&(r1,m9) < A(rq, 9 — 1). Again Applying the last inequality [ro — 5] times in variable ry to
(10) again we deduce

E(riyra) S NTEE( 4 (=} e — [re — 1)) S NTRE(H A+ (= b 4 {re — 1)),
Therefore, for 1 > 7 and ry > ), we get
f(rl,rg) < Cl)\rl+r2, (11)

where

"
M < 27 7T|f(kl)(s et 826192)‘pd61d92> ’

0 0
Ch :Cl(M,p,T’i,Té,f) = max Z 130

s1€r! 13 1+1] -
52€[ry;ry+1] RH=0

1S a constant.
Now write

f(z1,22) Z Amn2y 2y (ry, re) = max{|am,|r"ry : m,n € Z, }.
m+n=0

Then from Cauchy’s and Holder’s inequalities one has

2 27
|G| 775" < 4 / / 19177’2€i92)‘d91d92 <
1 2m 2m 2m 2
4_ </ / 7”16191 T2€192 ’pdeldeg) (/ / d91d62> =
(4m%)~ 1P (/ / frie ry )|pd91d02) :

where ]lj + % = 1. Hence, estimate (11) gives

plri,rs) < (4n%) 5O, (12)

It is known that for o > 1 one has

1
p(ri,re) < My(ry,r2) Z |cp|rirl, = Z |cka| () (ary)! = S

k+1=0 ke+1=0 @

_ o] 1 B o 2

< plary, ars) Z =il G pu(ary, arg).
k+1=0

Then
— loglogpu(ri,rs)  — loglog My(ry,72)

I = 1 =
TLTIQIEOO log(ﬁ + 7”2) r17r12IEoo 10g(’l“1 + 7"2) P
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In view of (12) the order p is finite and p < 1. Therefore, we yield that f(z1,z22) is of
exponential type and

_ a \2
7= lim log My (r1,72) < Tm log((5%7) plary, ars)) _ log(pu(ary, ary)) -
riresee M1t T rraTree T+ T r1,r3—00 r1+ 72
— 1 472 710 )\0‘(7”14'7“2)
< Tm loellir) G )~ alog .
T1,72—00 701 _I_ 7:2

In view of arbitrariness a > 1, we tends « to 1 and conclude that 7 < log A. The proof is
completed. O

Theorem 3. Let f(z1,22) be a bivariate entire function and C' be a positive constant. If f
satisfies the following inequality for non-negative integer M and for non-negative integers k,
[ such that k+1€{0,1,2,..., M} and for all (z1, z5) with |z1| > r] and |z2| > r} sufficiently
large:

M| plrid)

21, Z2>’ > C i ’f(k+i’l+j)(zl7 22)’ (13)

i+3j=0 v i+j=M+1 v

then f(z1,22) is of exponential type and

1 2M)!
T< 2+210g<1 + 5>+2log <%) )

Proof. For any entire function F': C* — C and (21, z3) € C? one has
e F(ZJ) Z/ , Z/ . .
F(z1,2) = Z M(zl —21) (20 — 25)7. (14)

Let n; be any integer, a;, & € C with |§| = 1, |a1] < 7). Choosing 2] = (n; — 1)& + aq,
21 = n1& +a; and F = f09) we obtain in (14)

(@ + (m = D&, 22)|

(i) |f (i+k,5)
i < 15
|f (ar +ni&, 20)] kE O ] (15)
for i € Z,. Applying (13) to (15) one has
N 0| plith.g) — )&, 20)|
(4,9) < |f (al + (nl 1, ~2 <
[P (a1 +ni&r, 22)] < ];0 1 <

<
- !

k+1=0

a4+ (- Del (O e ) (- D)
> =2+ 2 -
k!
=0  kHl=M+1
Z [fEHRIH (ay + (g — 1)&1, 2))

1! (16)

fori+75€40,1,2,..., M}. We remark that for i+ j < M

M

|fEHRTHD (21, 20) Z [fORIH (21, 29)] (i + R)I(G + D)

<
= ! Sy GHR)IG D) kil
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< §5 Ul (B (5 5 YUl (2

s+p=0 s+p=0 s+p=M+1

We apply estimate (13) to the last inequality, and we obtain

M . .
| fOTRITD (2, 29)| 1 1f5P) (21, 20)]
Z ! < (1 * 5) Z slp! ' (17)

k+1=0

Equations (16) and (17) with z; = a; + n1&; together give

| (a1 + ny&y, 20)] 1 | fORID (ay + (ng — 1), 20)|
< <
Z <(i+ 0) w Z ! =

lg!
i+j=0 i+5=0 k+1=0
1\2 /(2M)? & sp) 1
<(g) (B 3 3 ettt
’ itj= 0t s4+p=0 Sp:
1\2 [ (2M)! |fEP) (a1 + (ny — 1)&1, 20)]

< 2(1 —) ) ) 18

() (S )Z iF (18)

2
Denoting A = e*(1+ §)? (%) > 1 and using (18) recursively we have

Z ’f(z,] a1+n1£1,z2 < A1 Z |f(51)) al zZ2 ’

! slp!

i+35=0 s+p=0

Let ny be any integer, ag, & € C with |[&| = 1, |as] < 7). As above, choosing z) =
(ng — 1)& + ag, 22 = ne&s + as and repeating all considerations from (15) to (18) in variable
z5 we can recursively prove that

M
£ (ay + mi&r, ag + naky)] < ymim Z [£P(ar, az)|
Z 7! R
i+5=0 s+p=0

Hence, for |ai| < 1, |az| < 1 we get

Z |f 9) (a1 + 1161, a2 + né)| < O mtn2

171
it lg!

where C' = C(M, f) = max{zgrpzo P a0 la| <7, |az| < 7h} is a constant.

slp!
Letting 21 = a1 + m&, 21 = a2 + n2e, 11 = |21, 72 = |22, We get ny = 2% = |24 <
21| + |ay| < v+ 1, ng = _225*2“2 = |_Z2g202| < |za| + |az| < ro + 1. Therefore, we deduce
M .
Z |f(z’])'(|2j}v 22)| < CAmtn2 < OATT2E2
~ ilj!
i+5=0

Then |f(21, 29)] < CA**272 Hence, f must be of exponential type and its type 7 do not
exceed log \. O]
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Theorem 4. Let f(z1,22) be a bivariate entire function and C' be a positive constant. If f
satisfies the following inequality for non-negative integer M, for all non-negative integers k,
[ such that k +1¢€ {0,1,2,..., M} and for all (21, 23) = (r1\%, ry€l%) with ry > r| > 1 and
ro > 14 > 1 sufficiently large:

M (i+k,j+0) M (i+k,j+0)
2 : | <T17T2;f )| > C 2 : | (T17T27f )" (19)

191 171
i+j=0 v i+j=M+1 v

then f(z1, z3) is of exponential type and

1 2M)!
T§2+210g(1+5)+210g(%).

Proof. The proof is similar to that of Theorem 2. We have for r; > 7| and ry > 17

i/[: M(Tl,szf(iJrk’jH i (71,72, f(Hk]H ) (k + )L+ 5)! <
171 171 -
P i et (k+ )+ ) ily!
2M i i
M (ry,rq, f09)) M (ry, o, fO))
2 ) ) . ) 9
< (@MY Y7 RIS (201 Z Z T
i+5=0 i+j=0 i+j=M+1
o) M (14 1 o~ My, ra /) 20
< l/M! — — :
< ((2m)Y >(+C)Z ) 20)

Here we have used the hypothesis (19) with £ = 0 and [ = 0 to obtain the last inequality.
In the Taylor expansion of the function f*! in the variable z

F+4(a, b)

hl
7!

FED (@ + hy,b) = Z

i=0
we put a = (r; — 1)ei%, hy = €l% and obtain

o0 f(i+k’l)<<7"1 o 1) i61 T 6192) i011

| FED (1 rpei)| = il

i=0
and so

M(ry, 79, f®)) = max kD (el ryeif2)] <
(e SO0 = a1 )| <

< . o f(i+k,l) ((Tl _ 1)€i91 , ,,,.2€i92 )eieli

- (91 ,02)6 [0,271']2
=0

7!

0 (i+k,) 1\Mi0 . if o0 o (i+k,0)
max g, ,)e(0,.2x]? | ((r1 = 1) me'®)| < M(ry— 1,79, f )

M s 1 — 1,1, fOHRD
— (Z+ > ) M 1@,! ) (22)

=0 i=M+1
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Applying inequality (19) with j = 0 in the right-hand side to the sum > ) ., in (22) we
deduce

M . .
1 M(ry — 1,7y, fOFkI+D
M(7”177‘2,f(k’l))§<1+5> Z (rs 2 f )

= (23)
i+5=0 ilj!
Applying inequality (20) to (23), we obtain
M -
1\2 M(ry — 1,7y, f09)
(k1) - ] 12 1 5 12y
M(ry, o, f50) < (14 c> (MM <Y i |
i+35=0
Hence,
M M M .
M(T17T2’f(k’l)) 1y? VY 1 M(ry — 1,T2,f(w))
2 w =1+ g) @nyan? 3 2 il =
k+1=0 k+1=0 i+j=0
M -
1\2 M(ry — 1,1y, f09)
< 2 — | !2 s 12y .
<e <1+ C) (2M)1/MY) Z i (24)
1+7=0
Denote . ,
A= (e(1 + 6)(2M)!/M!) >1
and

M
Elrn,r) = Yo M ST

k!
k-+1=0

Then inequality (24) can be rewritten as £(ry,79) < A(r1 — 1,72). Applying this inequality
[r1 — 7}] times, we obtain

E(r1,ma) < N (ry — [y — 1] ) S ATE(R) 4 {re — 1)), (25)

where [z] is the entire part of a real x, {x} is the fractional part of the real x.

Replacing the Taylor expansion in the variable z; by the Taylor expansion in the variable
2z in equation (21) and repeating other considerations from (22) up to (24) it can be proved
&(r1,m9) < X(r1,r9 — 1). Again applying the last inequality [ro — 75] times in variable ry to
(10) we deduce

E(ry,ra) S AHRTRIEG 4 (i — Y — o — 1)) S ARE(r - {r = b o+ {re — 1)
Therefore, for 1 > 7 and ry > ), we get

5(7’1, 7“2) S Cl)\r1+r2 (26)

where Cy = Cy (M, p, 7,74, f) = max{zgilzo M(S+l,fm)) s1 € [r;ri+1], 80 € [ré;ré—i—l]}
is a constant. Inequality (26) yields
M(Tl,rg,f) S Cl)\T1+7‘2‘ (27)

In view of (27) the order p is finite and p < 1. Then f(z1, 22) is of exponential type and
T < log . O
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Remark 1. Proof of Theorem 2 is similar to proof of corresponding theorem for entire

functions in [26]. Other results from [26] use Wiman-Valiron’s theory for entire function of
%E::;EZ;; ~ (V(T:’f))q_j, where r, — 400 as n — oo, v(r, f) is the central
index. At the present moment, the authors do not know applicable multidimensional analog
of the theory in this case. Therefore, Theorems 3 and 4 are obtained by methods from [13]

with similar harder conditions.

one variable:
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