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Let −∞ ≤ A0 < A ≤ +∞, Φ be a continuous function on [a,A) such that for every x ∈ R we
have xσ−Φ(σ) → −∞ as σ ↑ A, Φ̃(x) = max{xσ−Φ(σ) : σ ∈ [a,A)} be the Young-conjugate
function of Φ, Φ∗(x) = Φ̃(x)/x for all sufficiently large x, and F be an analytic function in the
strip {s ∈ C : A0 < Re s < A} such that the quantity S(σ, F ) = sup{|F (σ + it)| : t ∈ R} is
finite for all σ ∈ (A0, A) and F (s) ̸≡ 0. It is proved that if

lnS(σ, F ) ≤ (1 + o(1)Φ(σ) as σ ↑ A,
then

lim
σ↑A

S(σ, F ′)

S(σ, F )Φ−1
∗ (σ)

≤ c0,

where c0 < 1, 1276 is an absolute constant. From previously obtained results it follows that c0
cannot be replaced by a constant less than 1.

1. Introduction. Denote by Λ the class of all nonnegative increasing to +∞ sequences
λ = (λn)

∞
n=0. For a sequence λ = (λn)

∞
n=0 from the class Λ we put

n(t, λ) =
∑
λn≤t

1, τ(λ) = lim
t→+∞

lnn(t, λ)

t
.

Let A ∈ (−∞,+∞] be a constant and λ ∈ Λ. We will write F ∈ DA(λ), if F (s) is the
sum of an absolutely convergent in the half-plane {s ∈ C : Re s < A} Dirichlet series with
the system of exponents λ, i.e.

F (s) =
∞∑
n=0

ane
sλn , Re s < A, (1)

and in addition F (s) ̸≡ 0. For each function F ∈ DA(λ) of the form (1) and every σ < A let

S(σ, F ) = sup{|F (σ + it)| : t ∈ R}, K(σ, F ) =
S(σ, F ′)

S(σ, F )
, G(σ, F ) =

∞∑
n=0

|an|eσλn . (2)

Put DA =
⋃

λ∈Λ DA(λ).
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Let Φ: DΦ → R be a real function. We say that Φ ∈ ΩA if the domain DΦ of Φ is an
interval of the form [a,A), Φ is continuous on DΦ, and the following condition

∀x ∈ R : lim
σ↑A

(xσ − Φ(σ)) = −∞ (3)

holds. It is easy to see that in the case A < +∞ condition (3) is equivalent to the condition
Φ(σ) → +∞, σ → A − 0, and in the case A = +∞ this condition is equivalent to the
condition Φ(σ)/σ → +∞, σ → +∞. For Φ ∈ ΩA by Φ̃ we denote the Young-conjugate
function of Φ, i.e.

Φ̃(x) = max{xσ − Φ(σ) : σ ∈ DΦ}, x ∈ R.

Note (see Lemma 1 below), that the function Φ∗(x) = Φ̃(x)/x is continuous and increasing
to A on some interval of the form (x0,+∞). Hence the inverse function Φ−1

∗ is defined on
some interval of the form (A0, A) and Φ−1

∗ is continuous and increasing to +∞ on (A0, A).
We say that Φ ∈ Ω′

A, if Φ is a continuously differentiable on DΦ function from the class
ΩA such that Φ′ is a positive increasing function on DΦ.

For functions F ∈ DA and Φ ∈ ΩA put

TΦ(F ) = lim
σ↑A

lnS(σ, F )

Φ(σ)
, TΦ(F ) = lim

σ↑A

lnG(σ, F )

Φ(σ)
. (4)

Suppose that f is an entire function and let

M(r, f) = max{|f(z)| : |z| = r} (5)

for all r ≥ 0. S. Bernstein ([1, p. 76]) proved that if f has order ρ ∈ (0,+∞) and type
T ∈ (0,+∞), i.e.

lim
r→+∞

lnM(r, f)

rρ
= T,

then the following inequality

lim
r→+∞

M(r, f ′)

M(r, F )rρ−1
≤ eTρ

holds. The exactness of this inequality was proved by T. Kövari [2]: for any ρ ∈ (0,+∞) and
T ∈ (0,+∞) there exists an entire function f of order ρ and type T such that

lim
r→+∞

M(r, f ′)

M(r, F )rρ−1
= eTρ.

Let λ0 = (n)∞n=0. For each entire function f with the sequence of Maclaurin coefficients
(an)

∞
n=0 we can put in a one-to-one correspondence a function F ∈ D+∞ presented by Di-

richlet series with the same sequence of coefficients and the system of exponents λ0. With
such correspondence we will have

S(σ, F ) = M(eσ, f), S(σ, F ′) = eσM(eσ, f ′) (6)

for all σ ∈ R. Thus, we can give the following equivalent formulations to the above results
of S. Bernstein and T. Kövari.
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Theorem A. Let F ∈ D+∞(λ0) and ρ, T ∈ (0,+∞). If

lim
σ→+∞

lnS(σ, F )

eρσ
= T, (7)

then
lim

σ→+∞

K(σ, F )

eρσ
≤ Tρe. (8)

Theorem B. Let ρ, T ∈ (0,+∞). Then there exists a function F ∈ D+∞(λ0) such that (7)
holds and

lim
σ→+∞

K(σ, F )

eρσ
= Tρe.

Some analogues of the results of S. Bernstein and T. Kövari for classes of entire functions
and classes of analytic in half-planes functions presented by Dirichlet series, which are defined
by general conditions on the growth of functions from these classes, were obtained in the
articles [3, 4, 5, 6]. In particular, for an arbitrary A ∈ (−∞,+∞], the following theorem
obtained in [4] gives an estimate of the growth of the quantity K(σ, F ) as σ ↑ A for every
function F ∈ DA(λ) by some conditions on λ ∈ Λ and Φ ∈ ΩA.

Theorem C. Let A ∈ (−∞,+∞], λ ∈ Λ, α be a positive increasing to +∞ on [0,+∞)
function such that α(t) = o(t) as t → +∞, F ∈ DA(λ), Φ ∈ Ω′

A, and γ(σ) = 2/α(Φ−1
∗ (σ))

for every σ ∈ (A0, A). Suppose that σ + γ(σ) < A, σ ∈ [σ0, A), and
lnn(t, λ) ≤ t/α(t), t ≥ t0.

If TΦ(F ) = 1, then

lim
σ↑A

K(σ, F )

Φ−1
∗ (σ + γ(σ))

≤ 1. (9)

It is shown in [4] that in many cases estimate (9) is sharp. To substantiate the exactness
of inequality (9), in [4] it is proved that if A ∈ (−∞,+∞] and Φ ∈ Ω′

A is a twice continuously
differentiable function on DΦ for which

Φ((1 + o(1))σ) ∼ (1 + o(1))Φ(σ), σ ↑ A,

and t2φ′(t) ↑ +∞ as t ↑ +∞, where φ is the inverse function of Φ′, then for every sequence
λ ∈ Λ there exists a function F ∈ DA(λ) such that TΦ(F ) = 1 and

lim
σ↑A

K(σ, F )

Φ−1
∗ (σ)

= 1. (10)

The following general result is proved in [5].

Theorem D. Let A ∈ (−∞,+∞] and Φ ∈ ΩA. Then for every sequence λ ∈ Λ there exists
a function F ∈ DA(λ) such that TΦ(F ) = TΦ(F ) = 1 and equality (10) holds.

It is easily seen that the conditions of Theorem C imply the equality τ(λ) = 0. Therefore,
in the case τ(λ) > 0 Theorem C does not give any information about the growth of the
quantity K(σ, F ). Moreover, if A < +∞, then even in the case τ(λ) = 0 the conclusion of
Theorem C is true only by some conditions on Φ.

Let F ∈ DA be a function of the form (1) with nonnegative coefficients an. Then
M(σ, F ) = G(σ, F ) = F (σ), σ < A. Hence, TΦ(F ) = TΦ(F ) and K(σ, F ) = (lnM(σ, F ))′,
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σ < A. Therefore, as is easy to prove (see, for example, Lemma 3 below), for the function F ,
without any conditions on the sequence λ = (λn)

∞
n=0 in (1) and on a function Φ ∈ ΩA, the

equality TΦ(F ) = 1 (or the identical equality TΦ(F ) = 1) implies the inequality

lim
σ↑A

K(σ, F )

Φ−1
∗ (σ)

≤ 1. (11)

The following theorem [5] shows that inequality (11) follows from the equality TΦ(F ) = 1
for any other function F ∈ DA.

Theorem E. Let A ∈ (−∞,+∞], Φ ∈ ΩA, and F ∈ DA. If TΦ(F ) ≤ 1, then inequality (11)
holds.

Let λ ∈ Λ, Φ ∈ ΩA, and φ(x) = Φ̃′
+(x) for all x ∈ R. Theorem E supplements Theorem

C in a certain part. From results obtained in [7] it follows that the condition

∀t > 0: lnn = o(Φ(φ(λn/t))), n → ∞,

is sufficient in order that TΦ(F ) = TΦ(F ) for every function F ∈ DA(λ). Under this condition,
of course, the inequality TΦ(F ) ≤ 1 implies inequality (11) for each function F ∈ DA(λ).

Note that in the general situation the growth of the function lnS(σ, F ) may differ signi-
ficantly from the growth of the function lnG(σ, F ) as σ ↑ A (see, for example, [8, 9, 10]),
in particular, there exist functions Φ ∈ ΩA and F ∈ DA(λ

0) such that TΦ(F ) = 0, but
TΦ(F ) = +∞.

Suppose that ρ, T ∈ (0,+∞) and Φ(σ) = Teρσ for all σ ≥ σ1. Then Φ ∈ Ω+∞ and, as is
easy to evaluate, Φ−1

∗ (σ) = Tρeρσ+1 for all σ ≥ σ2. This and the above results imply that in
Theorem B the sequence λ0 can be replaced by an arbitrary sequence λ ∈ Λ. From Theorems
C and E it follows that under the condition τ(λ) = 0 the same substitution is also possible
in Theorem A. The following result of O.V. Shapovalovs’kyi [11] shows that the condition
τ(λ) = 0 can be removed if instead of (8) we will require the fulfilment of a slightly weaker
inequality.

Theorem F. Let F ∈ D+∞ and ρ, T ∈ (0,+∞). If (7) holds, then

lim
σ→+∞

K(σ, F )

Tρeρσ+1
≤ e

2
= 1, 35914 . . . .

In connection with the above results the following question arises: is it possible to replace
the condition TΦ(F ) ≤ 1 in Theorem E by the condition TΦ(F ) ≤ 1 if instead of (11) we will
require the fulfilment of the following inequality

lim
σ↑A

K(σ, F )

Φ−1
∗ (σ)

≤ e

2
?

Below we will give a positive answer to this question. Moreover, we will show that in the
last inequality the constant e/2 can be replaced even by some smaller absolute constant
c0 < 1, 1276.

2. Main results. We put SA1,A2 = {s ∈ C : A1 < Re s < A2} for arbitrary constants
A1, A2 ∈ [−∞,+∞], A1 < A2. If A0, A ∈ [−∞,+∞], A0 < A, then let BA0,A be the class
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of all analytic in the strip SA0,A functions, that are not identically zero and are bounded in
each strip SA1,A2 , where A0 < A1 < A2 < A.

Let F ∈ BA0,A. Note that either F ′(s) ≡ 0, or, as follows from Cauchy’s integral formula,
F ′ ∈ BA0,A. Define S(σ, F ) and K(σ, F ) for all σ ∈ (A0, A) as in (2). It is well known ([12])
that the function lnS(σ, F ) is convex on (A0, A).

Put BA = ∪A0<ABA0,A. For functions F ∈ BA and Φ ∈ ΩA we define TΦ(F ) as in (4).
We say that F ∈ CA0,A, if F ∈ BA0,A and the function S(σ, F ) is nondecreasing on (A0, A).

Put CA = ∪A0<ACA0,A.
Note that if A1 < A2 < A, then BA1,A ⊂ BA2,A ⊂ BA, CA1,A ⊂ CA2,A ⊂ CA. It is clear also

that DA ⊂ C−∞,A ⊂ CA ⊂ BA.
Let Π = (0, π/2)× (0,+∞). Consider the function

u(θ, y) =
1

πy sin θ

(
cos θ +

(
e2y − 1

2y

( π

2 sin 2θ
+ 1
))1/2

)
, (θ, y) ∈ Π. (12)

It is obvious that the function u(θ, y) is continuous in Π. If (θ0, y0) is a point on the boundary
of the half-strip Π and (θ, y) ∈ Π, then u(θ, y) → +∞ as (θ, y) → (θ0, y0). In addition,
u(θ, y) → +∞ as y → +∞ uniformly with respect to θ ∈ (0, π/2). It follows that u(θ, y)
attains a minimum value on Π. Calculations with the help of computer programs show that

c0 := min
(θ,y)∈Π

u(θ, y) = u(1, 169821 . . . , 1, 50853 . . . ) = 1, 12755 . . . .

Theorem 1. Let A ∈ (−∞,+∞], F ∈ BA, and Φ ∈ ΩA. If TΦ(F ) ≤ 1, then

lim
σ↑A

K(σ, F )

Φ−1
∗ (σ)

≤ c0. (13)

The following theorem will play an important role in the proof of Theorem 1.

Theorem 2. Let −∞ ≤ A0 < σ0 < σ < A ≤ +∞ and F ∈ CA0,A. Then for any h ∈ (0, A−σ)
and θ ∈ (0, π/2) we have

S(σ, F ′) ≤ S(σ, F )

2(σ − σ0)
+

S(σ, F )

π

∣∣∣∣ 1

σ − σ0

− 1

h tg θ

∣∣∣∣+ 1

π

∫ h/ cos θ

0

S(σ + h− t cos θ, F )

|h− teiθ|2
dt. (14)

Theorem 1 can be used to establish Berstein-type estimates for analytic functions in an
annulus.

Suppose that 0 ≤ R0 < R ≤ +∞, and let f be an analytic function in the annulus
{z ∈ C : R0 < |z| < R}, which is not identically zero. For each r ∈ (R0, R) we define M(r, f)
by (5). Put F (s) = f(es) for all s ∈ SlnR0,lnR. Then F ∈ BlnR and equalities (6) hold for every
σ ∈ (lnR0, lnR). Thus, from Theorem 1 we obtain immediately the following statement: if
Φ ∈ ΩlnR and

lnM(r, f) ≤ (1 + o(1)Φ(ln r), r ↑ R,

then
lim
r↑R

rM(r, f ′)

M(r, f)Φ−1
∗ (lnR)

≤ c0.

In addition to Theorem 2, to prove Theorem 1 we will need other auxiliary results, which
are given in the next section.
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3. Auxiliary results. The following lemma is well known (see, for example, [7]).

Lemma 1. Let A ∈ (−∞,+∞], Φ ∈ ΩA, and φ(x) = max{σ ∈ DΦ : xσ − Φ(σ) = Φ̃(x)},
x ∈ R. Then the following statements are true:

(i) the function φ is nondecreasing on R;

(ii) the function φ is continuous from the right on R;

(iii) φ(x) → A, x → +∞;

(iv) the right-hand derivative of Φ̃(x) is equal to φ(x) at every point x ∈ R;

(v) if x0 = inf{x > 0: Φ(φ(x)) > 0}, then the function Φ∗(x) = Φ̃(x)/x increase to A on
(x0,+∞);

(vi) the function α(x) = Φ(φ(x)) is nondecreasing on [0,+∞).

In the following two lemmas, which are proved in [13] and [5] respectively, φ and x0 are
defined by Φ in the same way as in Lemma 1.

Lemma 2. Let δ ∈ (0, 1), A ∈ (−∞,+∞], Φ ∈ ΩA, σ0 = Φ∗(x0 +0), and y(σ) = φ(Φ−1
∗ (σ))

for all σ ∈ (σ0, A). Then

Φ−1
∗

(
σ +

δΦ(y(σ))

Φ−1
∗ (σ)

)
≤ Φ−1

∗ (σ)

1− δ
, σ ∈ (σ0, A).

Lemma 3. Let A ∈ (−∞,+∞], Φ ∈ ΩA, σ0 = Φ∗(x0 + 0), b ∈ [σ0, A), Ψ be a convex
function on (b, A) such that Ψ(y) ≤ Φ(y) for all y ∈ (b, A), and

E = {σ ∈ (b, A) : Ψ(y)−Ψ(σ) ≤ Φ(y) for all y ∈ (σ,A)}.

Then Ψ′
+(σ) ≤ Φ−1

∗ (σ) for every σ ∈ E.

4. Proof of Theorems.

Proof of Theorem 2. Suppose that −∞ ≤ A0 < σ0 < σ < A ≤ +∞, and let F ∈ CA0,A. Let
also h ∈ (0, A− σ) and θ ∈ (0, π/2) be fixed constants.

We fix an arbitrary point s0 on the straight line {s ∈ C : Re s = σ}. Put t0 = Im s0 and
let H(s) = F (s+ it0) for all s ∈ SA0,A. It is clear that H ∈ CA0,A and H ′(s) = F ′(s+ it0) for
all s ∈ SA0,A. We set

C1 = [σ − i(σ − σ0);σ − ih tg θ], C2 = [σ − ih tg θ;σ + h], C3 = [σ + h;σ + ih tg θ],

C4 = [σ + ih tg θ;σ + i(σ − σ0)], C5 =

{
z = σ + (σ − σ0)e

it :
π

2
≤ t ≤ 3π

2

}
.

It is easy to see that the segments C1, C2, C3, C4 and the semicircle C5 constitute a simply
closed contour C. Since the point σ is inside this contour, Cauchy’s integral formula gives

F ′(s0) = F ′(σ + it0) = H ′(σ) =
1

2πi

∫
C

H(w)

(w − σ)2
dw =

1

2πi

5∑
j=1

Ij, Ij :=

∫
Cj

H(w)

(w − σ)2
dw.

We next estimate each of the integrals Ij, j = 1, 5.



ASYMPTOTIC ESTIMATES FOR ANALYTIC FUNCTIONS IN STRIPS 143

Suppose that σ − σ0 ̸= h tg θ. If w ∈ C1, then w = σ − it, where t varies from σ − σ0 to
h tg θ. Hence,

|I1| =
∣∣∣∣∫ h tg θ

σ−σ0

H(σ − it)(−i)

(−it)2
dt

∣∣∣∣ ≤ S(σ,H)

∣∣∣∣∫ h tg θ

σ−σ0

dt

t2

∣∣∣∣ = S(σ,H)

∣∣∣∣ 1

σ − σ0

− 1

h tg θ

∣∣∣∣ .
The obtained estimate is also correct in the case when σ − σ0 = h tg θ, because in this case
the segment C1 degenerates into a point and therefore I1 = 0.

If w ∈ C3, then w = σ + h− teiθ, where 0 ≤ t ≤ h/ cos θ. Hence,

|I3| =

∣∣∣∣∣
∫ h/ cos θ

0

H(σ + h− teiθ)(−eiθ)

(h− teiθ)2
dt

∣∣∣∣∣ ≤
∫ h/ cos θ

0

S(σ + h− t cos θ,H)

|h− teiθ|2
dt.

It is easy to see that the estimates obtained for |I1| and |I3| are also correct for |I4| and
|I2|, respectively.

Let w ∈ C5. Then w = σ + (σ − σ0)e
it, where π/2 ≤ t ≤ 3π/2, and hence

|I5| =

∣∣∣∣∣
∫ 3π/2

π/2

H(σ + (σ − σ0)e
it)i(σ − σ0)e

it

(σ − σ0)2e2it
dt

∣∣∣∣∣ ≤ πS(σ,H)

σ − σ0

.

Noting that S(x,H) = S(x, F ) for all x ∈ (A0, A) and using the above estimates, we
obtain

|F ′(s0)| ≤
1

2π

5∑
j=1

|Ij| ≤

≤ 1

2π

(
2S(σ, F )

∣∣∣∣ 1

σ − σ0

− 1

h tg θ

∣∣∣∣+ 2

∫ h/ cos θ

0

S(σ + h− t cos θ, F )

|h− teiθ|2
dt+

πS(σ, F )

σ − σ0

)
.

Since s0 is an arbitrary point of the straight line {s ∈ C : Re s = σ}, this implies (14).

Proof of Theorem 1. Suppose that A ∈ (−∞,+∞], F ∈ BA, i.e. F ∈ BA1,A for some A1 < A,
Φ ∈ ΩA, and TΦ(F ) ≤ 1. We prove that inequality (13) holds.

For each σ ∈ (A0, A) put

L(σ, F ) =
S ′
+(σ, F )

S(σ, F )
.

Since the function lnS(σ, F ) is convex in (A1, A), the function L(σ, F ) = (lnS(σ, F ))′+ is well
defined and nondecreasing on (A0, A). In addition, L(σ, F ) ≤ K(σ, F ) for all σ ∈ (A0, A).

Suppose first that F ̸∈ CA. Then there exists limσ↑A L(σ, F ) = l ≤ 0. Let σ and h be
numbers such that A1 < σ − h < σ < σ + h < A. For an arbitrary point s0 on the straight
line {s ∈ C : Re s = σ} Cauchy’s integral formula gives

|F ′(s0)| =
1

2π

∣∣∣∣∫
|w−σ0|=h

F (w)

(w − σ0)2
dw

∣∣∣∣ ≤ S(σ − h, F )

h
≤ S(σ, F )

h
e−hL(σ−h,F ).

This implies
K(σ, F ) ≤ eh|L(σ−h,F )|/h. (15)



144 G. I. BEREGOVA, S. I. FEDYNYAK, P. V. FILEVYCH

Let A = +∞. Then, using (15) with σ > A1 + 1 and h = 1, we see that K(σ, F ) = O(1)
as σ ↑ A. Since Φ−1

∗ (σ) → +∞ as σ ↑ A, we obtain

lim
σ↑A

K(σ, F )

Φ−1
∗ (σ)

= 0. (16)

Let A < +∞. If (A1 + A)/2 < σ < A, then, letting h ↑ A − σ, we see from (15) that
(A − σ)K(σ, F ) = O(1) as σ ↑ A. On the other hand, if φ(x) = Φ̃′

+(x) for all x ∈ R, then
for every x > 0 we have

xΦ∗(x) = Φ̃(x) = xφ(x)− Φ(φ(x)) < xA− Φ(φ(x)).

This implies that (A − σ)Φ−1
∗ (σ) > Φ(φ(Φ−1

∗ (σ))) for each σ sufficiently close to A. Hence
(A− σ)Φ−1

∗ (σ) → +∞ as σ ↑ A and we have again (16).
Therefore, in the case when F ̸∈ CA inequality (13) holds.
Suppose now that F ∈ CA, i.e. F ∈ CA0,A for some A0 ∈ [A1, A).
Fix an arbitrary number ε > 0 and let θ0 ∈ (0, π/2) and y0 > 0 be numbers such that

u(θ0, y0) = c0, where u(θ, y) is defined by (12).
Since TΦ(F ) ≤ 1, we have

lnS(σ, F ) ≤ (1 + ε)Φ(σ) for all σ ∈ (b, A).
Using Lemma 3 with Ψ(σ) = lnS(σ, F )/(1 + ε), σ ∈ (A0, A), we see that there exists
σ0 ∈ (A0, A) such that the function Φ−1

∗ (σ) is definite and positive on the interval (σ0, A), and
in this interval the inequality L(σ, F ) ≤ (1+ ε)Φ−1

∗ (σ) holds. We put H(σ) = (1+ ε)Φ−1
∗ (σ),

σ ∈ (σ0, A).
Let σ ∈ (σ0, A) be a fixed point. Then H(σ+x) as a function of the variable x is positive,

continuous, increasing to +∞ on the interval (0, A − σ), and therefore in this interval the
equation H(σ + x) = y0/x has a unique solution h = h(σ). Put

I(σ) =

∫ h/ cos θ0

0

S(σ + h− t cos θ0, F )

S(σ, F )((t− h cos θ0)2 + h2 sin2 θ0)
dt.

Applying (14) with θ = θ0, we have

K(σ, F ) =
S(σ, F ′)

S(σ, F )
≤ 1

2(σ − σ0)
+

1

π

(∣∣∣∣ 1

σ − σ0

− 1

h tg θ0

∣∣∣∣+ I(σ)

)
. (17)

Let us estimate the integral I(σ). Since

lnS(σ + h− t cos θ0, F )− lnS(σ, F ) ≤ (h− t cos θ0)L(σ + h, F ) ≤ (h− t cos θ0)H(σ + h),

by applying the Cauchy-Bunyakovsky inequality, we obtain

I(σ) ≤
∫ h/ cos θ0

0

e(h−t cos θ0)H(σ+h)

(t− h cos θ0)2 + h2 sin2 θ0
dt ≤

≤

(∫ h/ cos θ0

0

e2(h−t cos θ0)H(σ+h)dt

)1/2(∫ h/ cos θ0

0

dt

((t− h cos θ0)2 + h2 sin2 θ0)2

)1/2

=

=

(
e2hH(σ+h) − 1

2H(σ + h) cos θ0

)1/2(
π

4h3 sin3 θ0
+

cos θ0
h3 sin2 θ0

)1/2

.
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Using the equality hH(σ + h) = y0, inequality (17), and the above estimate for I(σ), we
have

K(σ, F ) ≤ 1

2(σ − σ0)
+

1

π(σ − σ0)
+

1

πh tg θ0
+

I(σ)

π
≤

≤ π + 2

2π(σ − σ0)
+

1

πh tg θ0
+

1

π

(
e2hH(σ+h) − 1

2H(σ + h) cos θ0

)1/2(
π

4h3 sin3 θ0
+

cos θ0
h3 sin2 θ0

)1/2

=

=
π + 2

2π(σ − σ0)
+

H(σ + h)

πy0 sin θ0

(
cos θ0 +

(
e2y0 − 1

2y0

(
π

2 sin 2θ0
+ 1

))1/2
)

=

=
π + 2

2π(σ − σ0)
+H(σ + h)u(θ0, y0).

Therefore, for all σ ∈ (σ0, A) we obtain

K(σ, F ) ≤ π + 2

2π(σ − σ0)
+ (1 + ε)Φ−1

∗ (σ + h(σ))c0. (18)

Since for all σ ∈ (σ0, A) we have

h(σ) =
y0

(1 + ε)Φ−1
∗ (σ + h(σ))

≤ y0

(1 + ε)Φ−1
∗ (σ)

,

by Lemma 2 we obtain Φ−1
∗ (σ + h(σ)) ∼ Φ−1

∗ (σ) as σ ↑ A. Therefore, as we see from (18),

lim
σ↑A

K(σ, F )

Φ−1
∗ (σ)

≤ (1 + ε)c0.

Since ε > 0 is arbitrary, this implies (13).
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