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Given a domain of some Riemannian surface, we consider questions related to the possibility
of a continuous extension to the boundary of one class of Sobolev mappings. It is proved
that such maps have a continuous boundary extension in terms of prime ends, and under
some additional restrictions their families are equicontinuous at inner and boundary points of
the domain. We have separately considered the cases of homeomorphisms and mappings with
branching.

1. Introduction. The problems of extension of mappings of the Sobolev class acting between
Riemannian surfaces have been considered in several papers by V. Ryazanov and S. Volkov,
see [1] and [2]. In this manuscript, we develop research in this direction, studying here the
behavior of mappings in the closure of a given domain. In the first part, we have proved
the possibility of continuous extension f : DP → D∗, where D and D∗ are domains on
Riemannian surfaces S and S∗, and DP is the closure of the domain D with respect to
prime ends. On this occasion, we note the publication [2], where slightly similar results were
obtained for classes of Sobolev homeomorphisms, and also the paper [3], where similar results
were obtained for the case of Riemannian manifolds. Compared to [2], we are dealing with
the extension f : DP → D∗ rather than f : DP → D∗P . In the second part of the paper we
show that the families of the mappings mentioned above are equicontinuous in DP . In this
regard, we point out to classical results of R. Näkki and B. Palka ([4]), as well as results of
the first author obtained for metric spaces, see [5].

Quite exhaustively, all definitions concerning Riemannian surfaces, their representations
in terms of quotient spaces, as well as the elements of length and area in them, are given
in [1], and therefore are omitted. Everywhere below, unless otherwise stated, the Riemannian
surfaces S and S∗ are of the hyperbolic type. Further dsh̃ and dṽ, dsh̃∗

and dṽ∗ denote the
length and area elements on Riemannian surfaces S and S∗, respectively. We also use the
notation h̃ for the metric on the surface S, in particular,

B̃(p0, r) := {p ∈ S : h̃(p, p0) < r}, S̃(p0, r) := {p ∈ S : h̃(p, p0) = r}

are the disk and the circle on S centered at p0 and of the radius r > 0, respectively. The
following definitions refer to Carathéodory [6], cf. [7], [8], [9] and [10]. Recall that a continuous
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mapping σ : I → S, I = (0, 1), is called a Jordan arc in S, if σ(t1) ̸= σ(t2) for t1 ̸= t2. Further
we will sometimes use σ for σ(I), σ for σ(I) and ∂σ for σ(I) \ σ(I). A cut in a domain D is
either a Jordan arc σ : I → D, ends which lie on ∂D, or a closed Jordan curve in D. The
sequence σ1, σ2, . . . , σm, . . . of cuts in D is called a chain if:

(i) σi ∩ σj = ∅ for any i ̸= j, i, j = 1, 2, . . .;

(ii) σm separates D, i.e., D \ σm consists precisely from two components one of which
contains σm−1, and another contains σm+1,

(iii) h̃(σm) → ∞ as m→ ∞, h̃(σm) = sup
p1,p2∈σm

h̃(p1, p2).

By the definition, a chain of cuts {σm} defines a chain of domains dm ⊂ D such that
∂ dm ∩D ⊂ σm and d1 ⊃ d2 ⊃ . . . ⊃ dm ⊃ . . .. Two chains of cuts {σm} and {σ ′

k} are called
equivalent, if for each m = 1, 2, . . . the domain dm contains all the domains d ′

k except for
a finite number, and for each k = 1, 2, . . . the domain d ′

k also contains all the domains dm
except for a finite number. End of D is the class of equivalent chains of cuts in D.

Let K be a prime end in D ⊂ S, and {σm} and {σ ′
m} are two chains in K, dm and d ′

m

are domains corresponding to σm and σ ′
m. Then

∞⋂
m=1

dm ⊂
∞⋂

m=1

d ′
m ⊂

∞⋂
m=1

dm ,

and thus
∞⋂

m=1

dm =
∞⋂

m=1

d ′
m ,

in other words, the set

I(K) =
∞⋂

m=1

dm

depends only on K and does not depend on the choice of the chain of cuts {σm}. The set
I(K) is called the impression of a prime end K. Further ED denotes the set of all prime
ends in D, and DP := D ∪ ED denotes the completion of D by its prime ends. Let us turn
DP into the topological space as follows. Firstly, open sets from D are considered open in
DP , as well. Secondly, the base neighborhood of a prime end P ⊂ ED is defined as the union
of an arbitrary domain d, included in some chain of cuts of P, with all other prime ends in
d. In particular, in the topology mentioned above, a sequence of points xn ∈ D converges
to an element P ∈ ED if and only if, for any domain dm, belonging to the chain of domains
d1, d2, d3, . . . , in P there exists n0 = n0(m) such that xn ∈ dm for n ⩾ n0.

The dilatation of the mapping f at the point z is defined (in local coordinates) by the
relation

Kf (z) =
|fz|+ |fz|
|fz| − |fz|

(1)

for Jf (z) ̸= 0, Kf (z) = 1 for ∥f ′(z)∥ = 0 and Kf (z) = ∞ otherwise. It is easy to see that Kf

does not depend on local coordinates, since the transition maps from one chart to another
are conformal by virtue of the definition of Riemannian surface. Given domains D,D ∗ ⊂ C,
a mapping f : D → D ∗ is called a mapping with a finite distortion, if f ∈ W 1,1

loc (D) and, in
addition, there is almost everywhere a finite function K(z) such that ∥f ′(z)∥2 ⩽ K(z) ·Jf (z)
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for almost all z ∈ D, where Jf (z) denotes the jacobian of f at z. If D,D ∗ are domains in S
and S∗, respectively, then f : D → D ∗ is called a mapping with finite distortion, if it is so in
local coordinates.

As usual, a path γ on the Riemannian surface S is a continuous mapping γ : I → S,
where I is a finite segment, an interval or a half-interval of a real axis. Let Γ be a family of
paths in S. A Borel function ρ : S → [0,∞] is called admissible for the family Γ of paths γ,
if
∫
γ

ρ(p) dsṽ(p) ⩾ 1 for any path γ ∈ Γ. The latter is briefly written in the form: ρ ∈ admΓ.

A modulus of the family Γ is a real-valued function

M(Γ) := inf
ρ∈admΓ

∫
S

ρ2(p) dṽ(p) .

Let E, F ⊂ S be arbitrary sets. In the future, everywhere by Γ(E,F,D) we denote the family
of all paths γ : [a, b] → D, which join E and F in D, that is, γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D
for t ∈ (a, b). We say that a boundary ∂G of a domain G is strongly accessible at a point
p0 ∈ ∂G if, for each neighborhood U of p0 there are compact set E ⊂ G, a neighborhood
V ⊂ U of the same point and a number δ > 0 such that, the relation M(Γ(E,F,G)) ⩾ δ
holds for any continuum F intersecting both ∂U and ∂V. We also say that a boundary of
∂G is strongly accessible if it is strongly accessible at any of its points.

Assume that p0 ∈ S and that a function φ : D → R is integrable with respect to the
measure ṽ in some neighborhood U of p0. Following [11, Sect. 2] (see [12, Sec. 6.1, Ch. 6]),
we say that a function φ : D → R has a finite mean oscillation at the point p0 ∈ D, write
φ ∈ FMO(p0), if

lim sup
ε→0

1

ṽ(B̃(p0, ε))

∫
B̃(p0, ε)

|φ(p)− φε| dṽ(p) <∞ ,

where φε =
1

ṽ(B̃(p0,ε))

∫
B̃(p0,ε)

φ(p) dṽ(p). The following statement holds.

Theorem 1. Let D,D∗ be domains in S and S∗, respectively, having compact closures
D ⊂ S and D∗ ⊂ S∗, ∂D has a finite number of components, and ∂D∗ is strongly accessible.
Let Q : S → (0,∞) be a given function measurable with respect to the measure ṽ on S,
Q(p) ≡ 0 in S \D. Let f : D → D∗ be a homeomorphism of a domain D onto D∗ of the class
W 1,1

loc with a finite distortion such that Kf (p) ⩽ Q(p) for almost all p ∈ D. Then f extends
to a continuous mapping f : DP → D∗, f(DP ) = D∗, if one of the following conditions is
true: 1) for any p0 ∈ ∂D there is ε0 = ε0(p0) > 0 such that

ε0∫
ε

dt

∥Q∥(t)
<∞ ,

ε0∫
0

dt

∥Q∥(t)
= ∞ (2)

for any 0 < ε < ε0, where ∥Q∥(t) :=
∫

S̃(p0,t)

Q(p) dsh̃(p) denotes the L1-norm of the function

Q over the circle S̃(p0, t),
2) Q ∈ FMO(∂D).



160 E. A. SEVOST’YANOV, O. P. DOVHOPIATYI, N. S. ILKEVYCH, V. P. KALENSKA

The following statement holds.

Proposition 1. Assume that D is a compact set in S, in addition, the domain D ⊂ S has
at most a finite number of boundary components Γ1,Γ2, . . . ,Γn ⊂ ∂D. Then:
1) the space DP is metrizable by some metric ρ : DP ×DP → R such that the convergence
of an arbitrary sequence xn ∈ D, n = 1, 2, . . . , to some prime end P ∈ ED is equivalent to
the convergence of xn in one of the spaces U ∗

i P , see [2, Remark 2];
2) each prime end P ∈ ED contains an equivalent chain of cuts σm, m = 1, 2, . . . , lying on
the circles S̃(z0, rm), rm → 0 as m→ ∞, see [2, Remark 1];
3) the body I(P ) of any prime end P ⊂ ED is a continuum in ∂D, in addition, there is one
and only one 1 ⩽ i ⩽ n such that I(P ) ⊂ Γi, see [2, Proposition 1, Remark 1].

Let (X, d) and (X ′, d ′) be metric spaces with distances d and d ′, respectively. A family
F of mappings f : X → X ′ is called equicontinuous at a point x0 ∈ X, if for any ε > 0 there
exists δ > 0 such that d ′(f(x), f(x0)) < ε for all x ∈ X such that d(x, x0) < δ and for all
f ∈ F. A family F is equicontinuous if F is equicontinuous at every point x0 ∈ X. Everywhere
below, unless otherwise stated, (X, d) = (DP , ρ) and (X ′, d ′) = (S∗, h̃∗), where ρ is one of
the metric from Proposition 1.

The next definition can be found, e.g., in [4]. A domain D ⊂ S is called a uniform if
for every r > 0 there exists δ > 0 such that M(Γ(F, F ∗, D)) ⩾ δ for any continua F and
F ∗ in D, satisfying the conditions h̃(F ) ⩾ r and h̃(F ∗) ⩾ r. Domains Di, i ∈ I, are called
equi-uniform if, for each r > 0 the above inequality holds for any Di with the same number
δ.

Consider now the following class of mappings. For a given δ > 0, D ⊂ S, a continuum
A ⊂ D and a function Q : D → [0,∞] measurable with respect to the measure h̃, denote
SQ,δ,A(D) a family of all homeomorphisms of the Sobolev class with finite distortion f : D →
S∗ for which there exists a continuum Gf ⊂ S∗ such that f : D → S∗ \ Gf and h̃∗(Gf ) =

sup
x,y∈Gf

h̃∗(x, y) ⩾ δ, h̃∗(f(A)) ⩾ δ. The following statement holds.

Theorem 2. Let D be a domain in S, such that D is compact in S, and Q : S → (0,∞) is a
function locally integrable in D, Q(x) ≡ 0 on S\D. Assume that, for any point p0 ∈ D either
the condition (2), or the condition Q ∈ FMO(p0) holds. Assume also that ∂D consist of a
finite number of components, and Df = f(D) is a compact set in S∗ for any f ∈ SQ,δ,A(D),
moreover, the domains Df and S∗ are equi-uniform over the class f ∈ SQ,δ,A(D).

Then each f ∈ SQ,δ,A(D) has a continuous extension f : DP → Df and, moreover, the
family SQ,δ,A(D) consisting of all extended mappings f : DP → Df is equicontinuous in DP .

2. A continuous boundary extension of mappings. Let Q : S → [0,∞] be a function
measurable with respect to the measure ṽ, Q(p) ≡ 0 for p ̸∈ D, D ⊂ S. We say that
f : D → S∗ is a ring Q-mapping at p0 ∈ D, if the relation

M(f(Γ(S̃(p0, r1), S̃(p0, r2), D))) ⩽
∫
Ã

Q(p) · η2(h̃(p, p0)) dṽ(p) , (3)

holds for some r0 = r(p0) > 0, any ring Ã = Ã(p0, r1, r2) = {p ∈ S : r1 < h̃(p, p0) < r2}
and any 0 < r1 < r2 < r0, where η : (r1, r2) → [0,∞] is arbitrary nonnegative Lebesgue
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measurable function such that
r2∫

r1

η(r) dr ⩾ 1 . (4)

We say that f is a ring Q-mapping at E ⊂ D, if f is a ring Q-mapping at every point p0 ∈ E.

Given a mapping f : D → S∗ and a set E ⊂ D ⊂ S we set

C(f, E) = {y ∈ S∗ : ∃x ∈ E, xk ∈ D : xk → x, f(xk) → y, k → ∞} .

A mapping f : D → D ∗ is called discrete if the pre-image f−1 (y) of each point y ∈ D ∗
consists only of isolated points. A mapping f : D → D ∗ is called open if the image of any
open set U ⊂ D is an open set in D ∗. A mapping f of D onto D ∗ is called closed if f(E) is
closed in D∗ for any closed set E ⊂ D.

Let D ⊂ S, f : D → S∗ be an open discrete mapping, β : [a, b) → S∗ is a path and
x ∈ f−1 (β(a)) . A path α : [a, c) → D is called a maximal f -lifting of β starting at the
point x, if (1) α(a) = x ; (2) f ◦ α = β|[a, c); (3) for any c < c′ ⩽ b, there is no a path
α′ : [a, c′) → D such that α = α′|[a, c) and f ◦ α ′ = β|[a, c′). Observe that, maximal f -liftings
under open discrete mappings always exist in S = S∗ = R2 due to Rickman’s theorem, see [13,
corollary II.3.3] or [14, Lemma 3.12]. Since Riemannian surfaces are orientable topological
manifolds, by [15, Theorem 3.4], cf. [16, Example 1.4(a)] and [17, Lemma 2.1], we obtain the
following assertion.

Proposition 2. Let D,D∗ be domains in S and S∗, respectively, let x ∈ f−1 (β(a)) , and
let f : D → D∗ be an open discrete mapping. Then any path β : [a, b) → S∗ has a maximal
f -lifting α : [a, c) → D of β starting at the point x.

The following statement carries the main semantic load related to the main result of this
section.

Lemma 1. Let D,D∗ be domains in S and S∗, respectively, having compact closures D ⊂ S
and D∗ ⊂ S∗. Assume that ∂D has a finite number of components, and ∂D∗ is strongly
accessible. Let Q : S → (0,∞) be a function measurable with respect to the measure ṽ on S,
Q(p) ≡ 0 in S\D, furthermore, assume that, for any point p0 ∈ ∂D there are ε0 = ε0(p0) > 0
and a Lebesgue measurable function ψ : (0,∞) → (0,∞) such that

I(ε, ε0) :=

ε0∫
ε

ψ(t) dt <∞ ∀ ε ∈ (0, ε0) , (5)

I(ε, ε0) > 0 for sufficiently small ε > 0, and∫
ε<h̃(p,p0)<ε0

Q(p) · ψ2(h̃(p, p0)) dṽ(p) = o
(
I2(ε, ε0)

)
, ε→ 0 . (6)

Let f : D → D∗ be an open discrete and closed ring Q-mapping of D onto D∗ at all points
of ∂D. Then f is extendable to a continuous mapping f : DP → D∗, f(DP ) = D∗.
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Proof. Let us first prove that f has a continuous extension f : DP → D∗. We fix P ∈ ED.
Since, by assumption, the space D∗ is compact, it suffices to establish that the set

L = C(f, P ) :=
{
y ∈ S∗ : y = lim

m→∞
f(pm), pm → P

}
as m→ ∞

consists of a single point y0 ∈ D∗.

Let us assume the opposite. Then there exist at least two points y0 and z0 ∈ L. That is,
there are at least two sequences pk, p ′

k ∈ D, such that pk → P and p ′
k → P as k → ∞, and,

moreover, f(pk) → y0 and f(p ′
k) → z0 as k → ∞. By item 2) of Proposition 1 the prime

end P contains a chain of cuts σk lying on circles Sk centered at some point p0 ∈ ∂D and
radii rk → 0, k → ∞. Let dk be the domains associated with cuts σk, k = 1, 2, . . . . Without
loss of generality, passing to a subsequence if necessary, we may assume that pk, p ′

k ∈ dk
(see Figure 1 for an illustration). Observe that y0 and z0 ∈ ∂D∗, because the mapping f is

p0 k

pk

pk

dk

D

D
*

k

C0

C0

k

pkf(   )f(   )

f(   )pk

U

V

kf(   )

z0

y0

f

Figure 1: To proof of Lemma 1

closed and hence C(f, ∂D) ⊂ ∂D∗ (see [5, Proposition 2.1]). By the definition of a strongly
accessible boundary at the point y0 ∈ ∂D∗, for any neighborhood U of this point, there are
a compact set C ′

0 ⊂ D∗, a neighborhood V of the point y0, V ⊂ U, and a number δ > 0 such
that

M(Γ(C ′
0, F,D∗)) ⩾ δ > 0 (7)

for any continuum F, intersecting ∂U and ∂V. Put C0 := f −1(C ′
0). By [5, Proposition 2.1]

C0 ∩ ∂D = ∅, since f is open, discrete and closed. By item 3) of Proposition 1, we obtain
that I(P ) =

⋂∞
m=1 dm ⊂ ∂D. Then we may assume that C0 ∩ dk = ∅ for any k ∈ N. Join

the points pk and p ′
k by a path γk in dk. Observe that f(pk) ∈ V and f(p ′

k) ∈ D \ U for all
sufficiently large k ∈ N. In this case, due to (7), there is a number k0 ∈ N such that

M(Γ(C ′
0, |f(γk)|, D∗)) ⩾ δ > 0 (8)
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for any k ⩾ k0 ∈ N. Denote by Γk the family of all half-open paths βk : [a, b) → D ′ such that
β(a) ∈ |f(γk)|, βk(t) ∈ D ′ for any t ∈ [a, b) and

lim
t→b−0

βk(t) := Bk ∈ C ′
0 .

Denote by Γk the family of all extended paths βk : [a, b] → D ′, β ∈ Γk. Obviously,

M(Γk) =M(Γk) =M (Γ (C ′
0, |f(γk)|, D ′)) . (9)

We fix k ∈ N, k ⩾ k0, and denote by Γ ′
k the family of all maximal f -liftings αk : [a, c) → D

of the family Γk starting at |γk|. Such a family is well defined due to Proposition 2. Note
that, any path αk ∈ Γ ′

k, αk : [a, c) → D, can not tend to the boundary of D as t → c − 0,
because C(f, ∂D) ⊂ ∂D ′ (see [5, Proposition 2.1]). Then C(αk, c) ⊂ D.

Let us now show that there exists a limit of αk(t) as t→ c− 0. Consider the set

G =
{
x ∈ S : x = lim

k→∞
α(tk)

}
, tk ∈ [a, c) , lim

k→∞
tk = c .

Passing to subsequences, we may restrict ourselves by monotone sequences tk. Let x ∈ G, then
by the continuity of f we have that f (α(tk)) → f(x) as k → ∞, where tk ∈ [a, c), tk → c
as k → ∞. However, f (α(tk)) = β(tk) → β(c) as k → ∞. Then f is constant on G. On
the other hand, α is a compactum, because α is a closed subset of the compact space D
(see [18, Theorem 2.II.4, § 41]). Then, by the Cantor condition on the compact set α, due to
the monotonicity of the sets α ([tk, c)) , we obtain that

G =
∞⋂

k=1

α ([tk, c)) ̸= ∅ ,

see [18, 1.II.4, § 41]. Then, by [18, Theorem 5.II.5, § 47] the set α is connected. Since f is
discrete, the set G is one-point. Thus, the path α : [a, c) → D can be extended to a closed
path α : [a, c] → D and f (α(c)) = β(c).

Hence, there exists lim
t→c−0

αk(t) = Ak ∈ D. Then, by the definition of a maximal lifting,

we have that c = b. In this case, lim
t→b−0

αk(t) := Ak and, simultaneously, by the continuity of
the mapping f in D,

f(Ak) = lim
t→b−0

f(αk(t)) = lim
t→b−0

βk(t) = Bk ∈ C ′
0 .

Hence, by the definition of the set C0, we obtain that Ak ∈ C0.
Hence, α ∈ Γ(|γk|, C0, D), where α denotes the extended path α : [a, b] → D. Denote by

Γ ′
k the family of all such extended paths α : [a, b] → D, α ∈ Γ ′

k. Note that Γ(|γk|, C0, D) >
Γ(σk, C1, D) because σk is a cut corresponding to the domain dk. Now, we apply the definition
of a ring Q-mapping in (3) to the family Γ(σk, C1, D). Let us recall that σk ∈ S̃(p0, rk) for
some point p0 ∈ ∂D and some sequence rk > 0, rk → 0 as k → ∞. Without loss of generality,
reducing ε1, if necessary, we may assume that h̃(p0, C1) > ε0. In addition, observe that the
function

ηk(t) =

{
ψ(t)/I(rk, ε0), t ∈ (rk, ε0),

0, t ∈ R \ (rk, ε0) ,
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I(ε, ε0) :=
∫ ε0
ε
ψ(t) dt, satisfies the normalization condition (4). Due to the proving above,

we obtain that Γ ′
k ⊂ Γ(|γk|, C0, D), therefore M(f(Γ ′

k)) ⩽ M(f(Γ(|γk|, C0, D))). Then, by
definition of a ring Q-mapping at the boundary point, taking into account conditions (5)–(6),
we obtain that

M(f(Γ ′
k)) ⩽M(f(Γ(|γk|, C0, D))) ⩽M(f(Γ(σk, C1, D)) ⩽ ∆(k) , (10)

where ∆(k) → 0 as k → ∞. However, Γk = f(Γ ′
k) and Γk = f(Γ ′

k). Then it follows from (10)
that

M(Γk) =M
(
f(Γ ′

k)
)
⩽ ∆(k) → 0 (11)

as k → ∞. However, relation (11) together with equality (9) contradict inequality (8), which
proves the lemma.

A particular case of Lemma 1 is the following most important statement.

Theorem 3. Let D,D∗ be domains in S and S∗, respectively, having compact closures
D ⊂ S and D∗ ⊂ S∗, while ∂D has finitely many components, and ∂D∗ is strongly accessible.
Let Q : S → (0,∞) be a function measurable with respect to the measure ṽ on S, Q(p) ≡ 0
on S \D, furthermore, suppose that at least one of the following conditions holds:

1) for any p0 ∈ ∂D, there is ε0 = ε0(p0) > 0 such that

ε0∫
ε

dt

∥Q∥(t)
<∞ ,

ε0∫
0

dt

∥Q∥(t)
= ∞ (12)

for any 0 < ε < ε0, where ∥Q∥(r) :=
∫

S̃(p0,r)

Q(p) dsh̃(p) denotes the L1-norm of the function

Q over the circle S̃(p0, r),
2) Q ∈ FMO(∂D).

Let f : D → D∗ be an open discrete and closed ring Q-mapping of D onto D∗ at the
points of ∂D. Then f extends to a continuous mapping f : DP → D∗, f(DP ) = D∗.

Proof. In case 1), when conditions (12) are satisfied, we set ψ(t) = 1
∥Q∥(t) , where, as usually

∥Q∥(t) =
∫
S̃(p0,t)

Q(p) dsh̃(p). Note that the function ψ satisfies the conditions (5)–(6) of
Lemma 1. In particular, (6) holds for sufficiently small 0 < ε < ε0, because

1

J
=

∫
Ã(p0,ε,ε0)

Q(p) · η20(h̃(p, p0)) dṽ(p) ,

J = J(p0, ε, ε0) :=
∫ ε0
ε

dr
∥Q∥(r) (this fact can be proved completely by analogy with [12,

Lemma 7.4, Ch. 7], cf. [19, Lemma 3.7] or [20, Lemma 4.2], and therefore its proof is omitted).
Thus, in case 1) the necessary conclusion follows directly from Lemma 1. In case 2), when
Q ∈ FMO(∂D), we set ψ(t) := 1

(t log 1
t
)
. Then the fulfillment of the condition (6) of Lemma 1

follows by [21, Lemma 3]. The necessary conclusion follows again from Lemma 1.
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The proof of Theorem 1. follows immediately from the fact that mappings of the Sobolev
class with finite a distortion on Riemannian surfaces are ring Q-homeomorphisms for Q =
Kf (p), and also by Theorem 3. In particular, homeomorphisms acting between domains of
two Riemannian surfaces are obviously discrete; moreover, they are open due to Brouwer’s
theorem (see [22, Theorem VI 9 and Corollary]), and closed due to general topological consi-
derations (see [23, Theorem 1.VII.1, § 13]). Thus, the desired conclusion follows directly from
Theorem 3.

3. Equicontinuity of families of homeomorphisms. For a given δ > 0, D ⊂ S and a
function Q : D → [0,∞] measurable with respect to the measure ṽ, denote by RQ,δ(D) the
family of all ring Q-homeomorphisms f : D → S∗ for which there is a continuum Gf ⊂ S∗

such that f : D → S∗ \Gf and h̃∗(Gf ) = supx,y∈Gf
h̃∗(x, y) ⩾ δ. The following assertion holds

(see [5, Lemma 5.1]).

Lemma 2. A family of mappings RQ,δ(D) is equicontinuous in D, if S∗ is a uniform domain,
moreover, Q : S → (0,∞) is a locally integrable function in D such that conditions (5)–(6)
hold at any point p0 ∈ D.

Consider the following class of mappings. Given δ > 0, D ⊂ S, a continuum A ⊂ D and a
function Q : D → [0,∞] measurable with respect to the measure ṽ, denote by FQ,δ,A(D) the
family of all ring Q-homeomorphisms f : D → S∗ \Gf in D for which there is a continuum
Gf ⊂ S∗ satisfying the condition h̃∗(Gf ) = supx,y∈Gf

h̃∗(x, y) ⩾ δ, while h̃∗(f(A)) ⩾ δ. An
analogue of the following theorem was obtained in [4, Theorem 3.1].

Lemma 3. Let D be a domain in S and Q : S → (0,∞) be a function measurable with
respect to measure ṽ, Q(p) ≡ 0 for p ∈ S \D. Assume that, for any point p0 ∈ D there are
ε0 = ε0(p0) > 0 and a function ψ : (0,∞) → (0,∞) such that

I(ε, ε0) :=

ε0∫
ε

ψ(t) dt <∞ ∀ ε ∈ (0, ε0) , (13)

I(ε, ε0) > 0 for sufficiently small ε > 0, and, in addition,∫
ε<h̃(p,p0)<ε0

Q(p) · ψ2(h̃(p, p0)) dṽ(p) = o(I2(ε, ε0)) , ε→ 0 . (14)

Let D and Df := f(D) be domains which have compact closures D ⊂ S and Df ⊂ S∗,
moreover, ∂D consists of a finite number of components.

Assume that the domains Df and S∗ are equi-uniform over f ∈ FQ,δ,A(D). Then each
f ∈ FQ,δ,A(D) has a continuous extension f : DP → Df . Moreover, the family FQ,δ,A(DP ),
consisting of all extended mappings f : DP → Df , is equicontinuous in DP .

Proof. Observe that ∂Df = ∂f(D) is strongly accessible for any f ∈ FQ,δ,A(D). Indeed, let
x0 ∈ ∂Df and let U be an arbitrary neighborhood of the point x0. Choose ε1 > 0 such that
V := B̃(x0, ε1), V ⊂ U. Let ∂U ̸= ∅ and ∂V ̸= ∅. Then ε2 := h̃∗(∂U, ∂V ) > 0. Since the
domains Df are equi-uniform and, moreover, h̃∗(F ) ⩾ ε2 and h̃∗(G) ⩾ ε2, then we obtain
that

M(Γ(F,G,Df )) ⩾ δ
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for any continua F and G in Df with F ∩∂U ̸= ∅ ̸= F ∩∂V and G∩∂U ̸= ∅ ̸= G∩∂V, where
δ > 0 is some number depending only on ε2. Thus, ∂Df = ∂f(D) is strongly accessible. By
Lemma 1, any f ∈ FQ,δ,A(D) has a continuous extension f : DP → Df .

Since FQ,δ,A(D) ⊂ RQ,δ(D), the equicontinuity of the family FQ,δ,A(D) at inner points of
D follows by Lemma 2.

It remains to prove the equicontinuity of the family FQ,δ,A(DP ) on ED := DP \ D.
Assume the contrary, namely, that this family is not equicontinuous at ED. Then there are
P0 ∈ ED and a number a > 0 with the following property: for each m = 1, 2, . . . there
is an element pm ∈ DP and a mapping fm ∈ FQ,δ,A(DP ) such that ρ(P0, pm) < 1/m and
h̃∗(fm(pm), fm(P0)) ⩾ a. (Here ρ means the metric in the space DP , see Proposition 1).
Since fm := fm|D has a continuous extension to the point P0, we may assume that pm ∈ D.
By the same considerations, there exists a sequence p ′

m ∈ D, p ′
m → P0 as m→ ∞ such that

h̃∗(fm(p
′
m), fm(P0)) < 1/m. Thus,

h̃∗(fm(pm), fm(p
′
m)) ⩾ a/2 ∀ m ∈ N . (15)

Let dm, m = 1, 2, . . . be a sequence of cuts of D corresponding to the end P0, and let the cuts
αm, corresponding to dm, lie on the circles S̃(p0, rm), rm → 0 as m → ∞. (Such cuts and
circles exist by item 2) of Proposition 1). Without loss of generality, passing to a subsequence

p0

D

*
dm

A

fm

f Am( )

Cm

fm m( )m

Dfm

m

pm

pm

Figure 2: To the proof of Lemma 3

if necessary, we may assume that pm, p ′
m ∈ dm, see Figure 2 for illustrations. Join the points

pm and p ′
m with a path γm : [0, 1] → S such that γm(0) = pm, γm(1) = p ′

m and γm(t) ∈ dm
for t ∈ (0, 1). Denote by Cm the locus of the image of the path γm under the mapping fm.
From relation (15) it follows that

h̃∗(Cm) ⩾ a/2 ∀m ∈ N , (16)

where h̃∗(Cm) denotes the diameter of the set Cm in metric h̃∗. Without loss of generality,
we may assume that the continuum A from definition of the family FQ,δ,A(D) is such that
dm ∩A = ∅, m = 1, 2, . . . . Let Γm be a family of paths joining |γm| and A in D. Let m1 ∈ N
be such that rm1 < ε0, where ε0 > 0 is the number from the condition of the lemma. Let
α ∈ Γm, α : [0, 1] → D, α(0) ∈ |γm| and γ(1) ∈ A. Then |α| ∩dm1 ̸= ∅ ̸= |α| ∩ (D \dm1) and,
therefore, by [18, Theorem 1.I.5, § 46] |α| ∩ ∂dm1 ̸= ∅. Since ∂dm1 ∩D ⊂ γm1 ⊂ S̃(p0, rm1),

there is a point t1 ∈ [0, 1] such that α(t1) ∈ S̃(p0, rm1). Without loss of generality, we
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may assume that α(t) ∈ B̃(p0, rm1) for any t ∈ [0, t2). Let α1 := α|[0,t1] and let m > m1.

Then by the same considerations |α1| ∩ ∂dm ̸= ∅. Since ∂dm ∩ D ⊂ |γm| ⊂ S̃(p0, rm),

there is a point t2 ∈ [0, t1] such that α1(t2) ∈ S̃(p0, rm). Without loss of generality, we may
assume that h̃∗(α1(t), p0) > rm for any t ∈ [t2, t1]. Put α2 := α1|[t2,t1]. Thus, we have proved
that the path α has a subpath α2 such that α2 ∈ Γ(S̃(p0, rm), S̃(p0, rm1), Ã(p0, rm, rm1)),

Ã(p0, rm, rm1) = {p ∈ S : rm < h̃(p, p0) < rm1}. By the definition of a ring Q-mapping at
the point p0 and due to the minority property of the modulus of families of paths (see [24,
Theorem 1(c)]) we obtain that

M(fm(Γm)) ⩽M(fm(Γ(S̃(p0, rm), S̃(p0, rm1), Ã(p0, rm, rm1)))) ⩽

⩽
∫

Ã(p0,rm,rm1 )

Q(p) · η2(h̃(p, p0)) dṽ(p) (17)

for any Lebesgue measurable function η : (rm, rm1) → [0,∞] such that
∫ rm1

rm
η(r) dr ⩾ 1.

Observe that a function

η(t) =

{
ψ(t)/I(rm, rm1), t ∈ (rm, rm1),

0, t ∈ R \ (rm, rm1) ,

satisfies the normalized condition (4) for r1 := rm, r2 := rm1 , where I(ε, ε0) :=
∫ ε0
ε
ψ(t) dt.

Then by (13)–(14) and (17), it follows that

M(fm(Γm)) ⩽ α(rm) → 0 as m→ ∞ , (18)

where α(ε) is some nonnegative function tending to zero as ε → 0, which exists due to
relations (13)–(14).

On the other hand, observe that fm(Γm) = Γ(Cm, fm(A), Dfm), where h̃∗(fm(A)) ⩾ δ for
any m ∈ N and by the definition of the class FQ,δ,A(D). Taking into account (16) and the
definition of an equi-uniform family of domains, we conclude that there exists σ > 0 such
that

M(fm(Γm)) =M(Γ(Cm, fm(A), Dfm)) ⩾ σ ∀ m ∈ N ,

which contradicts condition (18). The resulting contradiction proves the lemma.

From Lemma 3, arguing similarly to the proof of Theorem 3, we obtain the following
assertion.

Theorem 4. Let D be a domain in S and Q : S → (0,∞) be a locally integrable function
in D, Q(p) ≡ 0 on S \D. Assume that at least one of the following conditions is true:

1) for any point p0 ∈ D there exists ε0 = ε0(p0) > 0 such that the conditions (12) hold for
all 0 < ε < ε0;
2) Q ∈ FMO(D). Let D and Df := f(D) be domains which have compact closures D ⊂ S
and Df ⊂ S∗, moreover, ∂D consists of a finite number of components.

Assume that the domains Df and S∗ are equi-uniform over f ∈ FQ,δ,A(D). Then any f ∈
FQ,δ,A(D) has a continuous extension f : DP → Df and, in addition, the family FQ,δ,A(DP )
consisting of all extended mappings f : DP → Df , is equicontinuous in DP .
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The proof of Theorem 2. follows by Theorem 4 due to the fact that homeomorphisms of the
Sobolev class with finite distortion are ring Q-mappings for Q = Kf (p) provided that Q is
locally integrable (see [1, Lemma 3.1]).

4. Equicontinuity of ring Q-mappings with a branching. The main ideas related to the
study of mappings on Riemannian surfaces with branching refer to the first author’s paper [5,
Sec. 6]. Consider the following class of mappings. Let δ > 0, D ⊂ S and Q : D → [0,∞]
be a function measurable with respect to the measure ṽ. Denote EQ,δ(D) a family of open,
discrete, and closed ring Q-mappings f : D → S∗ satisfying the following conditions: 1) there
is a continuum Kf ⊂ S∗ \ f(D) such that h̃∗(Kf ) = supx,y∈Kf

h̃∗(x, y) ⩾ δ; 2) there is
a continuum Af ⊂ f(D) such that h̃∗(Af ) ⩾ δ and h̃(f −1(Af ), ∂D) ⩾ δ. The following
assertion holds.

Lemma 4. Let D ⊂ S, let D ′
f := f(D) ⊂ S∗, let f ∈ EQ,δ(D) and let Q : S → (0,∞)

be a measurable function with respect to measure ṽ. Assume that D and D ′
f are compact

and ∂D has a finite number of components. Moreover, suppose that for any point p0 ∈ ∂D
there exist ε0 = ε0(p0) > 0 and a Lebesgue measurable function ψ : (0,∞) → (0,∞) such
that conditions (5)–(6) are satisfied. If domains D ′

f := f(D) and S∗ are equi-uniform over
f ∈ EQ,δ(D), then any mapping f ∈ EQ,δ(D) has a continuous extension f : DP → D ′

f ,

in addition, the family EQ,δ(DP ) of all extended mappings f : DP → D ′
f is equicontinuous

at DP .

Proof. Arguing as in the proof of Lemma 3, we obtain that ∂D ′
f = ∂f(D) is strongly accessi-

ble for any f ∈ EQ,δ(D). Then, by Lemma 1, the mapping f ∈ EQ,δ(D) has a continuous
extension f : DP → D ′

f . Further, by [25, Theorem 7.2.2] the surface S is locally Ahlfors
2-regular, so that the family f ∈ EQ,δ(D) is equicontinuous at inner points of D by [5,
Lemma 6.1]. It remains to check the equicontinuity of the ”extended” family EQ,δ(DP ) on
ED := DP \D.

Assume the contrary, namely, that there exists P0 ∈ ED such that EQ,δ(DP ) is not
equicontinuous at P0. In this case, there are a number δ0 > 0 and sequences Pk ∈ DP ,
fk ∈ EQ,δ(DP ) such that Pk → P0 as k → ∞ and

h̃∗(fk(Pk), fk(P0)) ⩾ δ0 . (19)

Since fk has a continuous extension to DP , then for a given k ∈ N there is an element xk ∈ D
such that ρ(xk, Pk) < 1/k and h̃(fk(xk), fk(Pk)) < 1/k, where ρ means the metric in DP , see
Proposition 1. In this case, it follows from (19) that

h̃∗(fk(xk), fk(P0)) ⩾ ε0/2 ∀ k = 1, 2, . . . , . (20)

Similarly, there is x ′
k ∈ D such that x ′

k → P0 as k → ∞ and, moreover, h̃∗(fk(x ′
k), fk(P0)) <

1/k, k = 1, 2, . . . . Then from (20) it follows that

h̃∗(fk(xk), fk(x
′
k)) ⩾ ε0/4 ∀ k = 1, 2, . . . ,

where xk, x
′
k ∈ D, xk → P0 as k → ∞ and x ′

k → P0 as k → ∞ (see Figure 3 for an
illustration).
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Figure 3: To the proof of Lemma 4

Let αk, k = 1, 2, . . . , be the cuts corresponding to the end P0, and let dk be a correspondi-
ng sequence of domains in D. We may assume that αk belong to some circles S̃(p0, rk), where
rk → 0 as k → ∞. (Such cuts and circles exist by item 2) of Proposition 1). Without loss of
generality, passing to a subsequence, if necessary, we may assume that xk, x ′

k ∈ dk. Join the
points xk and x ′

k by a path αk : [0, 1] → S such that γk(0) = xk, γk(1) = x ′
k and αk(t) ∈ dk

for t ∈ (0, 1).

Let Afk be the set corresponding to the mapping f ∈ EQ,δ(D) from the definition of the
class EQ,δ(D). Let us prove that

f −1
k (Afk) ⊂ D \ dk (21)

for some sufficiently large k0 ∈ N and all k ⩾ k0. Indeed, if the relation (21) does not
hold, then there exists a sequence xl ∈ f −1

k (Afkl
) ∩ dkl , l = 1, 2, . . . . Since by condition of

the lemma D is a compact set in S, we may consider the sequence xl converging to some
point x0 ∈ D, while x0 ∈ ∂D by item 3) of Proposition 1. However, the latter contradicts
the condition h̃(f −1(Afkl

), ∂D) ⩾ δ, included in the definition of the class EQ,δ(D). Thus,
relation (21) is proved.

Without loss of generality, we may assume that rk0 < ε0, where ε0 > 0 is a number
corresponding to relations (5)–(6). Denote by Γk a family of paths joining |γk| and f −1

k (Afk)

inD. Arguing similarly to the proof of Lemma 3 and taking into account that ∂dk ⊂ S̃(p0, rk),
we obtain that Γk > Γ(S̃(p0, rk), S̃(p0, rk0), Ã(p0, rk, rk0) ∩D). Thus,

M(fk(Γk)) ⩽M(fk(Γ(S̃(p0, rk), S̃(p0, rk0), Ã(p0, rk, rk0) ∩D))) . (22)

Observe that the function

η(t) =

{
ψ(t)/I(rk, rk0), t ∈ (rk, rk0),

0, t ∈ R \ (rk, rk0) ,

satisfies the condition (6) for ε = rk and ε0 = rk0 , where I(ε, ε0) :=
∫ ε0
ε
ψ(t) dt. In this case,

by (22) and by the definition of a ring Q-mapping, as well as by the condition (6) we obtain
that

M(fk(Γk)) ⩽ α(2−k) → 0 as k → ∞ , (23)
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where α(ε) is some nonnegative function satisfying the condition α(ε) → 0 as ε→ 0.

On the other hand, consider the family of paths Γ(|fk(γk)|, Afk , D
′
fk
). Since, by the

assumption, the domains D ′
fk

:= fk(D) are equi-uniform, there is some r0 > 0 such that

M(Γ(|fk(γk)|, Afk , D
′
fk
)) ⩾ r0 , k = 1, 2, . . . . (24)

Let Γ∗
k be the family of all maximal fk-liftings of paths in Γ(|fk(γk)|, Afk , D

′
fk
) starting at

|γk|, which exists due to Proposition 2. Arguing similarly to the proof of Lemma 1, we may
show that Γ∗

k ⊂ Γk. In addition, observe that fk(Γ ∗
k ) < Γ(|fk(γk)|, Afk , D

′
fk
). Hence, we have

that
M(Γ(|fk(γk)|, Afk , D

′
fk
)) ⩽M(fk(Γ

∗
k )) ⩽M(fk(Γk)) . (25)

However, (24) and (25) contradict relation (23). The resulting contradiction completes the
proof.

Arguing similarly to the proof of Theorem 3 and using the assertion of Lemma 4, we
obtain the following statement.

Theorem 5. Let D ⊂ S, let D ′
f := f(D) ⊂ S∗, let f ∈ EQ,δ(D) and let Q : S → (0,∞) be

a measurable function with respect to measure ṽ. Assume that, D and D ′
f are compact and

∂D has a finite number of components. Assume that at least one of the following conditions
holds: 1) for any point p0 ∈ D there is ε0 = ε0(p0) > 0 such that conditions (12) hold for
any 0 < ε < ε0; 2) Q ∈ FMO(D).

If domains D ′
f := f(D) and S∗ are equi-uniform over f ∈ EQ,δ(D), then any mapping

f ∈ EQ,δ(D) has a continuous extension f : DP → D ′
f , in addition, the family EQ,δ(DP ) of

all extended mappings f : DP → D ′
f is equicontinuous in DP .
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