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We consider approach based on the integral representation of solutions in domain which
consists of bounded and unbounded parts that gives us opportunity to reduce different transmi-
ssion type problems to connected with them equivalent boundary equations of the first and the
second kind. We suppose also that solutions of some of these boundary problems are unbounded
at infinity. Interior and exterior Dirichlet and Neumann boundary value problems for Laplace
equation are restrictions of the solutions os more general this transmission problems. Interi-
or Neumann and exterior Dirichlet boundary value problems we also can solve using integral
equation of the second kind that have not unique solution. Corresponding modified equations
are constructed in this case and solutions of obtained equations are unique. We also show
correctness of all obtained boundary equations of the second type given on closed Lipschitz
curve in some Hilbert spaces without compactness of corresponding integral operators.

1. Introduction. The main problem that differs two-dimensional boundary value problems
for Laplace equation in unbounded domains from the three-dimensional case is the fact that
we have to take to attention solutions which don’t tend to zero but even are unbounded
at infinity. Different types of the boundary value problems for the two dimensional Laplace
equation in smooth domains were posed, investigated and solved by many authors and now
are well known classic [5–7,10,11,13,14]. Most of them used the theory of Fredholm operators
based on the compactness of corresponding integral operators.

We made attempt to consider boundary integral equation method for solving two di-
mensional interior, exterior and transmission type Dirichlet and Neumann boundary value
problems for Laplace equation in Lipschitz domains based on common approach of integral
representation of solutions with help of Green formulas. We also show correctness of obtained
boundary integral equations of the second type without using of compactness corresponding
integral operators.

As initial fact we use continuity and surjectivity of trace operators in certain Hilbert
spaces connected with Lipschitz boundary [1,3,4], continuity of potentials of the simple and
double layers and their boundary values in appropriate spaces [3,9] and positive definiteness
of boundary value of the potential on simple layer and boundary value of normal derivative
of the potential of double layer [8].
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We also essentially use equivalence of the considered boundary value problems and obtai-
ned boundary equations that based on the integral representation of solutions.

As it was mentioned above some considered boundary equations have not unique soluti-
on. For instance, boundary integral equations for interior Neumann and exterior Dirichlet
boundary value problems. We can reduce these equations to some modified ones that have
unique solution [7, 10,12].

2. Integral representation of harmonic function in two dimensional domain with
closed Lipschitz boundary. Let Ω+ ⊂ R2 be a bounded Lipschitz domain. This means
that its boundary Σ locally is the graph of Lipschitz function [1, 3]. Let us note that curve
Σ can be piecewise smooth and have corners. If x, y ∈ R2 then x = (x1, x2), y = (y1, y2),
|x− y|2 =

∑2
i=1(xi − yi)

2. Suppose that 0 ∈ Ω+.
Let ΣR and KR are circle and disk

ΣR = {x ∈ R2 : |x| = R}, KR = {x ∈ R2 : |x| < R}, R > 0.
We denote by Ω+ = Ω+ ∪ Σ the closure of Ω+ and Ω− = R2 \ Ω+, Ω′ = Ω+ ∪ Ω−. Since

Σ is Lipschitz almost everywhere we can define outward pointing into Ω− unit vector of the
normal n⃗x, x ∈ Σ.

As usually we consider in Ω± Sobolev spaces H1(Ω±) of real functions with inner product
and norm

(u, v)H1(Ω±)=

∫
Ω±

{(∇u(x),∇v(x)) + u(x)v(x)} dx, ∥u∥2H1(Ω±)=

∫
Ω±

{
|∇u(x)|2 + u2(x)

}
dx,

where

∇u(x) =

(
∂u(x)

∂x1

,
∂u(x)

∂x2

)
, (∇u(x),∇v(x)) =

2∑
i=1

∂u(x)

∂xi

∂v(x)

∂xi

.

We introduce the following functional spaces

H1
loc(Ω−) = {u(x), x ∈ Ω−| φu ∈ H1(Ω−), φ ∈ C∞

0 (R2)},
H1

comp(Ω−) = {u ∈ H1(Ω−)|φu = u for some φ ∈ C∞
0 (R2)},

H1(Ω′) = {u(x), x ∈ Ω′| rΩ+u ∈ H1(Ω+), rΩ−u ∈ H1
loc(Ω−)},

where C∞
0 (R2) is a linear spaces of infinitely differentiable functions with compact support

in R2 and rΩ±u is a restriction of function u on Ω±.
Also we consider space H1(Ω+, L) with norm and inner product
(u, v)H1(Ω+,L) = (u, v)H1(Ω+) + (Lu, Lv)L2(Ω+), ∥u∥2H1(Ω+,L) = ∥u∥2H1(Ω+) + ∥Lu∥2L2(Ω+),

where L = −∆ is Laplace operator.
In domain Ω− we consider space H1(Ω−, L) = {u ∈ H1

loc(Ω−)| Lu ∈ L2(Ω−)} and in
domain Ω′ space H1(Ω′, L) = {u(x), x ∈ Ω′| rΩ±u ∈ H1(Ω±, L)}.

We use the trace space H1/2(Σ) and dual space H−1/2(Σ) = (H1/2(Σ))′. We have dense
inclusion H1/2(Σ) ⊂ L2(Σ) ⊂ H−1/2(Σ) if we consider L2(Σ) as a pivot space [5, 8]. We
denote as ⟨·, ·⟩ the relation of duality between H1/2(Σ) and H−1/2(Σ).

The impotent role in future will play the next proposition [3, 4].

Proposition 1. Trace map γ+
0 : H1(Ω+) → H1/2(Σ) is continuous, surjective and has a conti-

nuous right inverse (γ+
0 )

−1 : H1/2(Σ) → H1(Ω+).
Trace map γ−

0 : H1
loc(Ω−) → H1/2(Σ) is continuous, surjective and has a continuous right

inverse (γ−
0 )

−1 : H1/2(Σ) → H1
loc(Ω−).
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Let us note that moreover (γ−
0 )

−1 : H1/2(Σ) → H1
comp(Ω−).

Using extension by continuity of the operator of normal derivative ∂
∂nx

from space C1(Ω+)

to space H1(Ω+, L) we get continuous trace map γ+
1 : H1(Ω+, L) → H−1/2(Σ) [3]

⟨γ+
1 u,w⟩ = −

∫
Ω+

v(x)Lu(x)dx+

∫
Ω+

(∇u(x),∇v(x))dx,

where u ∈ H1(Ω+, L), w ∈ H1/2(Σ) and v = (γ+
0 )

−1w.
Analogously we have continuous trace map γ−

1 : H1(Ω−, L) → H−1/2(Σ)

⟨γ−
1 u,w⟩ =

∫
Ω−

v(x)Lu(x)dx−
∫
Ω−

(∇u(x),∇v(x))dx,

where u ∈ H1(Ω−, L), w ∈ H1/2(Σ) and v = (γ−
0 )

−1w.
Besides the operators γ±

0 i γ±
1 we consider operators [γ0] = γ+

0 − γ−
0 : H1(Ω′) → H1/2(Σ)

and [γ1] = γ+
1 − γ−

1 : H1(Ω′, L) → H−1/2(Σ).
For u ∈ H1(Ω+, L) and v ∈ H1(Ω+) we have the first Green formula [3]∫

Ω+

(∇u(x),∇v(x))dx =

∫
Ω+

v(x)Lu(x)dx+ ⟨γ+
1 u, γ

+
0 v⟩, (1)

and for u, v ∈ H1(Ω+, L) – the second Green formula∫
Ω+

(v(x)Lu(x)− u(x)Lv(x)) dx = ⟨γ+
1 v, γ

+
0 u⟩ − ⟨γ+

1 u, γ
+
0 v⟩. (2)

In this paper we consider boundary value problems for functions u(x) ∈ H1(Ω+) and
u(x) ∈ H1

loc(Ω−) which satisfy in distributional sense Laplace equation

Lu(x) = −∆u(x) = 0. (3)

These functions belong to C∞(Ω±) after changing their values on set of zero measure [13].
Since the domain Ω− is unbound we also consider the functions u ∈ H1

loc(Ω−) which
satisfy Laplace equation (3) and the next condition at infinity

lim
|x|→∞

(
u(x)− α

2π
ln

1

|x|

)
= c∗, (4)

where c∗ ∈ R depends on u and α ∈ R is a some constant which does not depend on u.
This condition means that u(x) = w(x) + α

2π
ln 1

|x| , where function w(x) satisfies Laplace
equation (3) and the following condition at infinity

lim
|x|→∞

w(x) = c∗, |∇w(x)| = O
( 1

|x|2
)
, |x| → ∞. (5)

Let us denote fundamental solution of Laplace operator L as Q(x, y)

Q(x, y) =
1

2π
ln

d

|x− y|
, d > 0, x ̸= y, LxQ(x, y) = δ(|x− y|).

In the following for the sake of brevity we use notation ⟨[γ1]u,Q(x, ·)⟩ for ⟨[γ1]u(·), Q(x, ·)⟩
and so on.
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Theorem 1. For function u ∈ H1(Ω′, L) which satisfies Laplace equation (3) in Ω′ and
condition at infinity (4) it holds the next integral representation

u(x) = ⟨[γ1]u,Q(x, ·)⟩ − ⟨γ+
1 Q(x, ·), [γ0]u⟩+ c∞, x ∈ Ω′, (6)

where [γi]u = γ+
i u− γ−

i u, i = 0, 1, c∞ = c⋆ − α
2π

ln d.

Proof. Using second Green formula (2) for v(y) = Q(x, y), x ∈ Ω+, we can get the following
integral representation of function u in Ω+ [3]

u(x) = ⟨γ+
1 u,Q(x, ·)⟩ − ⟨γ+

1 Q(x, ·), γ+
0 u⟩. (7)

If x ∈ Ω− then from (2) we obtain

0 = ⟨γ+
1 u,Q(x, ·)⟩ − ⟨γ+

1 Q(x, ·), γ+
0 u⟩. (8)

Let us denote B = KR \ Ω+. For the function u(x) in B it holds next integral represen-
tation

u(x) = −⟨γ−
1 u,Q(x, ·)⟩+ ⟨γ−

1 Q(x, ·), γ−
0 u⟩+

∫
ΣR

{
∂u(y)

∂ny

Q(x, y)− ∂Q(x, y)

∂ny

u(y)

}
dsy.

If function u satisfies condition at infinity (4) then we may present u(x) in Ω− as u(x) =
w0(x)+w(x)+ c∞, where w0(x) =

α
2π

ln d
|x| , c∞ = c⋆− α

2π
ln d, w(x) satisfies Laplace equation

(3) in Ω− and conditions at infinity (5) with c⋆ = 0.
Let us denote w1(y) =

1
2π

ln |y|
|x−y| for the fixed x ∈ B. Then Q(x, y) = w1(y) +

1
2π

ln d
|y|

and we have
∂w0(y)

∂ny

Q(x, y)− ∂Q(x, y)

∂ny

w0(y) =
∂w0(y)

∂ny

w1(y)−
∂w1(y)

∂ny

w0(y).

It is easy to verify that function w1(y) satisfies Laplace equation (3) in domain Ω− \KR

and conditions at infinity (5) with c∞ = 0. Then we have∣∣∣∣∫
ΣR

(
∂w0(y)

∂ny

w1(y)−
∂w1(y)

∂ny

w0(y)

)
dsy

∣∣∣∣ ≤ ∫
ΣR

(
α

2π

1

|y|
|w1(y)|+ c1

1

|y|2
α

2π
ln

d

|y|

)
dsy =

=
α

2πR

∫
ΣR

|w1(y)|dsy + c1
1

R2

α

2π
ln

d

R
2πR → 0, R → ∞,

where c1 > 0 is some constant.
Since the function w(x) satisfies conditions at infinity (5) with c⋆ = 0 we have [13]

lim
R→∞

∫
ΣR

{
∂w(y)

∂ny

Q(x, y)− ∂Q(x, y)

∂ny

w(y)

}
dsy = 0.

If x ∈ B then [13]

−
∫
ΣR

∂Q(x, y)

∂ny

dsy = 1.

Thus if function u satisfies condition at infinity (4) we obtain

lim
R→∞

∫
ΣR

{
∂u(y)

∂ny

Q(x, y)− ∂Q(x, y)

∂ny

u(y)

}
dsy = c∞.
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As a consequence for x ∈ Ω− we can get

u(x) = −⟨γ−
1 u,Q(x, ·)⟩+ ⟨γ−

1 Q(x, ·), γ−
0 u⟩+ c∞. (9)

Let x ∈ Ω+. In domain B using (2) we have

0 = −⟨γ−
1 u,Q(x, ·)⟩+ ⟨γ−

1 Q(x, ·), γ−
0 u⟩+

∫
ΣR

{
∂u(y)

∂ny

Q(x, y)− ∂Q(x, y)

∂ny

u(y)

}
dsy.

When R → ∞ we obtain

0 = −⟨γ−
1 u,Q(x, ·)⟩+ ⟨γ−

1 Q(x, ·), γ−
0 u⟩+ c∞. (10)

By using formulas (7), (8), (9) and (10) for function u ∈ H1(Ω′) which satisfies equati-
on (3) and condition at infinity (4) we obtain representation u(x) = ⟨[γ1]u,Q(x, ·)⟩ −
⟨γ+

1 Q(x, ·), [γ0]u⟩+ c∞, x ∈ Ω′.

We denote

V τ(x) =

∫
Σ

Q(x, y)τ(y)dsy, Wµ(x) =

∫
Σ

∂Q(x, y)

∂ny

µ(y)dsy,

where τ ∈ L1(Σ), µ ∈ H1/2(Σ).
Let us note that V τ(x) satisfies condition at infinity (4) with α = ⟨τ, 1⟩ and c∗ = 0.
For potentials of simple V τ and double layer Wµ it holds the jump relations which can

be written in the next form [3].

Proposition 2. Let τ ∈ H−1/2(Σ) and µ ∈ H1/2(Σ). Then:
1. [γ0]V τ = 0, [γ1]V τ = τ .
2. [γ0]Wµ = −µ, [γ1]Wµ = 0.

If we introduce the operators Nτ = 1
2
(γ+

1 V τ + γ−
1 V τ), Mµ = 1

2
(γ+

0 Wµ + γ−
0 Wµ), we

can rewrite jump relations as

γ±
1 V τ = ±1

2
τ +Nτ, γ±

0 Wµ = ∓1

2
µ+Mµ, (11)

If τ ∈ L2(Σ) and µ ∈ H1/2(Σ) then for x ∈ Σ

Nτ(x) =

∫
Σ

∂Q(x, y)

∂nx

τ(y)dsy, Mµ(x) =

∫
Σ

∂Q(x, y)

∂ny

µ(y)dsy.

Let us denote: Kd = γ±
0 V , H = −γ±

1 W , B± = γ±
1 V , C± = ∓γ±

0 W .
From [3] we can get the following assertion.

Proposition 3. The operators

V : H−1/2(Σ) → H1
loc(R2), W : H1/2(Σ) → H1(Ω+), Kd : H

−1/2(Σ) → H1/2(Σ),

H : H1/2(Σ) → H−1/2(Σ), B± : H−1/2(Σ) → H−1/2(Σ), C± : H1/2(Σ) → H1/2(Σ),

are continuous.

3. Dirichlet boundary value problems. We consider the interior D+ and the exterior
D− Dirichlet boundary value problems in Ω+ and Ω− respectively from the point of view if
we look for solutions of these problems as potential of the simple layer V τ(x), x ∈ Ω+ or
x ∈ Ω−.
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Problem D+: find function u ∈ H1(Ω+) which satisfies Laplace equation (3) in Ω+ and
Dirichlet boundary condition γ+

0 u = g+ ∈ H1/2(Σ).
Problem D−: find function u ∈ H1

loc(Ω−) which satisfies Laplace equation (3) in Ω−, Diri-
chlet boundary condition γ−

0 u = g− ∈ H1/2(Σ) and condition at infinity (4) where α ∈ R is
given.

It’s well known that problem D+ has unique solution for arbitrary g+ ∈ H1/2(Σ) ([7,8]).
Concerning of uniqueness of solution of the problem D− we have the following assertion.

Lemma 1. If in the conditions at infinity (4) α = 0 then problem D− with boundary
conditions γ−

0 u = 0 has only trivial solution.

Proof. From the first Green formula (1) in the domain B introduced in theorem 1 we obtain∫
B

|∇u(x)|2dx =

∫
ΣR

∂u(y)

∂ny

u(y)dsy ≤
{
2πR · c1

R2
· c∗

}
→ 0 as R → ∞,

where c1 > 0 is some constant. Therefor
∫
Ω−

|∇u(x)|2dx = 0 and u(x) = c∗, x ∈ Ω−. So far
as γ−

0 u = 0 then c∗ = 0. We get u(x) = 0 in Ω−.

Now we consider the homogenous equation

Kdτ(x) =

∫
Σ

ln
d

|x− y|
τ(y)dsy = 0. (12)

and show that for some d = d0 it has not trivial solution.

Lemma 2. For a given curve Σ there exists unique constant d = d0 and unique up to
multiplication by a constant solution τ0 of equation (12) with condition

∫
Σ
τ0(y)dsy ̸= 0.

Proof. From [8] it follows that for some d > 0 equation Kdτ1 = 1 has unique solution. Let us
consider α1 =

∫
Σ
τ1(y)dsy. For function u = V τ1 in Ω′ we have τ1 = [γ1]u and γ+

0 u = γ−
0 u = 1.

Since γ+
0 u = 1 we obtain u(x) ≡ 1, x ∈ Ω+. Let function v1(x) ≡ 1, x ∈ R2. For the function

v(x) = u(x) − v1(x), x ∈ Ω′, we get τ1 = [γ1]v and γ±
0 v = 0. If α1 = 0 from Lemma 1 it

implies that v = 0 or u(x) ≡ 1, x ∈ R2. As a result we have τ1 = 0 that is impossible. Thus
α1 ̸= 0.

Then
1

2π

∫
Σ

ln
d0

|x− y|
τ1(y)dsy = 1 +

α1

2π
ln

d0
d

= 0

and we get d0 = de
− 2π

α1 , where α1 =
∫
Σ
τ1(y)dsy.

We show that d0 does not depend on the choice of d. Let we have d1 > 0, d2 > 0 and
Kd1τ11 = 1, Kd2τ12 = 1, α11 =

∫
Σ
τ11(y)dsy, α12 =

∫
Σ
τ12(y)dsy.

Then Kd2τ11 = 1 + α11

2π
ln d2

d1
= β and τ12 = τ11/β, α12 = α11/β.

We obtain d01 = d1e
− 2π

α11 , d02 = d2e
− 2π

α12 and ln d01
d02

= ln d1
d2

+ 2π( 1
α12

− 1
α11

) = 0.
Thus d01 = d02.
Let us suppose that for d = d0 there exist two linear independent solutions τ1 and τ2

of equation (12), i.e. τ1 ̸= cτ2 where c is constant. Then τ ∗ = τ1 + cτ2 is a solution of
(12) for arbitrary constant c. If αi =

∫
Σ
τi(y)dsy then for c = −α1/α2 we obtain condition∫

Σ
τ ∗(y)dsy = 0. Let v(x) = V τ ∗(x), x ∈ Ω−. Since function v(x) is a solution of the problem

D− with boundary condition γ−
0 v(x) = 0 and conditions at infinity (5) with c⋆ = 0 we have

v(x) = 0, x ∈ Ω−, or τ ∗ = 0. Thus τ1 = cτ2.
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Corollary 1. There exists unique constant d0 that operator Kd0 : H
−1/2(Σ) → H1/2(Σ) is

not injective, that is, there exists τ ̸= 0 such that Kd0τ = 0.

If τ1 is a solution of equation Kdτ1 = 1, where d ̸= d0, then τ0 = cτ1 is solution of the
equation (12) and c is an arbitrary constant.

As a example for finding of d0 let us consider the case when Σ is a circle of radius r = a.
Then equation (12) in polar system can be rewritten as∫ 2π

0

ln
d0

a[2− 2 cos(φ− φ0]1/2
τ(φ)dφ = 0, 0 ≤ φ0 ≤ 2π.

Since geometry of region and boundary function are symmetric it is obvious that solution
τ(φ) does not depend on the angle φ. Thus∫ 2π

0

ln
d20

2a2(1− cosφ)
dφ = 0 and

∫ 2π

0

ln(1− cosφ)dφ = 2π ln
d20
2a2

.

By using equality
∫ π

0
ln(1± cosφ)dφ = −π ln 2 we obtain ln d0

a
= 0 or d0 = a.

The next question is how to find constant d0 for arbitrary contour Σ. Let d ̸= d0, Kdτ1 = 1,
α1 =

∫
Σ
τ1(y)dsy. Then

1

2π

∫
Σ

ln
d0

|x− y|
τ1(y)dsy = 1 +

α1

2π
ln

d0
d

= 0

and we get d0 = de
− 2π

α1 .
Let us note that d0 = de

− 2π
α1 for a closed curve Σ is called logarithmic capacity and

denoted as capΣ. Here Kdτ1 = 1, d ̸= d0 and α1 =
∫
Σ
τ1(y)dsy. Thus if Σ is a circle of radius

r = a then capΣ = a that is well known result [8] .
Let us consider the function

u0(x) =
1

2π

∫
Σ

ln
d0

|x− y|
τ1(y)dsy, x ∈ Ω′, (13)

where τ1 is a solution of integral equation Kdτ1 = 1, d ̸= d0. As a consequence we have that
u0(x) = 0, x ∈ Ω+, and u0(x) ̸= 0, x ∈ Ω−, γ−

0 u = 0.
Now we look at the question of positive definiteness of operator Kd which is important for

numerical solution of equation Kdτ = g, g ∈ H1/2(Σ). The operator Kd is positive definite
if there exists a constant c > 0 that for all τ ∈ H−1/2(Σ) we have

⟨τ,Kdτ⟩ ≥ c∥τ∥2H−1/2(Σ). (14)

It’s easy to see that inequality (14) may have place not for all τ ∈ H−1/2(Σ). For instance
let Σ be a circle of radius a ̸= d. Then equation Kdτ1 = 1 has solution τ1 =

(
ln d

a

)−1 and in
this case inequality ⟨τ,Kdτ⟩ > 0 fulfils only when d > a = d0.

Let d0 be constant considered in Lemma 2. Then we have the following assertion [8].

Proposition 4. 1. Operator Kd : H
−1/2(Σ) → H1/2(Σ) is positive definite if and only if

d > d0.
2. Operator Kd : H

−1/2(Σ) → H1/2(Σ) is isomorphism (continuous bijection) if and only
if d ̸= d0.

Corollary 2. Equation Kdτ = g with condition d ̸= d0 has unique solution τ ∈ H−1/2(Σ)
for arbitrary g ∈ H1/2(Σ) and there exists bounded operator K−1

d : H1/2(Σ) → H−1/2(Σ).
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As we noted above problem D+ has unique solution for arbitrary g+ ∈ H1/2(Σ). Let us
consider function u(x) = V τ(x), x ∈ Ω+, d ̸= d0, where τ is a unique solution of equation
Kdτ = g+. Then u(x) satisfies equation (3) in Ω+ and boundary condition γ+

0 u(x) = g+(x).
As a consequence we can get the following corollary.

Corollary 3. We can present solution of the problem D+ in the form u(x) = V τ(x), d ̸= d0,
where τ ∈ H−1/2(Σ) is unique solution of equation Kdτ = g+.

Lemma 3. Let τ, σ ∈ H−1/2(Σ). Then ⟨τ,Kdσ⟩ = ⟨σ,Kdτ⟩.

Proof. Let u(x) = V τ(x) and v(x) = V σ(x). From the second Green formula (2) in Ω+ we
obtain ⟨γ+

1 u, γ
+
0 v⟩ − ⟨γ+

1 v, γ
+
0 u⟩ = 0.

If we apply the second Green formula in the domain B introduced in Theorem 1 we can
get

⟨γ−
1 v, γ

−
0 u⟩ − ⟨γ−

1 u, γ
−
0 v⟩ =

∫
ΣR

(
∂v(x)

∂ny

u(x)− ∂u(x)

∂ny

v(x)

)
dsy

Since γ+
0 u = γ−

0 u = Kdτ , γ+
0 v = γ−

0 v = Kdσ, γ+
1 u− γ−

1 u = τ and γ+
1 v − γ−

1 v = σ we have

⟨τ,Kdσ⟩ − ⟨σ,Kdτ⟩ =
∫
ΣR

(
∂v(x)

∂ny

u(x)− ∂u(x)

∂ny

v(x)

)
dsy

We can present functions u(x) and v(x) in the form u(x) = α(x) + u0(x), v(x) = β(x) +
v0(x), α(x) = 1

2π
⟨τ, 1⟩ ln d

|x| , β(x) = 1
2π
⟨σ, 1⟩ ln d

|x| , where functions u0(x) and v0(x) satisfy
Laplace equation (3) in Ω− and conditions at infinity (5) with c∞ = 0.

It’s easy verify that ∫
ΣR

(
∂α(x)

∂ny

β(x)− ∂β(x)

∂ny

α(x)

)
dsy = 0.

If we consider functions u0(x) and v0(x) then∣∣∣∣∫
ΣR

(
∂v0(x)

∂ny

u0(x)−
∂u0(x)

∂ny

v0(x)

)
dsy

∣∣∣∣ ≤
≤

∫
ΣR

(∣∣∣∣∂v0(x)∂ny

∣∣∣∣ |u0(x)|+
∣∣∣∣∂u0(x)

∂ny

∣∣∣∣ |v0(x)|) dsy ≤ 2πR
(
c1

1

R2
+ c2

1

R2

)
→ 0 as R → ∞,

where c1 > 0 and c2 > 0 – some constants.
Thus

lim
R→∞

∫
ΣR

(
∂v(x)

∂ny

u(x)− ∂u(x)

∂ny

v(x)

)
dsy = 0

and ⟨τ,Kdσ⟩ − ⟨σ,Kdτ⟩ = 0.

Now we consider boundary value problem D− relatively of behavior it’s solution at infi-
nity. We have two different occasions: when this solution is bounded at infinity (α = 0) or
unbounded (α ̸= 0).

Theorem 2. The problem D− has unique solution for arbitrary g− ∈ H1/2(Σ). We can
present this solution in the form u = V τ + c∞, d ̸= d0, where c∞ = (⟨τ1, g−⟩ − α)/⟨τ1, 1⟩, τ
is unique solution of equation Kdτ = g− − c∞ and τ1 is solution of equation Kdτ1 = 1.

Proof. Let τ is unique solution of equation Kdτ = g−− c∞ for arbitrary g− ∈ H1/2(Σ) where
c∞ = (⟨τ1, g−⟩ − α)/⟨τ1, 1⟩. Let us consider function u(x) = V τ(x) + c∞, x ∈ Ω−. Then we
have γ−

0 u(x) = Kdτ + c∞ = g−. By using lemma 3 we obtain
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⟨τ, 1⟩ = ⟨τ,Kdτ1⟩ = ⟨τ1, Kdτ⟩ = ⟨τ1, g − c∞⟩ = ⟨τ1, g⟩ − c∞⟨τ1, 1⟩ = ⟨τ1, g⟩ − ⟨τ1, g⟩+ α = α.
Thus function u(x) = V τ(x)+c∞ satisfies conditions at infinity (4) with c∗ =

α
2π

ln d+c∞.
As a result we get that function u(x) = V τ(x) + c∞, x ∈ Ω−, is a solution of the problem
D− with boundary condition γ−

0 u(x) = g−(x) and ⟨τ, 1⟩ = α.
Now we show that for given g−(x) this function u(x) is unique solution of the problem D−.

We suppose that there exists another function v(x) which is a solution of the problem D−.
Then function w(x) = u(x)− v(x) satisfies boundary condition γ−

0 w(x) = 0 and conditions
at infinity (5). From Lemma 1 it follows that w(x) = 0 or v(x) = u(x), x ∈ Ω−.

Let us show that for g−(x) = 0 problem D− has solution u0(x) =
α

⟨τ1,1⟩V τ1(x)− α
⟨τ1,1⟩ . We

have γ−
0 u0(x) =

α
⟨τ1,1⟩Kdτ1(x)− α

⟨τ1,1⟩ = 0. Then

u0(x) =
α

⟨τ1, 1⟩
1

2π

∫
Σ

ln
|x|

|x− y|
τ1(y)dsy +

α

2π
ln

1

|x|
+ c∗,

where c∗ =
α
2π

ln d− α
⟨τ1,1⟩ . Thus u0(x) satisfies conditions at infinity (4).

Corollary 4. The problem D− with condition at infinity (5) has unique solution for arbitrary
g− ∈ H1/2(Σ) and lim|x|→∞ u(x) = ⟨τ1, g−⟩/⟨τ1, 1⟩.

It would be useful to note that we can consider conditions at infinity (4) as special type
of boundary conditions given on some infinitely remote closed curve.

4. Neumann boundary value problems. Now we consider interior N+ and exterior N−
Neumann boundary value problems in Ω+ and Ω− respectively.

Problem N+: find function u ∈ H1(Ω+) which satisfies Laplace equation (3) in Ω+ and
Neumann boundary condition

γ+
1 u = f+ ∈ H−1/2(Σ). (15)

Problem N−: find function u ∈ H1
loc(Ω−) which satisfies Laplace equation (3) in Ω−,

Neumann boundary condition
γ−
1 u = f− ∈ H−1/2(Σ) (16)

and condition at infinity (4) where α = −⟨f−, 1⟩ and c∗ = 0.

Theorem 3. Problem N+ with homogeneous boundary conditions γ+
1 u = 0 has solution

u0(x) = c, x ∈ Ω+, where c is an arbitrary constant. For u0(x) we have the following integral
representation

u0(x) = cWµ0(x), x ∈ Ω+, (17)

where µ0(x) = 1, x ∈ Σ.
Problem N− with homogeneous boundary conditions γ−

1 u = 0 and α = 0 in condition at
infinity (4) with c∗ = 0 has only trivial solution.

Proof. The first Green formula (1) in Ω+ gives us:
∫
Ω+

|∇u0(x)|2dx = 0. Hence u0(x) = c,
x ∈ Ω+, where c is an arbitrary constant.

Let us consider domain Ω−. For the domain B (see theorem 1) we have∫
B

|∇u(x)|2dx =

∫
ΣR

∂u(y)

∂ny

u(y)dsy → 0 as R → ∞.

Thus
∫
Ω−

|∇u(x)|2dx = 0 and u(x) = c∗ or u(x) = 0, x ∈ Ω−.
Let us consider function u0(x), x ∈ Ω′ such that u0(x) = 1, x ∈ Ω+ and u0(x) = 0,

x ∈ Ω−. From the integral representation (6) we have µ0 = [γ0]u0 = 1 and we get (17).
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Lemma 4. Problem N− with homogeneous boundary conditions γ−
1 u = 0 doesn’t have

solution if in condition at infinity (4) α ̸= 0 and c∗ = 0.

Proof. If u(x) is such a solution of this problem then from integral representation (6) we
have u(x) = −Wµ(x) + V γ+

1 u(x), x ∈ Ω′, where µ = γ+
0 u − γ−

0 u. Since ⟨γ+
1 u, 1⟩ = 0 we

obtain lim|x|→∞ u(x) = 0 and α = 0.

From Theorem 3 it follows that equation −γ+
1 Wµ0 = Hµ0 = 0 has solution µ0(x) = 1,

x ∈ Σ. Thus if u0(x) = −Wµ0(x) then u0(x) = 1, x ∈ Ω+ and u0(x) = 0, x ∈ Ω−.
Let us introduce spaces Y = {µ ∈ H1/2(Σ) : (µ, 1)L2(Σ) = 0} and Z = {f ∈ H−1/2(Σ) :

⟨f, 1⟩ = 0}.
We use the following proposition [8].

Proposition 5. Operator H : Y → H−1/2(Σ) is positive defined, i.e. there exists constant
c > 0 that for all µ ∈ H1/2(Σ) which satisfy condition (µ, 1)L2(Σ) = 0 there holds

⟨Hµ, µ⟩ ≥ c∥µ∥2H1/2(Σ). (18)

As a consequence of Proposition 5 we can get the following assertion.

Theorem 4. Operator H : Y → Z is an isomorphism.

Proof. Let µ ∈ Y and u(x) = −Wµ(x), x ∈ Ω+. Then ⟨Hµ, 1⟩ = ⟨γ+
1 u, 1⟩ = 0 or Hµ ∈ Z.

The space Y ′ = Z. Thus continuous operator H : Y → Y ′ is positive defined and therefor
bijective ([2], theorem 2.1.16).

Corollary 5. Equation Hµ = f has unique solution µ ∈ H1/2(Σ), (µ, 1)L2(Σ) = 0, for every
functional f ∈ H−1/2(Σ) which satisfies ⟨f, 1⟩ = 0 and ∥µ∥H1/2(Σ) ≤ c∥f∥H−1/2(Σ), where
c > 0 is some constant.

As a result for the boundary value problems N+ and N− we have the following proposi-
tions.

Theorem 5. Problem N+ has a solution for functional f+ ∈ H−1/2(Σ) which satisfies condi-
tion ⟨f+, 1⟩ = 0. We can represent this solution in the form u(x) = −Wµ(x) + c, x ∈ Ω+,
where µ is unique solution of equation Hµ = f+ with (µ, 1)L2(Σ) = 0 and c is an arbitrary
constant.

The proof is obvious if we take to attention Corollary 5.

Theorem 6. Problem N− has unique solution for arbitrary functional f− ∈ H−1/2(Σ). We
can represent this solution in the form u(x) = −Wµ(x)− V f−(x), x ∈ Ω−, where µ(x) is a
unique solution of equation

Hµ =
1

2
f− +Nf− (19)

with (µ, 1)L2(Σ) = 0.

Proof. At first we show that equation (19) has unique solution µ(x) with (µ, 1)L2(Σ) = 0
for arbitrary f− ∈ H−1/2(Σ). If we apply the first Green formula (1) for the functions
z(x) = V f−(x) and v(x) = 1, x ∈ Ω+, we get ⟨γ+

1 z, 1⟩ = 0 or ⟨1
2
f− + Nf−, 1⟩ = 0. Thus

from Corollary 5 we obtain that equation (19) has unique solution µ(x) with condition
(µ, 1)L2(Σ) = 0 for arbitrary f− ∈ H−1/2(Σ).
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Let us consider function u(x) = −Wµ(x) − V f−(x), x ∈ Ω−, where µ(x) is a unique
solution of equation (19) with condition (µ, 1)L2(Σ) = 0. Then γ−

1 u = Hµ+ 1
2
f− −Nf− = f−

and u(x) is solution of the problem N−.
Now we show that for given f− this function u(x) is unique solution of the problem

N−. We suppose that there exists another function v(x) which is a solution of the problem
N−. From Theorem 1 we have that v(x) = −Wσ(x) − V τ(x) for some σ ∈ H1/2(Σ) and
τ ∈ H−1/2(Σ). Since v(x) is a solution of the problem N− then ⟨τ, 1⟩ = ⟨f−, 1⟩. For the
function w(x) = u(x) − v(x) = −Wσ0(x) − V (f− − τ)(x), where σ0(x) = µ(x) − σ(x), we
obtain ⟨f− − τ, 1⟩ = ⟨f−, 1⟩ − ⟨τ, 1⟩ = ⟨f−, 1⟩ − ⟨f−, 1⟩ = 0. Thus function w(x) satisfies
Laplace equation in Ω−, is bounded at infinity and γ−

1 w(x) = 0. From Theorem 3 it follows
that w(x) = 0 or v(x) = u(x), x ∈ Ω−.

If the solution u(x) of the problem N− is bounded at infinity, i.e. α = 0 or ⟨f−, 1⟩ = 0
then we may look for this solution as u(x) = −Wµ(x) where µ(x) is solution of equation
Hµ = f− with condition (µ, 1)L2(Σ) = 0.

5. Dirichlet boundary value problems of transmission type. In order to present
solutions of interior D+ and exterior D− Dirichlet problems via potential of double layer we
consider the following boundary value problems (problems DT+ and DT−).

Problem DT+: find function u ∈ H1(Ω′, L) which satisfies Laplace equation (3) in Ω′,
Dirichlet boundary condition

γ+
0 u = g+ ∈ H1/2(Σ), (20)

boundary condition of transmission type on Σ

γ+
1 u = γ−

1 u (21)

and condition at infinity
lim

|x|→∞
u(x) = 0. (22)

As we denoted above C+ = −γ+
0 W = 1

2
I −M .

Theorem 7. The problem DT+ is equivalent to the integral equation of the second kind

C+µ(x) ≡ 1

2
µ(x)−

∫
Σ

∂Q(x, y)

∂ny

µ(y)dsy = g+(x), x ∈ Σ, (23)

µ(y) = g+(y)− γ−
0 u(y), i.e. the solution u of the problem DT+ has the form

u(x) = −Wµ(x), x ∈ Ω′, (24)

where µ ∈ H1/2(Σ) is solution of integral equation (23). And vice versa if µ is a solution of
equation (23) then function u given by (24) is a solution of the problem DT+.

Proof. Integral representation (24) follows from (6). By using boundary conditions and jump
relations (11) we get integral equation (23).

Let now function u is given by expression (24) where µ ∈ H1/2(Σ) is a solution of (23).
Then function u satisfies Lu = 0 in Ω′ and belongs to H1(Ω′, L). So far as µ is a solution
of equation (23) then using the jump relations (11) we are convinced of fulfilment of the
boundary conditions (20) and (21). If x → ∞ we can get conditions at infinity (22).
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Theorem 8. Problem DT+ has unique solution for arbitrary g+ ∈ H1/2(Σ).

Proof. Let us show that problem DT+ with boundary condition γ+
0 u = 0 has only trivial

solution. From the first Green formula (1) in Ω+ we get
∫
Ω+

|∇u|2dx = 0. Thus u(x) ≡ const,
x ∈ Ω+ and u = 0 in Ω+.

Using conditions at infinity (22) in Ω− we have∫
Ω−

|∇u(x)|2dx = −
∫
Σ

γ−
1 u(y)γ

−
0 u(y)dsy.

Since u = 0 в Ω+ then γ−
1 u = γ+

1 u = 0 and u(x) ≡ const, x ∈ Ω−. Hence u = 0 in Ω−.
For arbitrary function g+ ∈ H1/2(Σ) there exists function u which is a solution of the

problem D+. Then γ+
1 u = f ∈ H−1/2(Σ) and < f, 1 >= 0. From Theorem 6 it follows that

in Ω− there exists unique function u(x) which satisfies in Ω− Laplace equation, boundary
condition γ−

1 u = f and condition at infinity (22). It means that there exists unique function
u ∈ H1(Ω′, L) which is a solution of problem DT+.

Theorem 9. Operator C+ : H1/2(Σ) → H1/2(Σ) is an isomorphism, i.e. equation (23) has
an unique solution µ ∈ H1/2(Σ) for arbitrary g+ ∈ H1/2(Σ) and

∥µ∥H1/2(Σ) ≤ c∥g+∥H1/2(Σ), c > 0.

Proof. Let σ0 be a solution of equation C+σ0 = 0. Then u0(x) = −Wσ0(x) is a solution
of the problem DT+ with condition γ+

0 u0 = 0 and σ0 = −γ−
0 u0. Thus u(x) = 0, x ∈ Ω+,

γ−
1 u0 = γ+

1 u0 = 0 and from theorem 6 we obtain u0 = 0 in Ω− or σ0 = 0.
Let us show that operator C+ is surjective. For arbitrary g+ ∈ H1/2(Σ) there exists

function u which is unique solution of the problem DT+. From Theorem 7 it follows that
u(x) has unique representation u(x) = −Wµ(x) where µ is a solution of equation C+µ = g+.
So far as operator C+ : H1/2(Σ) → H1/2(Σ) is continuous we can get the continuity of the
inverse operator (C+)−1.

So far as restriction of the function u(x) which is a solution of the problem DT+ on
domain Ω+ is a solution of the problem D+ we have the following corollary.

Corollary 6. We can present solution of the problem D+ in the form (24) where µ ∈ H1/2(Σ)
is unique solution of the equation (23).

Problem D− when in condition at infinity (4) α = 0 is connected with the following
problem.

Problem DT−: find function u ∈ H1(Ω′, L) which satisfies Laplace equation (3) in Ω′,
Dirichlet boundary condition in Ω−

γ−
0 u = g− ∈ H1/2(Σ), (25)

boundary condition of transmission type (21) on Σ and condition at infinity (5).

Theorem 10. The problem DT− is equivalent to the integral equation of the second kind

C−µ(x) = γ−
0 Wµ(x) ≡ 1

2
µ(x) +

∫
Σ

∂Q(x, y)

∂ny

µ(y)dsy = −g−(x) + c∗, x ∈ Σ (26)

µ(y) = γ+
0 u(y)− g−(y), i.e. solution u of the problem DT− has representation

u(x) = −Wµ(x) + c∗, x ∈ Ω′, (27)

where µ(y) is solution of integral equation (26). And vice versa function u(x) given by (27)
where µ(y) is solution of equation (26) is solution of the problem DT−.
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The proof is similar to the proof of Theorem 7.

Theorem 11. There exists function u(x) which is a solution of the problem DT− with
boundary condition γ−

0 u = 0. We have u = 0 in Ω−, u = const in Ω+ and c∗ = 0.

Proof. If γ−
0 u = 0 and u(x) satisfies condition at infinity (5) then u(x) = 0 in Ω− and c∗ = 0

(Theorem 1). Consequently γ+
1 u = γ−

1 u = 0. Thus u = const in Ω+.

From Theorems 10 and 11 it follows existence of the function u0(x) = −Wµ0(x), x ∈ Ω′,
where µ0 = γ+

0 u0 = const is a solution of homogenous integral equation of the second order

C−µ0(x) =
1

2
µ0(x) +

∫
Σ

∂Q(x, y)

∂ny

µ0(y)dsy = 0, x ∈ Σ.

Function u0(x) is a solution of problem DT− with boundary condition γ−
0 u0 = 0 and

c∗ = 0.
Let us consider function u0(x) = −Wµ0(x) where µ0(y) = 1, y ∈ Σ. Then u0(x) = 0 in

Ω− and u0(x) = 1 in Ω+. From the jump relations (11) we obtain Mµ0(y) =
1
2
(γ+

0 Wµ0(y) +
γ−
0 Wµ0(y)) =

1
2
, y ∈ Σ.

Let us note that Wµ0 where µ0 = 1 is well known Gauss integral.

Theorem 12. Problem DT− has not unique solution for arbitrary function g− ∈ H1/2(Σ).
Constant c∗ = ⟨τ1, g−⟩/⟨τ1, 1⟩, where τ1 is a solution of equation Kdτ1 = 1, d ̸= d0.

Proof. Let g− ∈ H1/2(Σ). From Theorem 2 we get existence of the function u(x) which is
a unique solution of the problem D− which satisfies condition at infinity (5), γ−

0 u = g− and
c∗ = ⟨τ1, g−⟩/⟨τ1, 1⟩. If we apply the first Green formula in the domain B introduced in
Theorem 1 for functions u(x) and v(x) = 1, x ∈ Ω−, we have

⟨γ−
1 u, 1⟩ =

∫
ΣR

∂u(y)

∂ny

dsy → 0, R → ∞,

since u(x) satisfies condition at infinity (5). Let us consider functional f = γ−
1 u ∈ H−1/2(Σ),

< f, 1 >= 0. From Theorem 5 it follows that in Ω+ there exists unique up to a constant
function u(x) which satisfies in Ω+ Laplace equation and boundary condition γ+

1 u = f . Hence
there exists (not unique) function u ∈ H1(Ω′) which is a solution of problem DT−.

From the above assertions it follows that solution of the problem DT− has the next
integral representation u(x) = −Wµ(x) + c∗, x ∈ Ω′.

Here µ is a solution of equation C−µ = −g− + c∗ and c∗ = ⟨τ1, g−⟩/⟨τ1, 1⟩, where τ1 is a
solution of equation Kdτ1 = 1 and µ0 = 1.

Let us denote X = {g ∈ H1/2(Σ) : ⟨τ1, g⟩ = 0} and as we have denoted above Y = {µ ∈
H1/2(Σ) : (µ, 1)L2(Σ) = 0}.

Theorem 13. Operator C− : Y → X is an isomorphism.

Proof. From Theorems 10 and 12 it follows that equation C−µ = g− − c∗, where c∗ =
⟨τ1, g−⟩/⟨τ1, 1⟩, has solution for arbitrary g− ∈ H1/2(Σ). If g− ∈ X , i.e. ⟨τ1, g−⟩ = 0, then
equation C−µ = g− has solution. Thus operator C− : H1/2(Σ) → X is surjective.

Let (µ, 1)L2(Σ) = 0 and C−µ = 0. Then function u = −Wµ + c∗ is a solution of the
problem DT− with g−(x) = β, x ∈ Σ and c∗ = β, β = const. From Theorem 2 it follows
that u(x) = β, x ∈ Ω−. Since γ+

1 u = γ−
1 u = 0 then u(x) = a = const, x ∈ Ω+. So far

as µ = γ+
0 u − β = a − β and (µ, 1)L2(Σ) = (a − β, 1)L2(Σ) = 0 we have a = β and µ = 0.

Thus operator C− : Y → X is injective. Continuity of the operator C− completes the proof
of theorem.
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Now we consider boundary value problem D− when we represent its solution as a double
layer potential. In this case solution u of the problem D− satisfies the condition at infinity
(5). Using idea from [10] we have the following theorem.

Theorem 14. We can present solution of the problem D− with condition at infinity (5) in
the form

u(x) = −
∫
Σ

∂Q(x, y)

∂ny

µ(y)dsy +

∫
Σ

µ(y)dsy, (28)

where function µ is unique solution of the following integral equation for arbitrary g ∈
H1/2(Σ)

C−
1 µ(x) ≡

1

2
µ(x) +

∫
Σ

(
∂Q(x, y)

∂ny

− 1

)
µ(y)dsy = −g−(x), x ∈ Σ. (29)

Proof. If u is solution of the problem DT− then u = −Wµ + c∗ where µ = σ + c1µ0 is
solution of equation C−µ = −g− + c∗, σ is unique solution of equation C−σ = −g− + c∗,
(σ, 1)L2(Σ) = 0, c∗ = ⟨τ1, g−⟩/⟨τ1, 1⟩, C−µ0 = 0, µ0(x) ≡ 1, x ∈ Σ, τ1 is a solution of equation
Kdτ1 = 1, d ̸= d0 and c1 is an arbitrary constant. For arbitrary g− ∈ H1/2(Σ) we have
⟨τ1,−g− + c∗⟩ = 0.

Let u(x) is a solution of the problem DT−. Then the solution of the problem D− is a
restriction of the function u(x) on Ω− and has representation u = −Wµ+ c∗. Then C−

1 µ =
C−µ−(µ, 1)L2(Σ) = −g−+c∗−(µ, 1)L2(Σ). If we take c1 = c∗/|Σ| where |Σ| = (µ0, 1)L2(Σ) then
c∗ = (µ, 1)L2(Σ) and solution u of the problem D− has form u = −Wµ + (µ, 1)L2(Σ) where
µ = σ + ⟨τ1,g−⟩

⟨τ1,1⟩|Σ|µ0 is unique solution of the equation (29) for arbitrary g− ∈ H1/2(Σ).

If we take to attention the continuity of the operator C−
1 : H1/2(Σ) → H1/2(Σ) as

a consequence we have the following theorem.

Theorem 15. Operator C−
1 : H1/2(Σ) → H1/2(Σ) is an isomorphism. Equation (29) has

unique solution µ ∈ H1/2(Σ) for arbitrary function g− ∈ H1/2(Σ) and
∥µ∥H1/2(Σ) ≤ C∥g−∥H1/2(Σ), C > 0.

Different types of equations in Hilbert spaces which have not unique solutions were consi-
dered in [12].

6. Neumann boundary value problems of transmission type. Let us consider the
interior N+ and exterior N− Neumann problems when we present their solutions using
potential of the simple layer.

Problem NT+: find function u ∈ H1(Ω′, L) which satisfies Laplace equation (3) in Ω′,
Neumann boundary condition (15) γ+

1 u = f+ ∈ H−1/2(Σ), boundary condition of transmi-
ssion type on Σ

γ+
0 u = γ−

0 u (30)

and condition at infinity (22).

Theorem 16. Problem NT+ is equivalent to equation of the second kind

B+τ ≡ 1

2
τ +Nτ = f+, (31)
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where τ = f+ − γ−
1 u with condition ⟨τ, 1⟩ = 0, i.e. the solution u of the problem NT+ has

the form
u(x) = V τ(x), x ∈ Ω′, (32)

where τ is a solution of equation (31) with condition ⟨τ, 1⟩ = 0. And vice versa if τ is a solution
of equation (31) with condition ⟨τ, 1⟩ = 0 then function u given by (32) is a solution of the
problem NT+.

Proof. If solution of the problem NT+ exists from integral representation u(x) = V τ(x) −
Wµ(x), x ∈ Ω′. where τ = [γ1]u, µ = [γ0]u it follows that u(x) = V τ(x), x ∈ Ω′. Here
τ = f+ − γ−

1 u and ⟨τ, 1⟩ = 0. From the boundary conditions and jump relations (11) we
obtain equation (31).

Let now function u be given by (32) where τ ∈ H−1/2(Σ) is a solution of equation (31).
Then function u ∈ H1(Ω′) and satisfies Laplace equation Lu = 0 in Ω′. So far as τ is
a solution of equation (31) then from the jump relations (11) we have boundary conditions
γ+
1 u = f+ and γ+

0 u = γ−
0 u. If we tend x → ∞ we obtain conditions at infinity (22).

Theorem 17. Problem NT+ with boundary condition γ+
1 u = 0 has only trivial solution.

Proof. From the first Green formula (1) in Ω+ we get
∫
Ω+

|∇u|2dx = 0. Thus u(x) = const,
x ∈ Ω+, and the solution of the problem NT+ with boundary condition γ+

1 u = 0 has the
following integral representation: u(x) = cV τ1(x), x ∈ Ω′. Here c is an arbitrary constant,
τ1 = −γ−

1 u and τ1 is a solution of equation Kdτ1 = 1. If we take to attention condition at
infinity (22) then c⟨τ1, 1⟩ = 0 or c = 0 and we have u(x) = 0 in R2.

Theorem 18. Problem NT+ has unique solution for functional f+ ∈ H−1/2(Σ) with condi-
tion ⟨f+, 1⟩ = 0.

Proof. From Theorem 5 it follows that there exists solution u(x) = v(x) + c, x ∈ Ω+, of the
problem N+, where γ+

1 v = f+, ⟨f+, 1⟩ = 0 and c is an arbitrary constant. We can choose this
constant in such a manner that γ+

0 u = g ∈ H1/2(Σ) and ⟨τ1, g⟩ = 0, where τ1 is a solution
of equation Kdτ1 = 1. From Corollary 3 it follows that we can present u(x), x ∈ Ω+, as
u(x) = V τ(x), where τ is unique solution of equation Kτ = g and satisfies ⟨τ, 1⟩ = 0. Then
function u(x) = V τ(x), x ∈ Ω′, is unique solution of the problem NT+.

We denoted above Z = {f ∈ H−1/2(Σ) : ⟨f, 1⟩ = 0}. As a consequence of Theorems 16,
17 and 18 we have the following assertion.

Theorem 19. Operator B+ : Z → Z is an isomorphism, i.e. equation B+τ = f+ has unique
solution which satisfies condition ⟨τ, 1⟩ = 0 for functional f+ ∈ H−1/2(Σ) with condition
⟨f+, 1⟩ = 0. Homogeneous equation B+τ1 = 0 has solution τ1 where Kdτ1 = 1.

Let us consider equation

B+
1 σ ≡ 1

2
σ +Nσ + ⟨σ, 1⟩ = g. (33)

Here ⟨σ, 1⟩ is a function that equals ⟨σ, 1⟩ on Σ.

Theorem 20. Operator B+
1 : H−1/2(Σ) → H−1/2(Σ) is an isomorphism, i.e. equation (33)

has unique solution σ ∈ H−1/2(Σ) for arbitrary functional g ∈ H−1/2(Σ) and
∥σ∥H−1/2(Σ) ≤ C∥g∥H−1/2(Σ), C > 0.
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Proof. Let g ∈ H−1/2(Σ) and f = g − cg, where cg = ⟨g, 1⟩/|Σ|, |Σ| is a length of Σ. Then
⟨f, 1⟩ = 0. Let now τ be unique solution of equation B+τ = f , ⟨τ, 1⟩ = 0 and σ = τ + cτ1
where τ1 is a solution of homogeneous equation B+τ1 = 0 and c is an arbitrary constant. If
we take c = cg/⟨τ1, 1⟩ it’s easy to verify that σ = τ + cτ1 is a solution of equation B+

1 σ = g.
Thus operator B+

1 is surjective.
Now we show injectivity of B+

1 , i.e. homogeneous equation B+
1 τ = 0 has only trivial

solution. Let τ0 be a solution of B+
1 τ0 = 0. Then B+τ0 = ⟨τ0, 1⟩. We consider function

u0 = V τ0. It’s obviously that γ+
1 u0 = ⟨τ0, 1⟩ = const. Inasmuch ⟨γ+

1 u0, 1⟩ = 0 then ⟨τ0, 1⟩ = 0
and B+τ0 = 0. It means that τ0 = 0.

Continuity of operator B+
1 : H−1/2(Σ) → H−1/2(Σ) is obvious.

The solution of the problem NT+ we search in the form u = V τ where τ = σ− τ1 and σ
is a solution of equation B+

1 σ = f++ ⟨τ1, 1⟩. Since B+τ1 = 0 we have B+τ = B+
1 σ−⟨σ, 1⟩ =

f+ − ⟨τ, 1⟩. So far as ⟨B+τ, 1⟩ = 0 for τ ∈ H−1/2(Σ) and ⟨f+, 1⟩ = 0 we obtain B+τ = f+ or
γ+
1 u = f+ and ⟨τ, 1⟩ = 0.

As a consequence we have the following theorem.

Theorem 21. We can present solution of the problem N+ in the form u = V τ + c where c
is an arbitrary constant and τ = σ− τ1. Here σ is a solution of equation B+

1 σ = f+ + ⟨τ1, 1⟩,
Kdτ1 = 1, and ⟨τ, 1⟩ = 0.

If g ∈ L2(Σ) equation B+
1 σ = g we have in the next integral form

1

2
σ(x) +

∫
Σ

(
∂Q(x, y)

∂nx

+ 1

)
σ(y)dsy = g(x), x ∈ Σ.

Problem NT−: find function u ∈ H1(Ω′, L) which satisfies Laplace equation (3) in Ω′,
Neumann boundary condition (16), boundary condition of transmission type (30) on Σ
γ+
0 u = γ−

0 u and condition at infinity (4) where α = −⟨f−, 1⟩ and c∞ = 0.

Theorem 22. Problem NT− is equivalent to equation of the second kind

B−τ ≡ −1

2
τ +Nτ = f−, (34)

where B−τ = γ−
1 V τ , τ = γ+

1 u− f−, i.e. the solution u of the problem NT− has the form

u(x) = V τ(x), x ∈ Ω′, (35)

where τ is a solution of equation (34). And vice versa if τ is a solution of equation (34) then
function u given by (35) is a solution of the problem NT−.

Proof we can get in the same way as for Theorem 16.

Theorem 23. Problem NT− has unique solution for arbitrary functional f− ∈ H−1/2(Σ).

Proof. For arbitrary functional f− ∈ H−1/2(Σ) there exists unique solution u of the problem
N− and in condition at infinity (4) α = −⟨f−, 1⟩ (theorem 6). Analogously for function
g = γ+

0 u = γ−
0 u ∈ H1/2(Σ) there exists unique solution of the problem D+.

From Theorems 22 and 23 we can obtain the next conclusion.
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Theorem 24. Operator B− : H−1/2(Σ) → H−1/2(Σ) is an isomorphism, i.e. equation B−τ =
f− has unique solution τ ∈ H−1/2(Σ) for arbitrary functional f− ∈ H−1/2(Σ) and

∥τ∥H−1/2(Σ) ≤ c∥f−∥H−1/2(Σ),
where c > 0 is some constant.

As a consequence we have the following corollary

Corollary 7. Problem N− has unique solution for arbitrary functional f− ∈ H−1/2(Σ). We
can represent this solution in the form u(x) = V τ(x), x ∈ Ω−, where τ is a unique solution
of equation B−τ = f−.
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