Maremaruani Crymil. T.57, Ne2 Matematychni Studii. V.57, No.2

VIK 517.5
E. A. SEvosT’yANOV, O. P. DOVHOPIATYI, N. S. ILKEVYCH, V. P. KALENSKA

ON EQUICONTINUITY OF FAMILIES OF MAPPINGS BETWEEN
RIEMANNIAN SURFACES WITH RESPECT TO PRIME ENDS

E. A. Sevost’yanov, O. P. Dovhopiatyi, N. S. Ilkevych, V. P. Kalenska. On equicontinuity of
families of mappings between riemannian surfaces with respect to prime ends, Mat. Stud. 57

(2022), 157-171.

Given a domain of some Riemannian surface, we consider questions related to the possibility
of a continuous extension to the boundary of one class of Sobolev mappings. It is proved
that such maps have a continuous boundary extension in terms of prime ends, and under
some additional restrictions their families are equicontinuous at inner and boundary points of
the domain. We have separately considered the cases of homeomorphisms and mappings with
branching.

1. Introduction. The problems of extension of mappings of the Sobolev class acting between
Riemannian surfaces have been considered in several papers by V. Ryazanov and S. Volkov,
see [1] and [2]. In this manuscript, we develop research in this direction, studying here the
behavior of mappings in the closure of a given domain. In the first part, we have proved
the possibility of continuous extension f: Dp — D,, where D and D, are domains on
Riemannian surfaces S and S,, and Dp is the closure of the domain D with respect to
prime ends. On this occasion, we note the publication [2], where slightly similar results were
obtained for classes of Sobolev homeomorphisms, and also the paper [3], where similar results
were obtained for the case of Riemannian manifolds. Compared to [2], we are dealing with
the extension f: Dp — D, rather than f: Dp — D, p. In the second part of the paper we
show that the families of the mappings mentioned above are equicontinuous in Dp. In this
regard, we point out to classical results of R. Nékki and B. Palka (|4]), as well as results of
the first author obtained for metric spaces, see [5].

Quite exhaustively, all definitions concerning Riemannian surfaces, their representations
in terms of quotient spaces, as well as the elements of length and area in them, are given
in [1], and therefore are omitted. Everywhere below, unless otherwise stated, the Riemannian
surfaces S and S, are of the hyperbolic type. Further ds; and dv, ds;— and dv, denote the
length and area elements on Riemannian surfaces S and Ss, respectlvely We also use the
notation h for the metric on the surface S, in particular,

E(po,'r’) ={peSs: TL(p,po) <r}, §(p0,7’) ={peSs: E(p,po) =r}

are the disk and the circle on S centered at py and of the radius r > 0, respectively. The
following definitions refer to Carathéodory [6], cf. [7], [8], [9] and [10]. Recall that a continuous
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mapping o: I — S, I = (0,1), is called a Jordan arcin S, if o(t1) # o(t2) for t; # to. Further
we will sometimes use o for o(I), & for o(I) and do for o(I) \ o(I). A cut in a domain D is
either a Jordan arc o: I — D, ends which lie on 0D, or a closed Jordan curve in D. The
sequence o, 09, ...,0m,,... of cuts in D is called a chain if:

(i)o;Noj =@ forany i #j,i,j=1,2,..;

(ii) o,, separates D, i.e., D \ o, consists precisely from two components one of which
contains o,,_1, and another contains o, 1,

(iii) E(O’m) — 00 as m — 00, E(am) = sup E(pl,m).

P1,p2€0m

By the definition, a chain of cuts {o,,} defines a chain of domains d,, C D such that
ddnND Copanddy Dde D ... Ddpy D .... Two chains of cuts {0,,} and {0/} are called
equivalent, if for each m = 1,2,... the domain d,, contains all the domains d; except for
a finite number, and for each k = 1,2,... the domain d; also contains all the domains d,,
except for a finite number. End of D is the class of equivalent chains of cuts in D.

Let K be a prime end in D C S, and {o,,} and {o,,} are two chains in K, d,,, and d,
are domains corresponding to o, and o,,. Then

Nc NN,
m=1 m=1 m=1

and thus - -
(Vdw= (45
m=1 m=1
in other words, the set
I(K)=()dn

1

3
I

depends only on K and does not depend on the choice of the chain of cuts {c,,}. The set
I(K) is called the impression of a prime end K. Further Ep denotes the set of all prime
ends in D, and Dp := D U Ep denotes the completion of D by its prime ends. Let us turn
Dp into the topological space as follows. Firstly, open sets from D are considered open in
Dp, as well. Secondly, the base neighborhood of a prime end P C Ep is defined as the union
of an arbitrary domain d, included in some chain of cuts of P, with all other prime ends in
d. In particular, in the topology mentioned above, a sequence of points z, € D converges
to an element P € Ep if and only if, for any domain d,,, belonging to the chain of domains
dy,ds,ds, ..., in P there exists ng = ng(m) such that x,, € d,, for n > nq.

The dilatation of the mapping f at the point z is defined (in local coordinates) by the

relation Ll

K& =17 2
for Jp(z) # 0, K¢(z) = 1 for || f'(2)]| = 0 and K(z) = oo otherwise. It is easy to see that K
does not depend on local coordinates, since the transition maps from one chart to another
are conformal by virtue of the definition of Riemannian surface. Given domains D, D, C C,
a mapping f: D — D, is called a mapping with a finite distortion, if f € I/Vlicl(D) and, in

addition, there is almost everywhere a finite function K (z) such that ||f'(2)||* < K(z2)- J;(2)
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for almost all z € D, where J¢(z) denotes the jacobian of f at z. If D, D, are domains in S
and S,, respectively, then f: D — D, is called a mapping with finite distortion, if it is so in
local coordinates.

As usual, a path v on the Riemannian surface S is a continuous mapping v: I — S,
where [ is a finite segment, an interval or a half-interval of a real axis. Let I' be a family of
paths in S. A Borel function p: S — [0, 00| is called admissible for the family T" of paths =,
if fp ) dsz(p) = 1 for any path v € I'. The latter is briefly written in the form: p € admT.

A modulus of the family I is a real-valued function

peadm T
S

ur) = it [P0 ).

Let E, F' C S be arbitrary sets. In the future, everywhere by I'( E, F), D) we denote the family
of all paths v: [a,b] — D, which join £ and F in D, that is, v(a) € E, v(b) € F and ¥(t) € D
for t € (a, b). We say that a boundary G of a domain G is strongly accessible at a point
po € 0G if, for each neighborhood U of py there are compact set £ C G, a neighborhood
V' C U of the same point and a number 6 > 0 such that, the relation M (I'(E, F,G)) > o
holds for any continuum F' intersecting both OU and 9V. We also say that a boundary of
0G is strongly accessible if it is strongly accessible at any of its points.

Assume that py € S and that a function ¢: D — R is integrable with respect to the
measure v in some neighborhood U of py. Following [11, Sect. 2| (see [12, Sec. 6.1, Ch. 6]),
we say that a function ¢: D — R has a finite mean oscillation at the point py € D, write
p e FMO(po), if

1
fimsup [ p(p) ~ .| dip) < ox.
€0 U<B(p07€))~
B(po, )
where @, = B (;0 =y | ¢(p) dv(p). The following statement holds.
Bl

Theorem 1. Let D, D, be domains in S and S,, respectively, having compact closures
D C S and D, C S,, 0D has a finite number of components, and 0D, is strongly accessible.
Let Q: S — (0,00) be a given function measurable with respect to the measure v on S,
Q(p)=0inS\ D. Let f: D — D, be a homeomorphism of a domain D onto D, of the class
Wil with a finite distortion such that K;(p) < Q(p) for almost all p € D. Then f extends

to a continuous mapping f: Dp — D,, f(Dp) = D,, if one of the following conditions is
true: 1) for any py € 0D there is g = €o(po) > 0 such that

€0 €0
dt dt
<00, ——— = 00 (2)
1Q1I(2) 1Q1(2)
for any 0 < e < gy, where ||Q||(t) := [ Q(p)ds;(p) denotes the Li-norm of the function
S(wo.t)

Q over the circle §(p0, t),
2)Q € FMO(OD).
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The following statement holds.

Proposition 1. Assume that D is a compact set in S, in addition, the domain D C S has
at most a finite number of boundary components I'y,T'y, ..., I';, C 0D. Then:

1) the space Dp is metrizable by some metric p: Dp x Dp — R such that the convergence
of an arbitrary sequence x,, € D, n =1,2,..., to some prime end P € Ep is equivalent to
the convergence of x,, in one of the spaces U, see [2, Remark 2];

2) each prime end P € Ep contains an equivalent chain of cuts o,,, m = 1,2, ..., lying on
the circles S(z9,Tm), rm — 0 as m — 00, see [2, Remark 1J;

3) the body I(P) of any prime end P C Ep is a continuum in 0D, in addition, there is one
and only one 1 < i < n such that I(P) C I';, see |2, Proposition 1, Remark 1].

Let (X,d) and (X', d") be metric spaces with distances d and d’, respectively. A family
§ of mappings f: X — X' is called equicontinuous at a point xo € X, if for any € > 0 there
exists § > 0 such that d'(f(x), f(xg)) < € for all z € X such that d(z,z9) < 0 and for all
[ € 3. Afamily § is equicontinuous if § is equicontinuous at every point zyo € X. Everywhere
below, unless otherwise stated, (X,d) = (Dp, p) and (X', d’') = (S,, h.), where p is one of
the metric from Proposition 1.

The next definition can be found, e.g., in [4]. A domain D C S is called a uniform if
for every r > 0 there exists 4 > 0 such that M(F(F, F* D)) > ¢ for any continua F' and
F* in D, satisfying the conditions h(F) > r and h(F*) > r. Domains D;, i € I, are called
equi-uniform if, for each r > 0 the above inequality holds for any D; with the same number

J.

Consider now the following class of mappings. For a given 6 > 0, D C §, a continuum

A C D and a function @: D — |0, 00] measurable with respect to the measure h, denote

Sg.s5.4(D) afamily of all homeomorphisms of the Sobolev class with finite distortion f: D —

S, for which there exists a continuum Gy C S, such that f: D — S, \ Gy and ﬁ*(Gf) =
sup ha(z,y) = 6, ho(f(A)) = 8. The following statement holds.

:c,yer

Theorem 2. Let D be a domain in S, such that D is compact in S, and Q: S — (0, 00) is a
function locally integrable in D, Q(x) = 0 on S\ D. Assume that, for any point py € D either
the condition (2), or the condition Q) € FMO(py) holds. Assume also that D consist of a
finite number of components, and D_f = f(D) is a compact set in S, for any f € &g s5.4(D),
moreover, the domains Dy and S, are equi-uniform over the class f € &g s.4(D).

Then each f € &gs.4(D) has a continuous extension f Dp — Dy and, moreover, the
family GQ@A(D) consisting of all extended mappings f: Dp — Df is equicontinuous in Dp.

2. A continuous boundary extension of mappings. Let Q: S — [0, 00| be a function
measurable with respect to the measure v, Q(p) = 0 for p ¢ D, D C S. We say that
f: D — S, is a ring Q-mapping at py € D, if the relation

MOFT(E o, 1), S(posrs). / Qp) - 17 (i, po) () (3)

holds for some ry = r(pg) > 0, any ring A= g(po,Tl,Tz) ={pesS:r< %(p,po) < ro}
and any 0 < r; < ry < 1o, where n: (r1,72) — [0,00] is arbitrary nonnegative Lebesgue
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measurable function such that

/n(r) dr>1. (4)

We say that f is a ring Q-mapping at £ C D, if f is a ring Q-mapping at every point py € E.

Given a mapping f: D — S, and aset E C D C S we set
C(f,E)={yeSi,:Jx € E,x, € D: x, — x, f(xg) =y, k — oo}

A mapping f: D — D, is called discrete if the pre-image f~!(y) of each point y € D,
consists only of isolated points. A mapping f: D — D, is called open if the image of any
open set U C D is an open set in D,. A mapping f of D onto D, is called closed if f(E) is
closed in D, for any closed set £ C D.

Let D C S, f: D — S, be an open discrete mapping, 5: [a, b) — S, is a path and
r € f71(B(a)). A path a: [a, ¢) — D is called a mazimal f-lifting of B starting at the
point z, if (1) a(a) =2;(2) foa = fl,e; (3) for any ¢ < ¢ < b, there is no a path
o': [a, ) = D such that a = o/|[4,¢) and foa’ = B, ~). Observe that, maximal f-liftings
under open discrete mappings always exist in S = S, = R? due to Rickman’s theorem, see [13,
corollary 11.3.3| or [14, Lemma 3.12|. Since Riemannian surfaces are orientable topological
manifolds, by [15, Theorem 3.4|, cf. [16, Example 1.4(a)] and |17, Lemma 2.1], we obtain the

following assertion.

Proposition 2. Let D, D, be domains in S and S,, respectively, let x € f~'(B(a)), and
let f: D — D, be an open discrete mapping. Then any path [5: [a, b) — S, has a maximal
f-lifting «: [a, ¢) — D of [ starting at the point x.

The following statement carries the main semantic load related to the main result of this
section.

Lemma 1. Let D, D, be domains in S and S,, respectively, having compact closures D C S
and D, C S,. Assume that 0D has a finite number of components, and 0D, is strongly
accessible. Let Q: S — (0,00) be a function measurable with respect to the measure v on S,
Q(p) = 0in S\ D, furthermore, assume that, for any point py € 0D there are £y = gq(pg) > 0
and a Lebesgue measurable function v: (0,00) — (0, 00) such that

I(g,e0) == /w(t) dt < oo Vee(0,e), (5)

I(g,&0) > 0 for sufficiently small € > 0, and

/ Q) - ¥ ((p. po)) di(p) = o (I*(e,20)) . € 0. (6)

e<h(p,po)<eo

Let f: D — D, be an open discrete and closed ring Q-mapping of D onto D, at all points
of OD. Then f is extendable to a continuous mapping f: Dp — D,, f(Dp) = D..
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Proof. Let us first prove that f has a continuous extension f: Dp — D,. We fix P € Ep.
Since, by assumption, the space D, is compact, it suffices to establish that the set

L:C’(f,P)::{yES*:y: lim f(pm), pm—>P} as  m — o0

consists of a single point y, € D,.

Let us assume the opposite. Then there exist at least two points yy and zy € L. That is,
there are at least two sequences pg, p; € D, such that p, — P and p] — P as k — oo, and,
moreover, f(px) — yo and f(p)) — 20 as k — oo. By item 2) of Proposition 1 the prime
end P contains a chain of cuts o, lying on circles Sy centered at some point py € 9D and
radii 7, — 0, £ — o0. Let dj be the domains associated with cuts o, £ =1,2,.... Without
loss of generality, passing to a subsequence if necessary, we may assume that pg,p, € dj
(see Figure 1 for an illustration). Observe that yy and zo € 0D,, because the mapping f is

/

Figure 1: To proof of Lemma 1

closed and hence C(f,0D) C 0D, (see |5, Proposition 2.1]). By the definition of a strongly
accessible boundary at the point y, € 0D,, for any neighborhood U of this point, there are
a compact set C) C D, a neighborhood V' of the point yo, V' C U, and a number § > 0 such
that

M(D(Cy,F,D,)) =48>0 (7)

for any continuum F intersecting OU and 9V. Put Cy := f~1(Cy). By [5, Proposition 2.1]
CoNOD = @, since f is open, discrete and closed. By item 3) of Proposition 1, we obtain
that I(P) = (~_, dn C OD. Then we may assume that Cy N dy = & for any k € N. Join
the points py and pj, by a path 7, in dj. Observe that f(py) € V and f(p;) € D\ U for all
sufficiently large k£ € N. In this case, due to (7), there is a number kg € N such that

M(T(Cq, | f(w)], D)) =2 6 >0 (8)
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for any k > ko € N. Denote by I';, the family of all half-open paths f: [a,b) — D’ such that
B(a) € |f(vk)], Be(t) € D' for any t € [a,b) and

. e /
tEEOﬁk(t) =B, € CO .

Denote by Ty the family of all extended paths 8: [a,b] — D', 8 € T'. Obviously,
M(Ty) = M(Ty) = M (T (Cy, | f(w)], D)) - (9)

We fix k € N, k > ko, and denote by I'/ the family of all maximal f-liftings ay: [a,c) — D
of the family I'y starting at |vy;|. Such a family is well defined due to Proposition 2. Note
that, any path oy € I'}, ax: [a,¢) = D, can not tend to the boundary of D as t — ¢ — 0,
because C(f,0D) C 0D’ (see |5, Proposition 2.1]). Then C(ay,c) C D.

Let us now show that there exists a limit of oy (t) as t — ¢ — 0. Consider the set
G:{mGS:x: lim a(tk)}, tr € [a,¢), lm t,=c.
k— oo k—o0

Passing to subsequences, we may restrict ourselves by monotone sequences t. Let © € GG, then
by the continuity of f we have that f (a(ty)) — f(z) as k — oo, where t; € [a, ¢), t;, — ¢
as k — oo. However, f (a(ty)) = B(tx) — B(c) as k — oco. Then f is constant on G. On
the other hand, @ is a compactum, because @ is a closed subset of the compact space D
(see [18, Theorem 2.11.4, § 41]). Then, by the Cantor condition on the compact set @, due to
the monotonicity of the sets a ([ty, ¢)), we obtain that

¢ = alw ) #2,

see |18, 1.11.4, §41]. Then, by [18, Theorem 5.11.5, §47| the set @ is connected. Since f is
discrete, the set G is one-point. Thus, the path «: [a, ¢) — D can be extended to a closed
path a: [a, ¢] = D and f (a(c)) = 5(c).

Hence, there exists tlimoak(t) = A, € D. Then, by the definition of a maximal lifting,
—c—
we have that ¢ = b. In this case, thino ax(t) := A and, simultaneously, by the continuity of
% J—

the mapping f in D,
f(A) = lim fley(t)) = lim 5(t) = By € Cy -

Hence, by the definition of the set Cj, we obtain that Ay € Cj.

Hence, @ € T'(]k|, Co, D), where @ denotes the extended path @: [a,b] — D. Denote by
'} the family of all such extended paths @: [a,b] — D, a € I'}. Note that I'(|yx|, Co, D) >
['(o, C1, D) because oy, is a cut corresponding to the domain dy.. Now, we apply the definition
of a ring Q-mapping in (3) to the family I'(oy, C1, D). Let us recall that oy € g(po, i) for
some point py € 9D and some sequence 13, > 0, 1, — 0 as k — oo. Without loss of generality,
reducing €1, if necessary, we may assume that h(po, C1) > 9. In addition, observe that the

function
)Y@/ 1(re,g0), tE (ri,0),
() = {0, tE€R\ (rp, o),
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I(e,e0) := [-°1(t) dt, satisfies the normalization condition (4). Due to the proving above,
we obtain that T} C T'(Jyx|,Co, D), therefore M(f(T[)) < M(f(T'(|v|,Co, D))). Then, by
definition of a ring @-mapping at the boundary point, taking into account conditions (5)—(6),
we obtain that

M(f(T})) < M(f(T(lwl, Co, D))) < M(f(T(ow, C1, D)) < A(k), (10)

where A(k) — 0 as k — oco. However, T'y = f(T'}) and T, = f(T'}). Then it follows from (10)
that

M(T) = M (f(T]) < A(k) = 0 (11)

as k — oco. However, relation (11) together with equality (9) contradict inequality (8), which
proves the lemma. O

A particular case of Lemma 1 is the following most important statement.

Theorem 3. Let D,D, be domains in S and S,, respectively, having compact closures
D C S and D, C S,, while 0D has finitely many components, and 0D, is strongly accessible.
Let Q: S — (0,00) be a function measurable with respect to the measure v on S, Q(p) = 0
on S\ D, furthermore, suppose that at least one of the following conditions holds:

1) for any py € 0D, there is €9 = £¢(po) > 0 such that

€0 €0
dt dt
— < 00, T = 00 (12)
/ Tel® el
for any 0 < € < g¢, where ||Q||(r) := [ Q(p)ds;(p) denotes the Ly-norm of the function
S(po,r)

Q over the circle S(p, 1),
2) Q € FMO(OD).

Let f: D — D, be an open discrete and closed ring ()-mapping of D onto D, at the
points of OD. Then f extends to a continuous mapping f: Dp — D,, f(Dp) = D,.

Proof. In case 1), when conditions (12) are satisfied, we set 1(t) = m, where, as usually
|1QI|(t) fs o) @ p) ds;(p). Note that the function 1) satisfies the conditions (5)—(6) of

Lemma 1. In partlcular (6) holds for sufficiently small 0 < £ < &g, because

/ Q) - 2 (h(p,po)) d(p)
)

A(po,e,c0

J = J(po,e,e0) := fao |Q”” (this fact can be proved completely by analogy with [12,
Lemma 7.4, Ch. 7], cf. [19, Lemma 3.7] or [20, Lemma 4.2|, and therefore its proof is omitted).

Thus, in case 1) the necessary conclusion follows directly from Lemma 1. In case 2), when

Q € FMO(OD), we set ¢(t) := m. Then the fulfillment of the condition (6) of Lemma 1

follows by |21, Lemma 3|. The necessary conclusion follows again from Lemma 1. m
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The proof of Theorem 1. follows immediately from the fact that mappings of the Sobolev
class with finite a distortion on Riemannian surfaces are ring ()-homeomorphisms for ) =
K¢(p), and also by Theorem 3. In particular, homeomorphisms acting between domains of
two Riemannian surfaces are obviously discrete; moreover, they are open due to Brouwer’s
theorem (see [22, Theorem VI 9 and Corollary|), and closed due to general topological consi-
derations (see [23, Theorem 1.VII.1, § 13]). Thus, the desired conclusion follows directly from
Theorem 3. O

3. Equicontinuity of families of homeomorphisms. For a given § > 0, D C S and a
function @): D — [0, co] measurable with respect to the measure v, denote by ¢ s5(D) the
family of all ring )-homeomorphisms f: D — S, for which there is a continuum Gy C S,
such that f: D — S,\ G and iNL*(Gf) = SUP, yeq, h.(z,y) > 6. The following assertion holds
(see [5, Lemma 5.1]).

Lemma 2. A family of mappings R (D) is equicontinuous in D, if S, is a uniform domain,
moreover, Q: S — (0,00) is a locally integrable function in D such that conditions (5)-(6)
hold at any point py € D.

Consider the following class of mappings. Given § > 0, D C S, a continuum A C D and a
function @): D — [0, 0co] measurable with respect to the measure v, denote by §¢s.4(D) the
family of all ring Q- homeomorphlsms f:D—=S.\G 3 in D for which there is a continuum
Gy C S, satistying the condition I, (Gy) = sup, yeq, hy(z,y) = 6, while h(f(A)) > 6. An
analogue of the following theorem was obtained in [4, Theorem 3.1].

Lemma 3. Let D be a domain in § and Q: S — (0,00) be a function measurable with
respect to measure v, Q(p) = 0 for p € S\ D. Assume that, for any point py € D there are
g0 = €o(po) > 0 and a function ¢ : (0,00) — (0, 00) such that

I(e,20) = /W) dt <00 Vee(0,e), (13)

I(g,e9) > 0 for sufficiently small £ > 0, and, in addition,

/ Q) - V2 (h(p. po)) di(p) = o(I*(z.0)), 0. (14)

s<h (p.po)<eo

Let D and D; := f(D) be domains which have compact closures D C S and D; C S,,
moreover, 0D consists of a finite number of components.

Assume that the domains Dy and S, are equi-uniform over f € §qs4(D). Then each
f € F0s.4(D) has a continuous extension f: Dp — D;. Moreover, the e family §q, s.4(Dp),
consisting of all extended mappings f: Dp — Dy #, Is equicontinuous in Dp.

Proof. Observe that 0Dy = 0f(D) is strongly accessible for any f € §¢s4(D). Indeed, let
xo € 0Dy and let U be an arbitrary neighborhood of the point xy. Choose £; > 0 such that
V = B(zg,e1), V C U. Let 0U # @ and 0V # @. Then &5 := h,(0U,dV) > 0. Since the
domains Dy are equi-uniform and, moreover, %*(F ) > &9 and 7L*(G) > g9, then we obtain
that

M(I'(F,G,Dyg)) = 6
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for any continua F' and G in Dy with FNOU # @ # FNOV and GNOU # @ # GNIV, where
d > 0 is some number depending only on e. Thus, 0Dy = 0f(D) is strongly accessible. By
Lemma 1, any f € §os.4(D) has a continuous extension f: Dp — Dj.

Since Fgs,4(D) C R s(D), the equicontinuity of the family §g5.4(D) at inner points of
D follows by Lemma 2.

It remains to prove the equicontinuity of the family §os4(Dp) on Ep = Dp \ D.
Assume the contrary, namely, that this family is not equicontinuous at Ep. Then there are
Py € Ep and a number a > 0 with the following property: for each m = 1,2,... there
is an element p,, € Dp and a mapping f,, € Fos.4(Dp) such that p(Py,p,) < 1/m and
E*(Tm(pm),fm(Po)) > a. (Here p means the metric in the space Dp, see Proposition 1).
Since f,, := Tm\ p has a continuous extension to the point F,, we may assume that p,, € D.
By the same considerations, there exists a sequence p,, € D, p/ — Fy as m — oo such that

B fon(pL), Fon(Po)) < 1/m. Thus,

Bl fin(pm)s f(Pl)) = /2 Y meN. (15)

Let d,,, m = 1,2, ... be a sequence of cuts of D corresponding to the end /%, and let the cuts
Qyp, corresponding to d,,, lie on the circles S(po, ), 7m — 0 as m — oo. (Such cuts and
circles exist by item 2) of Proposition 1). Without loss of generality, passing to a subsequence

Figure 2: To the proof of Lemma 3

if necessary, we may assume that p,,, p}, € dn, see Figure 2 for illustrations. Join the points
pm and p/ with a path 7,,: [0,1] — S such that 7,,(0) = pm, V(1) = p., and v, (t) € dp,
for t € (0,1). Denote by C,, the locus of the image of the path ~,, under the mapping f,,.
From relation (15) it follows that

h(Cp)=a/2 VmeN, (16)

where %*(Cm) denotes the diameter of the set C,, in metric h,. Without loss of generality,
we may assume that the continuum A from definition of the family §g5.4(D) is such that
dnNA=2, m=1,2,.... Let T';,, be a family of paths joining |v,,| and A in D. Let m; € N
be such that r,,, < &g, where ¢y > 0 is the number from the condition of the lemma. Let
a€ly,, a: 0,1 = D, a(0) € || and (1) € A. Then |a|Nd,,, # S # |a|N(D\d,,,) and,
therefore, by [18, Theorem 1.1.5, §46] || N Odyn, # . Since ddy, N D C Y, C S(Po; T, ),
there is a point t; € [0,1] such that a(t;) € S(po,m,). Without loss of generality, we
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may assume that a(t) € B(p, rm,) for any ¢ € [0,t,). Let a; := ol and let m > my.
Then by the same considerations |a;| N dd,, # @. Since 0d,, N D C |ym| C §(p0,7’m),
there is a point to € [0,%;] such that ay(ts) € S (po, m). Without loss of generality, we may
assume that %*(al(t),pg) > 1y, for any t € [ta,t1]. Put as := oy, ). Thus, we have proved
that the path a has a subpath sy such that ay € F(g(pg,rm),g(po,rml),ﬁ(po,rm,rml)),
g(po,rm,rml) ={peS:ir,< E(p,po) < T, }- By the definition of a ring Q-mapping at
the point py and due to the minority property of the modulus of families of paths (see |24,
Theorem 1(c)|) we obtain that

(fm( m)) pOarm) S(po,?“ml) A(pOarmaTml)))) <
/ Q) - 7 (h(p. po)) d(p) (17)

pO Tm Tml

for any Lebesgue measurable function n: (7p,7m,) — [0,00] such that J::Z” n(r)ydr > 1.
Observe that a function

)Y@/ ()t E (T, Ty ),
() = {0, tERN (Fy i)

satisfies the normalized condition (4) for 71 := 7y, 75 1= 7., where I(g,g0) := [ 9(t) dt.
Then by (13)—(14) and (17), it follows that

M(fn(Ty)) <alrp) -0 as m — oo, (18)

where a(e) is some nonnegative function tending to zero as ¢ — 0, which exists due to
relations (13)—(14).

On the other hand, observe that f,,(I';,) = I'(Cy,, fin(A), Dy,.), where ha(fm(A)) = 6 for
any m € N and by the definition of the class §gs.4(D). Taking into account (16) and the
definition of an equi-uniform family of domains, we conclude that there exists ¢ > 0 such
that

M(fm(rm)) :M<F(Cmafm(A)anm)) z0 VmeN,

which contradicts condition (18). The resulting contradiction proves the lemma. [

From Lemma 3, arguing similarly to the proof of Theorem 3, we obtain the following
assertion.

Theorem 4. Let D be a domain in S and Q: S — (0,00) be a locally integrable function
in D, Q(p) =0 on S\ D. Assume that at least one of the following conditions is true:

1) for any point py € D there exists g = £9(pg) > 0 such that the conditions (12) hold for
all 0 < e < ep;
2) Q € FMO(D). Let D and D; := f(D) be domains which have compact closures D C S
and D_f C S,, moreover, 0D consists of a finite number of components.

Assume that the domains Dy and S, are equi-uniform over f € §gs4(D). Then any f €
S0.5.4(D) has a continuous extension f:Dp— Df and, in addition, the family Fqgs5.4(Dp)
consisting of all extended mappings f: Dp — Df, is equicontinuous in Dp.
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The proof of Theorem 2. follows by Theorem 4 due to the fact that homeomorphisms of the
Sobolev class with finite distortion are ring ()-mappings for ) = K(p) provided that @ is
locally integrable (see [1, Lemma 3.1]). O

4. Equicontinuity of ring ()-mappings with a branching. The main ideas related to the
study of mappings on Riemannian surfaces with branching refer to the first author’s paper |5,
Sec. 6|. Consider the following class of mappings. Let 6 > 0, D C S and Q: D — [0, o]
be a function measurable with respect to the measure v. Denote &g 5(D) a family of open,
discrete, and closed ring Q-mappings f: D — S, satisfying the following conditions: 1) there
is a continuum Ky C S, \ f(D) such that 7L*(Kf) = SUP, ek, ho(z,y) > & 2) there is

a continuum Ay C f(D) such that %*(Af) > § and %(f‘l(Af),aD) > . The following
assertion holds.

Lemma 4. Let D C S, let D; := f(D) C S,, let f € €gs(D) and let Q: S — (0, 00)
be a measurable function with respect to measure v. Assume that D and D]’c are compact
and 0D has a finite number of components. Moreover, suppose that for any point py € 0D
there exist €9 = €9(py) > 0 and a Lebesgue measurable function 1: (0,00) — (0, 00) such
that conditions (5)-(6) are satisfied. If domains Dy := f(D) and S, are equi-uniform over
f € €gs(D), then any mapping f € €gs(D) has a continuous extension f: Dp — Dj,
in addition, the family €qs(Dp) of all extended mappings f: Dp — D_]’c is equicontinuous
at Dp.

Proof. Arguing as in the proof of Lemma 3, we obtain that 9D; = 9 f(D) is strongly accessi-
ble for any f € €gs(D). Then, by Lemma 1, the mapping f € €gs(D) has a continuous
extension f: Dp — D_J’c Further, by [25, Theorem 7.2.2] the surface S is locally Ahlfors
2-regular, so that the family f € €gs(D) is equicontinuous at inner points of D by [5,
Lemma 6.1]. It remains to check the equicontinuity of the “extended” family &g s(Dp) on
ED = EP \ D.

Assume the contrary, namely, that there exists Py € Ep such that QEQ,(;(EP) is not
equicontinuous at Fy. In this case, there are a number d; > 0 and sequences P, € Dp,
fr € €gs(Dp) such that P, — Py as k — oo and

E*(fk(Pk)vfk(PO)) > 0o (19)

Since f; has a continuous extension to Dp, then for a given k € N there is an element zp €D
such that p(zy, P) < 1/k and h(fy(xy), fr(Pr)) < 1/k, where p means the metric in Dp, see
Proposition 1. In this case, it follows from (19) that

ho(frlze), fu(P)) = e0/2 ¥V k=1,2,...,. (20)

Similarly, there is z; € D such that x;, — P, as k — oo and, moreover, E*(fk(x,;), fr(P)) <
1/k, k=1,2,... . Then from (20) it follows that

E*<fk($k),fk($é>) = 50/4 Vo ok= L2,...,

where xy,z;, € D, x, — Py as k — oo and z] — By as k — oo (see Figure 3 for an
illustration).



ON EQUICONTINUITY OF FAMILIES... 169

Je

Figure 3: To the proof of Lemma 4

Let ag, k =1,2,..., be the cuts corresponding to the end F, and let d, be a correspondi-
ng sequence of domains in D. We may assume that ay, belong to some circles S(py, 7 ), where
rr — 0 as k — 0o. (Such cuts and circles exist by item 2) of Proposition 1). Without loss of
generality, passing to a subsequence, if necessary, we may assume that xy, z; € di. Join the
points xj and x;, by a path ay: [0,1] — S such that v4(0) = x, (1) = z/ and ag(t) € di
for t € (0,1).

Let Ay, be the set corresponding to the mapping f € € 5(D) from the definition of the
class € s(D). Let us prove that

fi (Ap) € D\ dy (21)
for some sufficiently large ky € N and all k& > k. Indeed, if the relation (21) does not
hold, then there exists a sequence z; € fk’l(Afkl) Ndy, | = 1,2,.... Since by condition of

the lemma D is a compact set in S, we may consider the sequence z; converging to some
point xy € D, while xy € 9D by item 3) of Proposition 1. However, the latter contradicts
the condition h(f _1(Asz)’ 0D) > ¢, included in the definition of the class &g (D). Thus,
relation (21) is proved.

Without loss of generality, we may assume that ry, < go, where g > 0 is a number
corresponding to relations (5)—(6). Denote by Ty a family of paths joining || and f, *(Ay,)
in D. Arguing similarly to the proof of Lemma 3 and taking into account that ddy C S(po, 1),

we obtain that I'y > I'(S(po, &), S (Pos Tk ), A(Po, Tks Tre ) N D). Thus,

M(fi(Tr)) < M(fe(T(S(po:7k), S(Pos Tko ) AP0, Tk, The) N D)) . (22)
Observe that the function

_ ¢(t)/[(rkvrko)7 te (Tlﬁrko)a
i) = {o, EERN (rh7h0)

satisfies the condition (6) for € = 7, and gy = ry,, where I(g,e) := f;o W (t) dt. In this case,
by (22) and by the definition of a ring Q)-mapping, as well as by the condition (6) we obtain
that

M(fe(Ty) < a27%) =0 as k— oo, (23)
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where a(e) is some nonnegative function satisfying the condition a(e) — 0 as ¢ — 0.

On the other hand, consider the family of paths I'(|fix(74)|, Ay, Dy, ). Since, by the
assumption, the domains D} := fi(D) are equi-uniform, there is some ro > 0 such that

ME (el Ag Dg)) 20, k=12, (24)

Let T} be the family of all maximal fy-liftings of paths in I'(|fx()], Ay, Dy, ) starting at
|7k|, which exists due to Proposition 2. Arguing similarly to the proof of Lemma 1, we may
show that I'; C I'y. In addition, observe that fi.(I'y) < I'(|fx(v&)[, Af,, Dy, ). Hence, we have
that

M (| fe(w)ls Ag D)) < M(f(Tg)) < M(fr(Tw)) - (25)
However, (24) and (25) contradict relation (23). The resulting contradiction completes the
proof. O]

Arguing similarly to the proof of Theorem 3 and using the assertion of Lemma 4, we
obtain the following statement.

Theorem 5. Let D C S, let D; := f(D) CS,, let f € €g45(D) and let Q: S — (0,00) be
a measurable function with respect to measure v. Assume that, D and D_J’c are compact and
0D has a finite number of components. Assume that at least one of the following conditions
holds: 1) for any point py € D there is g9 = €o(py) > 0 such that conditions (12) hold for
any 0 < e <¢gg; 2) Q € FMO(D).

If domains D} := f(D) and S, are equi-uniform over f € €q (D), then any mapping
f € €gs(D) has a continuous extension f: Dp — D_JQ, in addition, the family €gs(Dp) of

all extended mappings f: Dp — D_J'c is equicontinuous in Dp.
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