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In the paper we extend some aspects of the essential spectra theory of linear operators acting
in non-Archimedean (or p-adic) Banach spaces. In particular, we establish sufficient conditions
for the relations between the essential spectra of the sum of two bounded linear operators and
the union of their essential spectra. Moreover, we give essential prerequisites by studying the
duality between p-adic upper and p-adic lower semi-Fredholm operators. We close this paper
by giving some properties of the essential spectra.

1. Introduction. Let K be a field with the unit element 1K. A valuation on K is a map
| · | : K −→ R+ satisfying: |α| = 0 if, and only if, α = 0; |αβ| = |α||β| for any α, β ∈ K; and
|α| ≤ 1 implies |α + 1K| ≤ c for some constant c ≥ 1 (independent of α). The valuation is
non-Archimedean if c = 1, equivalently the ultrametric inequality (|α + β| ≤ max(|α|, |β|)
for any α, β ∈ K) holds. The valuation | · | is trivial if |α| = 1 for every non-zero α and
|0| = 0. A field K is said to be non-Archimedean if it is endowed with a non-Archimedean
valuation.

Throughout this paper K is a nontrivial non-Archimedean field which is complete (every
Cauchy sequence of elements of K converges, where the valuation | · | induces a metric
d : K×K −→ R+ defined by d(α, β) = |α− β|, α, β ∈ K).

Let X be a vector space over K. A non-Archimedean norm on X is a map ∥ · ∥ : X −→
R+ such that: ∥x∥ = 0 if, and only if, x = 0; ∥λx∥ = |λ| ∥x∥ for any x ∈ X and any
λ ∈ K; and ∥x + y∥ ≤ max(∥x∥, ∥y∥) for any x, y ∈ X. A vector space endowed with non-
Archimedean norm is called non-Archimedean normed space. A non-Archimedean Banach
space is a non-Archimedean normed vector space, which is complete (every Cauchy sequence
of elements of X converges) with respect to the natural metric induced by the norm d(x, y) =
∥x− y∥ for any x, y ∈ X.

Non-Archimedean valued fields are the fundamental of the non-Archimedean functional
analysis, which has been studied by several authors, especially, due to A. F. Monna [9],
W. H. Schikhof [13], and A. C. M. van Rooij [15]. One of the main objectives in this analysis
consists in studying the spectral theory of bounded linear operators, which was constructed
by M. M. Vishik [17] for a class of operators that he named analytic operators with compact
spectrum (when the nontrivial valued field is algebraically closed).

In the classical Banach spaces (i.e. K = R or C), one of modern approaches that is
related to spectral analysis is the essential spectrum which has various uses in mathematics
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and physics. This approach was first inaugurated by H. Weyl [18] around 1909 when he
defined the essential spectrum for a self-adjoint operator A on a Hilbert space as the set of
all points of the spectrum of A that are not isolated eigenvalues of finite algebraic multiplicity.
If A is not self-adjoint bounded operator (or just assumed to be closed and densely defined
in an arbitrary Banach space), we can find several definitions of the essential spectrum which
coincide with self adjoint operators on Hilbert spaces (see, for example, [6, 12]). Furthermore,
for important characterizations concerning essential spectra in classical Banach spaces, we
refer the reader to the book of A. Jeribi [7], which is a comprehensive survey of results
concerning different types of essential spectra.

However, after the reading of literature about the essential spectrum, there are not many
manuscripts in the non-Archimedean setting except in [4, 5], where it was defined only one
type of the essential spectrum and proved that the latter is not affected by the addition of
a completely continuous operator. This is our impetus to extend the other types of essential
spectra in non-Archimedean fields, which we will examine in connection with various classes
of linear operators defined through the kernels and ranges, the most important of these
classes are p-adic Fredholm operators, p-adic upper semi-Fredholm operators, and p-adic
lower semi-Fredholm operators.

In the second section, we give and establish some basic concepts of non-Archimedean
functional analysis, which consist of some facts of the theory of linear operator in a non-
Archimedean Banach space that is needed throughout this work.

In the third section, we present our main purpose by establishing sufficient conditions for
the relations between essential spectra of the sum of two bounded linear operators defined
on a non-Archimedean Banach space and the union of their essential spectra. Furthermore,
we give some essential requirements by examining the duality between p-adic upper semi-
Fredholm and p-adic lower semi-Fredholm and combining the obtained results to show that
such relations transfers to the equality. Finally, we end up by giving some properties of the
essential spectra.
2. Preliminaries and auxiliary results. This section aims to construct basic concepts of
non-Archimedean functional analysis, including some results of the theory of linear operators
in a non-Archimedean Banach space that is required in the sequel.

The symbol X, Y stand for a non-Archimedean Banach spaces over K. For a linear
operator A acting from X into Y, we write D(A) ⊆ X to denote the domain of A. The
operator A is called linear if D(A) is a linear subspace of X and if A(αx+βy) = αAx+βAy
for any α, β ∈ K and x, y ∈ D(A).

Let A : X −→ Y be a linear operator. The kernel N(A) ⊆ D(A) and the range R(A) ⊆ Y ,
are respectively, defined by

N(A) = {x ∈ D(A) : Ax = 0}, R(A) = {Ax : x ∈ D(A)}.
Let X, Y be two non-Archimedean Banach spaces.

(i) A linear operator A : X −→ Y is said to be bounded if D(A) = X and there exists C > 0
such that ∥Ax∥ ≤ C∥x∥ for all x ∈ X.
(ii) The norm ∥A∥ of the bounded linear operator A is defined by

∥A∥ := sup

{
∥Ax∥
∥x∥

: x ̸= 0

}
.

We denote by L(X, Y ) the set of all bounded linear operators from X to Y .

Remark 1. The quotient space X̂ = X/N(A) is a non-Archimedean Banach space endowed
with the non-Archimedean norm
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∥x̃∥ = inf{∥x∥ : x ∈ x̃} = inf : {∥x− y∥ : y ∈ N(A)} := d(x,N(A)).

The bounded linear operator Â defined by Âx̃ = Ax for each x ∈ x̃ has an inverse Â−1.

The reduced minimum modulus γ(A) of A is defined by γ(A) :=

{
∥Â−1∥−1, if A ̸= 0,

∞, if A = 0.

Let X, Y be two non-Archimedean Banach spaces. If A ∈ L(X, Y ), then:
(i) A is said to be injective if N(A) = {0}.
(ii) A is said to be surjective if R(A) = Y.
(iii) A is said to be invertible if it is both injective and surjective.

Let X and Y be two non-Archimedean Banach spaces and let A ∈ L(X, Y ).
(i) The spectrum σ(A) of the linear operator A is defined by

σ(A) := {λ ∈ K : A− λI has not a bounded inverse}.
(ii) The resolvent set ρ(A) is the complement of the set σ(A) in K.

Let X be a non-Archimedean Banach space.
(i) A ⊂ X is said to be of countable type if it is the closed linear hull of a countable set.
(ii) A ⊂ X is called compactoϊd if for every ϵ > 0 there is a finite set B ⊂ X such that

A ⊂ co(B) + {x ∈ X : ∥x∥ ≤ ϵ},
where co(B) is the absolutely convex hull of B, i.e.,

co(B) =
{∑
x∈X

λxx : λx ∈ K, |λx| ≤ 1, X is finite subset of B
}
.

Let X and Y be two non-Archimedean Banach spaces.
(i) K ∈ L(X, Y ) is called a compact operator if K(BX) is compactoϊd, where BX denotes
the closed unit ball of X. The collection of compact operators from X to Y will be denoted
by K(X, Y ).
(ii) P ∈ L(X) is called a projection if P 2 = P.

In the sequel, we denote by X
′ the topological dual of X (i.e., X ′

= L(X,K)) and by X
′′

the bidual of X (i.e., X ′′
= (X

′
)
′).

Proposition 1. Let X be a non-Archimedean Banach space. If X is a nonzero finite-
dimensional space, then dimX

′ ≤ dimX.

Proof. We have two cases. First if X ′
= {0}, then 0 = dimX

′ ≤ dimX.
Second case, if X ′ ̸= {0}, then dimX

′
= dimX. Indeed, suppose that dimX = n and

let {x1, ..., xn} be a basis of X. For each i = 1, ..., n, define a linear functional fi : X −→ K
by setting

(fi, xj) =

{
1K, if i = j else,
0K.

Note that {f1, ..., fn} is linearly independent. In point of fact, suppose that α1, ..., αn ∈ K
such that ∑

1≤i≤n

αifi = 0 (1)

Since (
∑

1≤i≤nαifi, xj) =
∑

1≤i≤nαi(fi, xj) = αi for all i ∈ {1, ..., n}, it follows from equality
(1) that αi = 0 for all i ∈ {1, ..., n}. As a result, {fi}1≤i≤n is linearly independent.
Now, it remains to prove that {fi}1≤i≤n spans X

′
, we show that for all φ ∈ X

′

φ =
∑

1≤i≤n

(φ, xi)fi.
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It suffices to show that both sides take the same value on every vector x ∈ X. So, it follows
that

(φ, x) =
(
φ,

∑
1≤j≤n

xj(fj, x)
)
=

∑
1≤j≤n

(φ, xj)(fj, x).

On the other hand, ( ∑
1≤i≤n

(φ, xi)fi, x
)
=

∑
1≤i≤n

(φ, xi)(fi, x).

Hence, {f1, ..., fn} spans X
′ , and therefore forms a basis of X ′

. Consequently, dimX
′
= n.

That is, dimX
′ ≤ dimX.

Let X, Y be two non-Archimedean Banach spaces and let A ∈ L(X, Y ). The adjoint of
A, denoted by A∗, is defined by

(A∗f, x) = (f, Ax) for all f ∈ Y
′
and x ∈ X.

Remark 2. In contrast with the classical operator theory, there exist bounded linear opera-
tors, which do not have adjoint (see [3]).

In what follow L̆(X, Y ) denotes the set of all bounded linear operators from X to Y
whose their adjoint operators exist.

Let X be a non-Archimedean Banach space.
(i) Let M and N be two subspaces of X and X

′ respectively, we define their orthogonal by
M⊥ = {f ∈ X

′
: (f, x) = 0 for all x ∈ M}, ⊥N = {x ∈ X : (f, x) = 0 for all f ∈ N}.

(ii) Let JX : X −→ X
′′ be the natural map defined by
JX(x)(f) = f(x) for all x ∈ X and f ∈ X

′′
.

X is called dual-separating (respectively, reflexive) if JX is injective (respevtively, bijective
isometry).
(iii) A continuous seminorm q is said to be polar if q = sup{|f | : f ∈ X

′
, |f | ≤ q}.

(iv) X is said to be polar if its topology is defined by a polar norm.
(v) X is said to be strongly polar if every continuous seminorm q on X for which q(X) ⊂ |K|
is polar, where |K| is the closure of {|λ| : λ ∈ |K|} in [0,∞).

(vi) A subspace D of X has the weak extension property (wep in short) in X if every g ∈ D
′

has an extension g ∈ X
′
.

Remark 3. (i) If X is reflexive, then X is polar. (ii) If X is polar, then X is dual-separating.

In the sequel of this paper, the nullity, α(A), of A is defined as the dimension of N(A)
and the deficiency, β(A), of A is defined as the codimension of R(A) in Y. The index of A is
defined by i(A) = α(A)− β(A). The classes of p-adic upper semi-Fredholm and p-adic lower
semi-Fredholm operators from X to Y are defined, respectively, by

Φ+(X, Y ) =
{
A ∈ L(X, Y ) : α(A) < ∞, R(A) is closed in Y

}
,

Φ−(X, Y ) =
{
A ∈ L(X, Y ) : β(A) < ∞, R(A) is closed in Y

}
.

The operators in Φ(X, Y ) = Φ+(X, Y ) ∩ Φ−(X, Y ) are called p-adic Fredholm operators
from X to Y , while Φ±(X, Y ) = Φ+(X, Y ) ∪ Φ−(X, Y ) denotes the set of p-adic semi-
Fredholm operators from X to Y. If X = Y, then L(X, Y ), Φ(X, Y ), Φ±(X, Y ), Φ+(X, Y ),
and Φ−(X, Y ) are replaced by L(X), Φ(X), Φ±(X), Φ+(X), and Φ−(X), respectively.
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In this paper, we are concerned with the following sets
σe1(A) =

{
λ ∈ K : A− λI /∈ Φ+(X)

}
, σe2(A) =

{
λ ∈ K : A− λI /∈ Φ−(X)

}
,

σe3(A) =
{
λ ∈ K : A− λI /∈ Φ±(X)

}
, σe4(A) =

{
λ ∈ K : A− λI /∈ Φ(X)

}
,

σe5(A) = K \ ρe5(A), σeap(A) = K \ ρeap(A), σeδ(A) = K \ ρeδ(A),
where

ρe5(A) =
{
λ ∈ K : A− λI ∈ Φ(X) and i(A− λI) = 0

}
,

ρeap(A) =
{
λ ∈ K : A− λI ∈ Φ+(X) and i(A− λI) ≤ 0

}
,

ρeδ(A) =
{
λ ∈ K : A− λI ∈ Φ−(X) and i(A− λI) ≥ 0

}
.

In general, we have

σe3(A) = σe1(A) ∩ σe2(A) ⊆ σe4(A) ⊆ σe5(A) = σeap(A) ∪ σeδ(A). (2)

Let X be a non-Archimedean Banach space and let F ∈ L(X).
(i) The operator F is called a p-adic Fredholm perturbation if U + F ∈ Φ(X), whenever
U ∈ Φ(X). The set of p-adic Fredholm perturbations is denoted by F(X).

(ii) The operator F is called a p-adic upper (respectively, lower) semi-Fredholm perturbation
if U + F ∈ Φ+(X) (respectively, U + F ∈ Φ−(X)) whenever U ∈ Φ+(X) (respectively,
U ∈ Φ−(X)). The set of p-adic upper (respectively, lower) semi-Fredholm perturbations is
denoted by F+(X) (respectively, F−(X)).

Proposition 2. Let X be a non-Archimedean Banach space.
(i) If A ∈ Φ(X) and F ∈ F(X), then A+ F ∈ Φ(X) and i(A+ F ) = i(A).

(ii) If A ∈ Φ+(X) and F ∈ F+(X), then A+ F ∈ Φ+(X) and i(A+ F ) = i(A).

(iii) If A ∈ Φ−(X) and F ∈ F−(X), then A+ F ∈ Φ−(X) and i(A+ F ) = i(A).

Proof. The proof may be checked in the same way as in the proof of [8, Lemma 2.1] for real
or complex Banach spaces.

Lemma 1. [14, Corollary 3.2] Let X be a non-Archimedean Banach space.
(i) If A ∈ Φ+(X) and B ∈ Φ+(X), then AB ∈ Φ+(X).

(ii) If AB ∈ Φ+(X), then B ∈ Φ+(X).

Lemma 2. Let X be a non-Archimedean Banach space. Let A ∈ L(X) and B ∈ L(X) such
that X/R(A) is dual separating. If AB ∈ Φ−(X), then we have A ∈ Φ−(X).

Proof. On the one hand, as in the classical case, there exists a natural isomorphism between
Y ⊥ and (X/Y )

′ via the operator
T : Y ⊥ → (X/Y )

′
, f → Tf(x+ Y ) = f(x),

where Y is a subspace of X. In fact, we prove that Tf is well defined. So, suppose that
x+ Y = x́+ Y, then x− x́ ∈ Y, thus 0 = f(x− x́) = f(x)− f(x́), that is f(x) = f(x́), and
hence Tf(x+ Y ) = Tf(x́+ Y ).

Next, we claim that T is invertible. To prove that T is injective, assume that f ∈ N(T ).
Then, Tf = 0. Hence, 0 = Tf(x + Y ) = f(x), for all x ∈ X. So, N(T ) = 0, which implies
that T is injective.

To show that T is surjective, let g ∈ (X/Y )
′ and define an element f ∈ X

′ by
f(x) = g(x+ Y ) for all x ∈ X.

So, we claim that f ∈ Y ⊥. That is, if x ∈ Y , then g(x+ Y ) = g(Y ) = 0. Thus, f(x) = 0.
So, f ∈ Y ⊥. It follows that Tf = g. Therefore, T is surjective, and thus T is invertible.
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On the other hand, it follows from Proposition 1 that β(AB) < ∞ implies that
dim(X/R(AB))

′
< ∞.

Since there exists an isomorphism between R(AB)⊥ and (X/R(AB))
′
, we conclude that

dimR(AB)⊥ < ∞. From R(AB) ⊆ R(A) it follows R(A)⊥ ⊆ R(AB)⊥, which implies that
dimR(A)⊥ < ∞.

Using the fact that R(A)⊥ and (X/R(A))
′ are isomorphic, Proposition 1 assures that

dim(X/R(A))
′′
< ∞.

Since X/R(A) is dual separating, the rank theorem allows us to deduce that
dim(X/R(A)) < ∞. The use of [16, Proposition 3.2] leads to A ∈ Φ−(X).

Remark 4. In contrast with classical setting, the fact that AB ∈ Φ−(X,Z) does not imply
that A ∈ Φ−(Y, Z), where A ∈ L(Y, Z) and B ∈ L(X, Y ). In order to illustrate this situation,
let us consider the canonical injection A : c0 → l∞ and the projection B : l∞ → c0, where

l∞ =
{
x = (xn)n∈N, xn ∈ K : ∥x∥ = sup

n∈N
|xn| < ∞}, c0 =

{
x = (xn)n∈N, xn ∈ K : lim

n
|xn| = 0},

and K is not spherically complete (there exists a decreasing sequence of balls in K, which
has an empty intersection). We have that AB = I, where I is the identity operator on l∞.
Hence, AB ∈ Φ−(l

∞). But β(A) = dim(l∞/c0) which is not finite. So, we get A /∈ Φ−(c0, l
∞).

Using the same method of S. Vega [16], we can set forward the next lemma.

Lemma 3. Let X be a non-Archimedean Banach space. Let A ∈ L(X) and B ∈ L(X) such
that A ∈ Φ−(X). Let t ∈ (0.1) and P : X → R(A) be a continuous linear projection such
that ∥P∥ ≤ t−1. If for every λ ∈ K

∥B∥ <
t

∥A∥
γ
(
λPA

)
, (3)

then we have (B − λI) ∈ Φ−(X) for every λ ∈ K.

Proof. Let λ ∈ K. We have P (λA) which is a surjective map. Since the inequality (3) holds,
it follows that ∥BA∥ < tγ

(
λPA

)
, for every λ ∈ K. Therefore, ∥PBA∥ < γ

(
λPA

)
for every

λ ∈ K. Using [16, Corollary 4.3], we obtain P (BA−λA) which is a surjective map. Applying
[16, Lemma 5.1] to the operator BA − λA : X → X and the subspace W = R(A), we get
(B − λI)A ∈ Φ−(X). Based on Lemma 2, we conclude that (B − λI) ∈ Φ−(X).

Lemma 4 ([11], Lemma 4.2). If two of the three operators A, B, and AB have indices, then
the third one has also an index and i(AB) = i(A) + i(B).

3. Main results. In this section, we establish sufficient conditions for the relations between
essential spectra of the sum of two bounded linear operators defined on non-Archimedean
Banach space and that of each operator. Moreover, we study some characterizations and
properties of these essential spectra.

Theorem 1. Let A and B be two bounded linear operators on a non-Archimedean Banach
space X.
(i) If AB ∈ F+(X), then σei(A+B) \ {0} ⊆ [σei(A) ∪ σei(B)] \ {0}, i ∈ {1, ap}.

Further, if BA ∈ F+(X), then σe1(A+B) \ {0} = [σe1(A) ∪ σe1(B)] \ {0}.
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(ii) If X/R(A) is dual separating and one of the following conditions is satisfied:
(a) AB ∈ F−(X) and BA ∈ F−(X),
(b) AB ∈ Φ−(X) ∩ F−(X), t ∈ (0, 1), and P be a continuous linear projection from X

onto R(A) such that ∥P∥ ≤ t−1 and ∥B∥ <
t

∥A∥
γ
(
µPA

)
, for every µ ∈ K,

then
[σe2(A) ∪ σe2(B)] \ {0} ⊆ σe2(A+B) \ {0}. (4)

(iii) If X/R(A) is dual separating and one of the following conditions is satisfied:
(c) AB ∈ F(X) and BA ∈ F(X),
(d) AB ∈ Φ−(X)∩F(X), BA ∈ F+(X), t ∈ (0, 1), and P be a continuous linear projec-

tion from X onto R(A) such that ∥P∥ ≤ t−1 and ∥B∥ <
t

∥A∥
γ
(
µPA

)
, for every µ ∈ K,

then
[σei(A) ∪ σei(B)] \ {0} ⊆ σei(A+B) \ {0}, i ∈ {3, 4, 5}. (5)

Proof. Let λ ∈ K. We have

(A− λI)(B − λI) = AB − λ(A+B − λI) (6)

and
(B − λI)(A− λI) = BA− λ(A+B − λI). (7)

(i) Let λ /∈ σe1(A) ∪ σe1(B) ∪ {0}. Then, (A − λI) ∈ Φ+(X) and (B − λI) ∈ Φ+(X). By
virtue of Lemma 1 (i), we obtain (A−λI)(B−λI) ∈ Φ+(X). Since AB ∈ F+(X), combining
Proposition 2 (ii) with equality (6), we get (A+B−λI) ∈ Φ+(X). Then, λ /∈ σe1(A+B)∪{0}.
So, σe1(A+B) \ {0} ⊆ [σe1(A) ∪ σe1(B)] \ {0}.

Let us assume that λ /∈ σeap(A) ∪ σeap(B) ∪ {0}. Then, (A − λI) ∈ Φ+(X) such that
i(A− λI) ≤ 0 and (B − λI) ∈ Φ+(X) such that i(B − λI) ≤ 0. We have

i((A− λI)(B − λI)) = i(A− λI) + i(B − λI) ≤ 0,

and the use of Lemma 1 (i) allows us to deduce that (A−λI)(B−λI) ∈ Φ+(X). The fact that
AB ∈ F+(X), combining Proposition 2 (ii) with equality (6), we get (A+B−λI) ∈ Φ+(X)
such that i(A+B − λI) ≤ 0. Then, λ /∈ σeap(A+B) ∪ {0}. As a result,

σeap(A+B) \ {0} ⊆ [σeap(A) ∪ σeap(B)] \ {0}.
Now, let BA ∈ F+(X). Suppose that λ /∈ σe1(A+B)∪{0}, then (A+B−λI) ∈ Φ+(X). Since
AB ∈ F+(X) and BA ∈ F+(X), we can apply equalities (6), (7) and Proposition 2 (ii),
which ensure that

(A− λI)(B − λI) ∈ Φ+(X) and (B − λI)(A− λI) ∈ Φ+(X). (8)

Relations (8) together with Lemma 1 (ii) allows us to deduce that (A − λI) ∈ Φ+(X) and
(B − λI) ∈ Φ+(X). Then, λ /∈ [σe1(A) ∪ σe1(B)] \ {0}, so we obtain

[σe1(A) ∪ σe1(B)] \ {0} ⊆ σe1(A+B) \ {0}.
Hence, we get σe1(A+B) \ {0} = [σe1(A) ∪ σe1(B)] \ {0}.
(ii) Suppose that λ /∈ σe2(A+B) ∪ {0}, then (A+B − λI) ∈ Φ−(X).

(a) Since AB ∈ F−(X) and BA ∈ F−(X), we can apply equalities (6), (7) and Proposi-
tion 2 (iii), which imply that (A− λI)(B− λI) ∈ Φ−(X) and (B− λI)(A− λI) ∈ Φ−(X).
Using Lemma 2, we conclude that (A − λI) ∈ Φ−(X) and (B − λI) ∈ Φ−(X). Then,
λ /∈ [σe2(A) ∪ σe2(B)] \ {0}, so we get
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[σe2(A) ∪ σe2(B)] \ {0} ⊆ σe2(A+B) \ {0}.
(b) The fact that AB ∈ F−(X), we can apply equality (6) and Proposition 2 (iii) which

lead to
(A− λI)(B − λI) ∈ Φ−(X). (9)

So, using Lemma 2 together with Lemma 3 (the operator A in Lemma 3 can be taken as
A−λI), we get (A−λI) ∈ Φ−(X) and (B−λI) ∈ Φ−(X). Hence, λ /∈ σe2(A)∪σe2(B)∪{0},
thus

[σe2(A) ∪ σe2(B)] \ {0} ⊆ σe2(A+B) \ {0}.
(iii) To prove the inclusion (5) for i = 3, we use the obtained results of (i) and (ii), for

which we have [σe1(A) ∪ σe1(B)] \ {0} ⊆ σe1(A + B) \ {0}, and [σe2(A) ∪ σe2(B)] \ {0} ⊆
σe2(A+B) \ {0}.
Hence, σe1(A) \ {0} ⊆ σe1(A + B) \ {0} and σe2(A) \ {0} ⊆ σe2(A + B) \ {0}. Based on
relations (2), we conclude that σe3(A) \ {0} ⊆ σe3(A + B) \ {0}. In the same way, we have
σe3(B) \ {0} ⊆ σe3(A+B) \ {0}. As a consequence, we deduce that

[σe3(A) ∪ σe3(B)] \ {0} ⊆ σe3(A+B) \ {0}.
Using Proposition 2 (i), notice that the inclusion (5) for i = 4 can be checked in the same
way as the proof of (i) and (ii). Now, it remains to prove that

[σe5(A) ∪ σe5(B)] \ {0} ⊆ σe5(A+B) \ {0}.
So, let λ /∈ σe5(A + B) ∪ {0}. Then, (A + B − λI) ∈ Φ(X) and i(A + B − λI) = 0.
Applying Proposition 2 (i) and reasoning in the same way, we get (A − λI) ∈ Φ(X) and
(B − λI) ∈ Φ(X). Applying Lemma 4, we obtain

i((A− λI)(B − λI)) = i(B − λI) + i(A− λI) = i(A+B − λI) = 0.

This prove that the inclusion (5) is valid for i = 5. As a result, we get
[σei(A) ∪ σei(B)] \ {0} ⊆ σei(A+B) \ {0}, i ∈ {3, 4, 5}.

The reader could ask if the inverse inclusions of (4) and (5) hold. This question has
a positive answer, if we impose assumptions on the operators in L̆(X) and on the non-
Archimedean Banach space, X. Indeed, note that in contrast to the classical case, the duality
between p-adic upper and p-adic lower semi-Fredholm operators is failed (see [16, Example]).
This fact allows us to apply the results from [10] to derive the following important properties.

Theorem 2. Let X, Y be two non-Archimedean Banach spaces and suppose that A ∈
L̆(X, Y ).
(i) If A ∈ Φ+(X, Y ) such that R(A) has the wep in Y , then A∗ ∈ Φ−(Y

′
, X

′
).

(ii) If A∗ ∈ Φ−(Y
′
, X

′
) such that R(A) is of countable type and has the wep in Y , then

A ∈ Φ+(X, Y ).
(iii) If A∗ ∈ Φ+(Y

′
, X

′
) such that X is reflexive and R(A) is weakly closed in Y, then

A ∈ Φ−(X, Y ).

Proof. (i) Let A ∈ Φ+(X, Y ) such that R(A) has the wep in Y . Then, R(A) is closed, and
thus by applying [10, Theorem 2.1], we get R(A∗) = N(A)⊥. Hence,

⊥R(A∗) =⊥ (N(A)⊥) = N(A) = N(A).
It follows that β(A∗) = α(A) < ∞. As a result, we conclude that A∗ ∈ Φ−(Y

′
, X

′
).

(ii) The fact that A∗ ∈ Φ−(Y
′
, X

′
) implies that R(A∗) is closed in X

′ . As R(A) is of
countable type and has the wep in Y , and from [10, Theorem 3.1], we infer that R(A) is
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closed in Y. So, we can apply [10, Theorem 2.1] to deduce that α(A) = β(A∗) < ∞. As a
consequence, we obtain A ∈ Φ+(X, Y ).

(iii) Let R(A) be weakly closed in Y. Applying [10, Lemma 1.1], we get R(A) =⊥ N(A∗),
which implies that R(A)⊥ = (⊥N(A∗))⊥. Using the fact that A∗ ∈ Φ+(Y

′
, X

′
) together

with the reflexivity of X, we obtain R(A)⊥ = N(A∗), and thus β(A) = α(A∗) < ∞. As a
consequence, we achieve the desired result.

Theorem 3. Let X and Y be two non-Archimedean Banach spaces. Let A ∈ L̆(X, Y ). If
one of the following conditions is satisfied:
(i) Y is strongly polar,
(ii) Y is dual-separating and R(A) is of countable type and has the wep in Y,
(iii) Y has a base and R(A) is a subspace of of countable type of Y ,
then, we have A ∈ Φ+,−(X, Y ) if and only if A∗ ∈ Φ−,+(Y

′
, X

′
).

Proof. It follows from [10, Theorem 4.1], the equivalence between the closedness of the range
of a bounded linear operator, the closedness of the range of its adjoint, and the coincidence
of this range with the orthogonal of an appropriate kernel. This gives the desired result.

Corollary 1. Let X be a non-Archimedean Banach space, A ∈ L̆(X) such that X/R(A)
is dual separating and let B ∈ L̆(X) such that either AB ∈ F(X) and BA ∈ F(X), or
AB ∈ Φ−(X) ∩ F(X), BA ∈ F+(X), t ∈ (0, 1), and P be a continuous linear projection

from X onto R(A) such that ∥P∥ ≤ t−1 and ∥B∥ <
t

∥A∥
γ
(
µPA

)
, for every µ ∈ K. If one of

the following conditions is satisfied:
(i) X is strongly polar,
(ii) both of R(A) and R(B) are of countable types and have the wep in X,
(iii) X has a base and R(A) and R(B) are subspaces of countable types of X,
then, [σei(A) ∪ σei(B)] \ {0} = σei(A+B) \ {0}, i ∈ {1, 2, 3, 4, 5, ap, δ}.

Remark 5. The obtained results in Theorem 1 and Corollary 1 are extensions of some of
those in [1, Theorem 2.4] to non-Archimedean Banach spaces.

Lemma 5. Let X be a non-Archimedean Banach space and let A ∈ L(X) such that X/R(A)
is dual separating and let B ∈ L(X). Assume that µ ∈ ρ(A). Then, we have for λ ̸= µ

λ ∈ σei(A) if and only if (λ− µ)−1 ∈ σei((A− µI)−1), i ∈ {1, 2, 3, 4, 5, ap, δ}.

Proof. We have the following identities:

A− λI = (µ− λ)[(A− µI)−1 − (λ− µ)−1I](A− µI) (10)
= (µ− λ)(A− µI)[(A− µI)−1 − (λ− µ)−1I]. (11)

Further, the fact that µ ∈ ρ(A) implies that

(A− µI) ∈ Φ(X) and i(A− µI) = 0. (12)

Let (λ − µ)−1 /∈ σe1((A − µI)−1) (respectively, (λ − µ)−1 /∈ σeap((A − µI)−1)). Hence,
((A − µI)−1 − (λ − µ)−1I) ∈ Φ+(X) (respectively, ((A − µI)−1 − (λ − µ)−1I) ∈ Φ+(X)
and i((A − µI)−1 − (λ − µ)−1I) ≤ 0). So, both operators on the right-hand side of equali-
ty (10) are p-adic upper semi-Fredholm. Consequently, by Lemma 1 (i) (respectively, by
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Lemma 1 (i) and Lemma 4), we get (A−λI) ∈ Φ+(X) (respectively, (A−λI) ∈ Φ+(X) and
i(A− λI) ≤ 0), then λ /∈ σe1(A) (respectively λ /∈ σeap(A)).

Conversely, suppose that λ /∈ σe1(A) (respectively, λ /∈ σeap(A)). We have (A − λI) ∈
Φ+(X) (respectively, (A − λI) ∈ Φ+(X) and i(A − λI) ≤ 0), so we apply in equality (11)
Lemma 1 (ii) (respectively, by Lemma 1 (ii) and Lemma 4), we obtain
((A − µI)−1 − (λ − µ)−1I) ∈ Φ+(X) (respectively, ((A − µI)−1 − (λ − µ)−1I) ∈ Φ+(X)
and i((A− µI)−1 − (λ− µ)−1I) ≤ 0). Then,

(λ− µ)−1 /∈ σe1((A− µI)−1) (respectively (λ− µ)−1 /∈ σeap((A− µI)−1)).
As a result,

λ ∈ σei(A) if and only if (λ− µ)−1 ∈ σei((A− µI)−1), i ∈ {1, ap}. (13)

If λ /∈ σe2(A) (respectively, λ /∈ σeδ(A)), then we have A − λI ∈ Φ−(X) (respectively,
A − λI ∈ Φ−(X) and i(A − λI) ≥ 0). By applying Lemma 2 in equality (10) (respectively,
Lemma 2 in equality (10) and Lemma 4), we get ((A− µI)−1 − (λ− µ)−1I) ∈ Φ−(X)
(respectively ((A− µI)−1 − (λ− µ)−1I) ∈ Φ−(X) and i((A− µI)−1 − (λ− µ)−1I) ≥ 0),

in other words, (λ− µ)−1 /∈ σei((A− µI)−1) i ∈ {2, δ}.
Based upon equality (10) and the fact that µ ∈ ρ(A), it follows that

(A− λI)(A− µI)−1 = (µ− λ)[(A− µI)−1 − (λ− µ)−1I]. (14)

So, if (λ − µ)−1 /∈ σe2((A − µI)−1) (respectively, (λ − µ)−1 /∈ σeδ((A − µI)−1)),
then ((A−µI)−1−(λ−µ)−1I) ∈ Φ−(X) (respectively, ((A−µI)−1−(λ−µ)−1I) ∈ Φ−(X) and
i((A−µI)−1−(λ−µ)−1I) ≥ 0). The use of Lemma 2 in equality (14) (respectively, Lemma 2
in equality (14) and Lemma 4), leads to (A−λI) ∈ Φ−(X) (respectively, (A−λI) ∈ Φ−(X)
and i(A− λI) ≥ 0), that is λ /∈ σe2(A) (respectively, λ /∈ σeδ(A)). Consequently,

λ ∈ σei(A) if and only if (λ− µ)−1 ∈ σei((A− µI)−1) i ∈ {2, δ}. (15)

Using the fact that σe3(A) = σe1(A) ∩ σe2(A) and σe4(A) = σe1(A) ∪ σe2(A), it follows from
relations (13) and (15) that

λ ∈ σe3(A) if and only if (λ− µ)−1 ∈ σe3((A− µI)−1),

λ ∈ σe4(A) if and only if (λ− µ)−1 ∈ σe4((A− µI)−1).

Now, suppose that λ /∈ σe5(A), then (A− λI) ∈ Φ(X) and i(A− λI) = 0.
Applying Lemma 2 in equality (10) and Lemma 1 (ii) in equality (11), we get

((A− µI)−1 − (λ− µ)−1I) ∈ Φ(X).
Relying on the relation (12) together with Lemma 4 leads to

i(A− λI) = i(A− µI) + i((A− µI)−1 − (λ− µ)−1I) = i((A− µI)−1 − (λ− µ)−1I).

Therefore, i((A− µI)−1 − (λ− µ)−1I) = 0. As a consequence, we deduce that
(λ− µ)−1 /∈ σe5((A− µI)−1).

For the converse, let us assume that (λ− µ)−1 /∈ σe5((A− µI)−1). We infer that
((A− µI)−1 − (λ− µ)−1I) ∈ Φ(X) and i((A− µI)−1 − (λ− µ)−1I) = 0.

Again, according relation (12) and using Lemma 1 (i) in equality (10) together with Lemma 2
in equality (14), allow us to deduce that (A− λI) ∈ Φ(X). Moreover,

i(A− λI) = i((A− µI)−1 − (λ− µ)−1I) = 0.

Thus, λ ∈ σe5(A) if and only if (λ− µ)−1 ∈ σe5((A− µI)−1).
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Theorem 4. Let X be a non-Archimedean Banach space and let A ∈ L(X) such that
X/R(A) is dual separating and let B ∈ L(X). If, for some µ ∈ ρ(A) ∩ ρ(B), the difference
((A− µI)−1 − (B − µI)−1) ∈ K(X), then σei(A) = σei(B) i ∈ {1, 2, 3, 4, 5, ap, δ}. and

i(A− λI) = i(B − λI), for all λ /∈ σei(A) i ∈ {1, 2, 3, 4, 5, ap, δ}.

Proof. Since µ ∈ ρ(A)∩ρ(B), we have (A−µI) and (B−µI) are p-adic Fredholm operators
with index 0. Let λ ∈ K such that λ ̸= µ. By virtue of Lemma 5, we have

λ ∈ σei(A) if, and only if, (λ− µ)−1 ∈ σei((A− µI)−1) i ∈ {1, 2, 3, 4, 5, ap, δ}. (16)

The fact that ((A−µI)−1− (B−µI)−1) ∈ K(X) and the use of [2, Theorem 6.1] imply that

σei((A− µI)−1) = σei((A− µI)−1 − (B − µI)−1 + (B − µI)−1)

= σei((B − µI)−1) i ∈ {1, 2, 3, 4, 5, ap, δ}.

So, from relation (16) we obtain σei(A) = σei(B) i ∈ {1, 2, 3, 4, 5, ap, δ}. Now, note that the
following identity hold A−λI = (λ−µ)(A−µI)((λ−µ)−1− (A−µI)−1), so we obtain from
Lemma 4 and the previous identity that

i(A− λI) = i((λ− µ)(A− µI)) + i((λ− µ)−1 − (A− µI)−1) =

= i((λ− µ)−1 − (A− µI)−1) = i((λ− µ)−1 − (A− µI)−1 + (B − µI)−1 − (B − µI)−1) =

= i((λ− µ)−1 − (B − µI)−1) = i(B − λI).
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