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The aim of this note is to introduce a fuzzy counterpart of the Fréchet distance between

curves. We consider both monotonic and non-monotonic case.

1. Introduction. The Fréchet distance between curves in a metric space is introduced in [6].
There are various versions of the Fréchet distance, e.g., discrete Fréchet distance (or coupling
distance) [4], homotopic Fréchet distance etc. The Fréchet metric and its modifications found
numerous applications, e.g., in computer vision, image processing, molecular biology etc.

The aim of this note is to define a fuzzy counterpart of the Fréchet distance between curves
in the fuzzy metric spaces. The theory of fuzzy metric spaces is extensively developing, it has
many applications in computer vision and image recognition (see, e.g., [11–13]). In this note
we deal with the notion of fuzzy metric space in the sense of George and Veeramani [7, 8].
The main reason of this is because the fuzzy metrics in the sense of George and Veeramani
induce metrizable topologies.

Some constructions in metric spaces have their counterparts in the theory of fuzzy metric
spaces: fuzzy Hausdorff metric [14], fuzzy Prokhorov metric on the set of probability measures
on fuzzy metric spaces [15], fuzzy metric on the set of idempotent and max-min measures [2].

We consider both monotonic and non-monotonic cases of the fuzzy Fréchet distance.
Finally, we formulate some open problems.

2.1. Preliminaries.
2.1. Fuzzy metric spaces. The unit segment [0, 1] will be denoted by I. A t-norm is a
continuous, associatiative, commutative function ∗ : I → I which is monotone (in the sense
that x ≤ x′ and y ≤ y′ imply x ∗ y ≤ x′ ∗ y′) and 1 is a unit for ∗.

Some examples of t-norms are: min (denoted by ∧), · (i.e., multiplication), (a, b) 7→
max{0, a+ b− 1} (the  Lukasiewicz t-norm). There are general constructions of t-norms [17].

We recall the definition of the fuzzy metric space in the sense of [7].
Let X be a set, ∗ : [0, 1] × [0, 1] → [0, 1] be a continuous t-norm, and R+ = (0,+∞). A

GV-fuzzy metric on X is a pair ((m, ∗), where the mapping m : X×X×R+ → (0, 1] satisfies
the following conditions for all x, y, z ∈ X, s, t ∈ R+:

(1GV ) m(x, y, t) > 0;
(2GV ) m(x, y, t) = 1 if and only if x = y;
(3GV ) m(x, y, t) = m(y, x, t);
(4GV ) m(x, z, t + s) ≥ m(x, y, t) ∗m(y, z, s);
(5GV ) m(x, y,−) : R+ → [0, 1] is continuous.
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If (m, ∗) is a GV-fuzzy metric on X, then the triple (X,m, ∗) is called a GV-fuzzy metric
space. Given x ∈ X, e ∈ (0, 1), and t > 0, one can define

B(x, e, t) = {y ∈ X | M(x, y, t) > 1 − e}.

It is proved that every fuzzy metric M on X generates a topology τM on X which has
as a base the family of open sets of the form B(x, e, t), where x ∈ X, 0 < e < 1, t > 0.

The topological space (X, τ) is said to be fuzzy metrizable if there is a fuzzy metric M
on X such that τ = τM . Then, it was proved that a topological space is fuzzy metrizable if
and only if it is metrizable.

Given a topological space X, we denote by expX the set of all nonempty compact
subsets in X. Let (X,M, ∗) be a fuzzy metric space. Given x ∈ X and A,B ∈ expX,
let M(x,B, t) = supy∈B M(x, y, t) and M(A,B, t) = infx∈A M(x,B, t). Then the Hausdorff
fuzzy metric is a function MH : expX × expX × (0,∞) → (0, 1] defined by the formula

MH(A,B, t) = min{M(A,B, t),M(B,A, t)}.

Then MH is known to be a fuzzy metric on expX (see [14]).
Let (X, d) be a metric space. Then the function Md : X × X × (0,∞) → R defined by

the formula
Md(x, y, t) =

t

d(x, y) + t

is known to be a fuzzy metric for ∗ = · (see [16]).

2.2. Fréchet distance. Let X be a topological space. By C(X) we denote the set of all
parametric curves in X. The curves are considered up to parametrization. In the sequel we
are interested in the case when X is a (fuzzy) metric space.

Let (X, d) be a metric space. By I we denote the segment [0, 1]. By H(I) we denote the
group of homeomorphisms of I.

Having two continuous parametric curves γi : I → X, i = 1, 2, their Fréchet distance is
defined by the formula

dF (γ1, γ2) = inf
α

sup{d(γ1(α(t)), γ2(α2(t))) | t ∈ I}.

It is well known that dF is a metric on the set C(X).

One can define the notion of the Gromov-Fréchet distance:

dGF (γ1, γ2) = inf{dF (j1(γ1), j2(γ2)) | ji : γi(I) → Z are isometric embeddings, i = 1, 2}.

Given curves in Rn, one defines the isometric Fréchet distance:

dIsoF (γ1, γ2) = inf{dF (γ1, h(γ2)) | h : Rn → Rn is an isometry}.

Note that

dIsoF ≥ dGF .

Definition 1. Let (X,m, ∗) be a GV-fuzzy metric space, γi : I → X, i = 1, 2, be parametric
curves in X. Define

MF (γ1, γ2, t) = sup
α∈H(I)

inf
s∈I

M(γ1(α(s)), γ2(s), t).
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Clearly, MF (γ1, γ2, t) is well-defined. It immediately follows from the definition that
MF (γ1, γ2, t) ≤ MH(γ1(I), γ2(I), t).

Theorem 1. The function MF is a fuzzy metric on the set C(X).

Proof. We first remark that MF (γ1, γ2, t) > 0. Indeed, since the function M is continuous
and γi(I), i = 1, 2, is compact, we conclude that, for any α ∈ H(I),

inf
s∈I

M(γ1(α(s)), γ2(s), t) > 0

and MF (γ1, γ2, t) > 0.
Now, if MF (γ1, γ2, t) = 1, then MH(γ1(I), γ2(I), t) = 1. Therefore, γ1(I) = γ2(I) and,

consequently, γ1 = γ2.
Clearly, MF (γ1, γ2, t) = MF (γ2, γ1, t).
Suppose now that γ1, γ2, γ3 ∈ C(X) and MF (γ1, γ2, t) = a, MF (γ2, γ3, s) = b. Given r > 0,

one can find α, β ∈ H(I) such that

inf
p∈I

M(γ1(α(p)), γ2(p), t) > a− r, inf
p∈I

M(γ2(β(p)), γ3(p), s) > b− r.

Then

MF (γ1, γ3, t + s) ≥ inf
p∈I

M(γ1(αβ(p)), γ3(p), t + s) ≥

≥ inf
p∈I

(M(γ1(α(β(p)), γ2(β(p)), t) ∗M(γ2(β(p), γ3(p), s)) ≥

≥
(

inf
p∈I

M(γ1(α(p)), γ2(p), t)

)
∗
(

inf
p∈I

M(γ2(β(p)), γ3(p), s)

)
≥ (a− r) ∗ (b− r).

Since r > 0 is arbitrary and ∗ is continuous, we are done.
Given γ1, γ2, we are going to prove that the function MF (γ1, γ2,−) : (0,∞) → (0, 1] is

continuous. Let t0 ∈ (0,∞), MF (γ1, γ2, t0) = c. Let r > 0. By compactness of γ1(I) × γ2(I)
and continuity of M , there exists ϵ > 0 such that the following holds: for any x ∈ γ1(I),
y ∈ γ2(I), any t ∈ (t0 − ϵ, t0 + ϵ), we have

|M(x, y, t) −M(x, y, t0)| < r.
Then clearly, for any t ∈ (t0 − ϵ, t0 + ϵ), α ∈ H(I) and any s ∈ I,

|MF (γ1(α(s)), γ2(s), t0) −MF (γ1(α(s)), γ2(s), t)| ≤ r

and therefore

| inf
s∈I

MF (γ1(α(s)), γ2(s), t0) − inf
s∈I

MF (γ1(α(s)), γ2(s), t)| ≤ 2r.

Now,

|MF (γ1, γ2, t) −MF (γ1, γ2, t0)| =

= | sup
α∈H(I

inf
s∈I

MF (γ1(α(s)), γ2(s), t) − sup
α∈H(I

inf
s∈I

MF (γ1(α(s)), γ2(s), t0)| ≤ 4r.

The continuity is proved.
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Let (X, d) be a metric space and let (Md, ·) denote the fuzzy metric generated by d.

Proposition 1. (Md)F = MdF .

Proof. This easily follows from the condition: given t ∈ (0,∞),

d(x, y) ≤ d(x′, y′) ⇐⇒ M(x, y, t) ≥ M(x′, y′, t)

for any x, y, x′, y′ ∈ X.

Remark 1. A similar result can be proved for the fuzzy metric (M ′
d,∧), where

M ′
d(x, y, t) = e−

d(x,y)
tn , n ∈ N.

3. Non-monotonic case. The following lemma is proved in [1], we include its proof for
the sake of completeness. Let X be a topological space and let A,B ⊂ X be disjoint closed
subsets. A closed set C ⊂ X is called a separator in X between A and B if there are disjoint
open sets U, V ⊂ X such that X \ C = U ∪ V , with A ⊂ U and B ⊂ V .

Lemma 1. Let fi : I → I, i ∈ {1, 2, 3, 4}, be continuous piecewise-linear maps such that
f−1
i (0) = {0}, f−1

i (1) = {1}, i ∈ {1, 2, 3, 4}. Then there exist continuous piecewise-linear
maps gi : I → I, i ∈ {1, 2, 3}, such that, for every t ∈ I, there exist θ, τ ∈ I such that
g1(t) = f1(θ), g2(t) = f2(θ) = f3(τ), g3(t) = f4(τ).

Proof. Since the set {(f1(t), f2(t) | t ∈ I} is a connected one-dimensional polyhedron, it
contains a set L homeomorphic to a segment such that (0, 0) and (1, 1) are the endpoints of
L. The set

K = {(t, f3(τ), f4(τ)) | t, τ ∈ I} ∩ (L× I)

is a separator between the singletons {(0, 0, 1)} and {(1, 1, 0)}. From theorem on separators
for cubes (see, e.g., [5, Theorem 1.8.1]) it follows that the points (0, 0, 0) and (1, 1, 1) belong
to the same connected component of the set K. Since K is a subpolyhedron of I3, there
exists a continuous piecewise-linear map g = (g1, g2, g3) : I → I3 such that g(0) = (0, 0, 0),
g(1) = (1, 1, 1) and g(I) ⊂ K. It is easy to see that the functions g1, g2, g3 are as required.

By M(I) we denote the set continuous selfmaps of I that preserve the endpoints of I.
Let (X,M, ∗) be a fuzzy metric space. Given γ1, γ2 ∈ C(X) and t ∈ (0,∞), define

M ′
F (γ1, γ2, t) = sup

τ1,τ2∈M(I)
inf
p∈I

M(γ1(τ1(p)), γ2(τ2(p)), t).

As in the monotonic case,
M ′

F (γ1, γ2, t) ≤ MH(γ1(I), γ2(I), t).

Theorem 2. The function (M ′
F , ∗) is a fuzzy metric on C(X).

Proof. Let us prove property (4) from the definition of the fuzzy metric. Given γi ∈ C(X),
i = 1, 2, 3, s, t ∈ (0,∞), and ε > 0, one can find τ1, τ2, τ

∗
2 , τ3 ∈ M(I) such that

|M ′
F (γ1, γ2, s) − inf

p∈I
M(γ1(τ1(p)), γ2(τ2(p)), s)| < ε,

|M ′
F (γ2, γ3, t) − inf

p∈I
M(γ2(τ

∗
2 (p)), γ3(τ3(p)), t)| < ε.
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Since the function M is continuous, one may assume that the functions τ1, τ2, τ
∗
2 , τ3 are

piecewise-linear and φ−1(a) = {a}, for every φ ∈ {τ1, τ2, τ ∗2 , τ3} and a ∈ {0, 1}. Apply
Lemma 1 and obtain continuous maps gi ∈ M(I).

Now, suppose that

inf
p∈I

M(γ1(g1(p)), γ3(g3(p)), t + s) = M(γ1(g1(p0)), γ3(g3(p0)), t + s).

By Lemma 1, there exist p′, p′′ ∈ I such that

g1(p0) = τ1(θ),

Then we obtain

M ′
F (γ1, γ3, t + s) ≥ M(γ1(g1(p0)), γ3(g3(p0)), t + s) ≥

≥ M(γ1(τ1(θ)), γ2(g3(p0)), t) ∗M(γ2(), γ3(), s) ≥ M ′
F (γ1, γ2, t) ∗M ′

F (γ2, γ3, s) − 2ε.

Since ε > 0 is arbitrary, (4) is proved.
The continuity of t 7→ M(γ1, γ2, t) can be proved similarly as in the proof of Theorem 1.

4. Remarks. Some versions of the Fréchet distance are also considered in the literature. In
particular, one can define the Fréchet distance between simple closed curves, i.e., embeddings
of S1 into a space X. There is a natural fuzzy counterpart of this notion.

The notion of complete fuzzy metric space is introduced in [9]. It is known that not all
fuzzy metric spaces can be completed and the characterization of completable fuzzy metric
spaces is given in [10]. The hyperspace (expX,MH , ∗) is completable if and only if (X,M, ∗)
is completable (see [14, Theorem 5]). This leads to the question whether the analog of this
result holds for the Fréchet fuzzy metric.
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