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Let b ∈ Cn \ {0} be a fixed direction. We consider slice holomorphic functions of several
complex variables in the unit ball, i.e. we study functions which are analytic in intersection of
every slice {z0 + tb : t ∈ C} with the unit ball Bn = {z ∈ Cn : |z| :=

√
|z|21 + . . .+ |zn|2 < 1}

for any z0 ∈ Bn. For this class of functions there is considered the concept of boundedness of
L-index in the direction b, where L : Bn → R+ is a positive continuous function such that
L(z) > β|b|

1−|z| and β > 1 is some constant. There are presented sufficient conditions that the
sum of slice holomorphic functions of bounded L-index in direction belong this class. This class
of slice holomorphic functions is closed under the operation of multiplication.

1. Introduction. Here we continue our investigations initialized in [1, 2]. There was intro-
duced a concept of L-index boundedness in direction for slice analytic functions of several
complex variables and obtained many criteria of L-index boundedness in direction. Here we
present some applications of these criteria to deduce sufficient conditions providing that sum,
product of slice analytic functions is a function of bounded L-index in direction.

We consider a general problem. At this point, we should point to our article, in which
we write about this as Prof. S.Yu. Favorov’s problem [4].

Problem 1. Is it possible to deduce main facts of theory of analytic functions having
bounded L-index in the direction b ∈ Bn \ {0} for functions which are holomorphic on
the slices {z0 + tb : t ∈ C} and are joint continuous?

Let us introduce some notations from [1]. Let R+ = (0,+∞), R∗
+ = [0,+∞), 0 =

(0, . . . , 0), 1 = (1, . . . , 1), b = (b1, . . . , bn) ∈ Cn \ {0} be a given direction, Bn = {z ∈
Cn : |z| < 1} be a unit ball, D = {z ∈ C : |z| < 1} be a unit disc, L : Bn → R+ be a
continuous function. For a given z ∈ Bn, we denote Sz = {t ∈ C : z + tb ∈ Bn}. Clearly,
D = B1. The slice functions on Sz for fixed z0 ∈ Bn we will denote as gz0(t) = F (z0+ tb) and

lz0(t) = L(z0 + tb) for t ∈ Sz. Besides, we denote by ⟨a, c⟩ =
n∑

j=1

ajcj the Hermitian inner

product in Cn, where a, c ∈ Cn.
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Let H̃b(Bn) be a class of functions which are holomorphic on every slices {z0+tb : t ∈ Sz0}
for each z0 ∈ Bn and let Hb(Bn) be a class of functions from H̃b(Bn) which are joint
continuous. The notation ∂bF (z) stands for the derivative of the function gz(t) at the point
0, i.e. for every p ∈ N, ∂p

bF (z) = g
(p)
z (0), where gz(t) = F (z + tb) is an analytic function of

complex variable t ∈ Sz for given z ∈ Bn.
Together the hypothesis on joint continuity and the hypothesis on holomorphy in one

direction do not imply holomorphy in whole n-dimensional unit ball. There were presented
some examples to demonstrate it [1].

A function F ∈ H̃b(Bn) is said [1] to be of bounded L-index in the direction b, if there
exists m0 ∈ Z+ such that for all m ∈ Z+ and each z ∈ Cn inequality

|∂m
b F (z)|

m!Lm(z)
≤ max

0≤k≤m0

|∂k
bF (z)|

k!Lk(z)
(1)

is true. The least such integer number m0, obeying (1), is called the L-index in the direction
b of the function F and is denoted by Nb(F,L,Bn). For n = 1, b = 1, L(z) = l(z), z ∈ C
inequality (1) defines a function of bounded l-index with the l-index N(F, l) ≡ N1(F, l,C)
[11], and if in addition l(z) ≡ 1, then we obtain a definition of index boundedness with
index N(F ) ≡ N1(F, 1,C) [12, 13]. It is also worth to mention paper [18], which introduces
the concept of generalized index. It is quite close to the bounded l-index. Similarly, analytic
function F : Bn → C is called a function of bounded L-index in a direction b ∈ Cn \ {0}, if
it satisfies (1) for all z ∈ Bn.

It should be noted that the function L, in addition to the properties of positivity and
continuity, must also have the property of some regularity of behavior. Thus, we assume
the following additional restrictions on the function L (see also, for example, [3–6, 17]). For
z ∈ Bn we denote

λb(η) = sup
z∈Bn

sup
t1,t2∈Sz

{
L(z + t1b)

L(z + t2b)
: |t1 − t2| ≤

η

min{L(z + t1b), L(z + t2b)}

}
.

The notation Qb(Bn) stands for a class of positive continuous functions L : Bn → R+,
satisfying for every η ∈ [0, β]

λb(η) < +∞ (2)

and for all z ∈ Bn

L(z) >
β|b|
1− |z|

, (3)

where β > 1 is some constant.

2. Auxiliary propositions. In our investigations we need the following propositions obtai-
ned in [2]. The next theorems describe local behavior of the slice holomorphic function in
the unit ball. They present necessary or sufficient conditions of boundedness of L-index in
direction for this class of functions.

Theorem 1 ( [2]). Let L ∈ Qb(Bn). A function F ∈ H̃b(Bn) has bounded L-index in a
direction b ∈ Cn \ {0} if and only if for any r1 and any r2 with 0 < r1 < r2 ≤ β, there exists
number P1 = P1(r1, r2) ≥ 1 such that for each z0 ∈ Bn

max
{
|F (z0 + tb)| : |t|=r2/L(z

0)
}
≤ P1max

{
|F (z0+tb)| : |t|=r1/L(z0)

}
. (4)
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Also we will use an analog of logarithmic criterion for function from the class H̃b(Bn).
As necessary conditions the criterion was obtained by G. H. Fricke [9,10] for entire functions
of one complex variable having bounded index.

Denote
Gr(F ) := Gb

r (F ) :=
⋃

z∈Bn : F (z)=0

{z + tb : |t| < r/L(z)}.

By nz0(r) = nb

(
r, z0, 1/F

)
:=

∑
|a0k|≤r 1 we denote counting function of zeros a0k for the

slice function F (z0+tb) in the disc {t ∈ C : |t| ≤ r} for given z0 ∈ Bn. If for given z0 ∈ Bn and
for all t ∈ Sz : F (z0+ tb) ≡ 0, then we put nz0(r) = −1. Denote n(r) = supz∈Bn nz(r/L(z)).

Theorem 2 ([2]). Let F ∈ H̃b(Bn), L ∈ Qb(Bn). If the function F has bounded L-index in
the direction b, then

1) for every r ∈ (0, β] there exists P = P (r) > 0 that for each z ∈ Bn\Gb
r (F )∣∣∣∣∂bF (z)

F (z)

∣∣∣∣ ≤ PL(z); (5)

2) for every r ∈ (0, β] there exists ñ(r) ∈ Z+ such that for each z0 ∈ Bn with F (z0+tb) ̸≡ 0

nb

(
r/L(z0), z0, 1/F

)
≤ ñ(r).

Theorem 3 ([2]). Let L ∈ Qb(Bn), F ∈ H̃b(Bn), Bn\Gb
β(F ) ̸= ∅. If the following conditions

are satisfied

1) there exists r1 ∈ (0, β/2) (either there exists r1 ∈ [β/2, β) and (∀z ∈ Bn) : L(z) > 2β|b|
1−|z|)

such that n(r1) ∈ [−1;∞);

2) there exist r2 ∈ (0, β), P > 0 such that 2r2·n(r1) < r1/λb(r1) and for all z ∈ Bn\Gr2(F )
inequality (5) is true;

then the function F has bounded L-index in the direction b.

3. Product of functions of bounded L-index in direction. Now we consider an appli-
cation of Theorems 2 and 3. The following proposition can be obtained using similar consi-
derations as in the case of analytic in the unit ball functions of bounded L-index in directi-
on [8].

Proposition 1. Let L ∈ Qb(Bn), F ∈ H̃b(Bn) be a function of bounded L-index in the
direction b, Φ ∈ H̃b(Bn) and Ψ(z) = F (z)Φ(z). The function Ψ(z) is of bounded L-index in
the direction b if and only if the function Φ(z) is of bounded L-index in the direction b.

Proof. Our proof is similar to proof for analytic in the unit ball functions in [8] but now
we use Theorem 2, deduced for functions holomorphic on the slices in the unit ball. Since
an analytic function F (z) has bounded L-index in the direction b, by Theorem 2 for every
r ∈ (0, β) there exists ñ(r) ∈ Z+ such that for all z0 ∈ Bn, satisfying F (z0 + tb) ̸≡ 0, the
estimate n

(
r

L(z0)
, z0, 1

F

)
≤ ñ(r) holds. Hence,

n

(
r

L(z0)
, z0,

1

Φ

)
≤ n

(
r

L(z0)
, z0,

1

Ψ

)
≤ n

(
r

L(z0)
, z0,

1

Φ

)
+ ñ(r).
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Thus, condition 2 of Theorem 2 either holds or does not hold for functions Ψ(z) and Φ(z)
simultaneously. If Φ(z) has bounded L-index in the direction b, then for every r ∈ (0, β) there
exist numbers PF (r) > 0 and PΦ(r) > 0 such that

∣∣∣∂bF (z)
F (z)

∣∣∣ ≤ Pf (r)L(z),
∣∣∣∂bΦ(z)

Φ(z)

∣∣∣ ≤ PΦ(r)L(z)

for each z ∈ (Bn\Gb
r (F ))∩(Bn\Gb

r (Φ)). Since Bn\Gb
r (Ψ) ⊂ (Bn\Gb

r (F ))∩(Bn\Gb
r (Φ)) and∣∣∣∂bΨ(z)

Ψ(z)

∣∣∣ ≤ ∣∣∣∂bF (z)
F (z)

∣∣∣+ ∣∣∣∂bΦ(z)
Φ(z)

∣∣∣ , for all z ∈ Bn \Gb
r (Ψ) we have

∣∣∣∂bΨ(z)
Ψ(z)

∣∣∣ ≤ (PF (r)+PΦ(r))L(z).

Hence, by Theorem 3, the function Ψ(z) is of bounded L-index in the direction b.
On the contrary, let Ψ(z) be of bounded L-index in the direction b, r ∈ (0, β). At first,

we show that for every z0 ∈ Bn\Gb
r (F ) and for every d̃k = z0 + d0kb, where d0k are zeros

of function Φ(z0 + tb), we have |z0 − d̃k| > r|b|
2L(z0)λb(r)

. On the other hand, let there exist

z0 ∈ Bn\Gb
r (Φ) and d̃k = z0 + d0kb such that |z0 − d̃k| ≤ r|b|

2L(z0)λb(r)
. Then by the definition of

λb, we have the next estimate L(d̃k)≤λb(r)L(z
0), and hence |z0 − d̃k| = |b| · |d0k| ≤

r|b|
2L(d̃k)

,

i.e. |d0k| ≤ r

2L(d̃k)
, but it contradicts z0 ∈ Bn\Gb

r (Φ).

We consider K0 =
{
z0 + tb : |t| ≤ r

2L(z0)λb(r)

}
. It does not contain zeros of Φ(z0 + tb),

but it may contain zeros c̃k = z0 + c0kb of the function Ψ(z0 + tb). Since Ψ(z) is of
bounded L-index in the direction b, by Theorem 2 the set K0 contains at most ñ1 =

ñ1

(
r

2λb(r)

)
zeros c0k of the function Ψ(z0 + tb). For all c0k ∈ K0, using the definition of

Qb(Bn), we obtain the following inequality L(z0 + c0kb) ≥ 1

λb

(
r

λb(r)

)L(z0). Thus, every set

m0
k =

{
z0 + tb : |t− c0k| ≤ r1

L(z0+c0kb)

}
with r1 = r

4(ñ1+1)λb

(
r

λb(r)

)
λb(r)

is contained in the set

s0k =

{
z0 + tb : |t − c0k| ≤

r1λb

(
r

λb(r)

)
L(z0)

}
. The total sum of diameters of these sets does not

exceed

2ñ1r1λb

(
r

λb(r)

)
L(z0)

=
r

2λb(r)L(z0)
· ñ1

(ñ1 + 1)
<

r

2λb(r)L(z0)
.

Therefore, there exists r∗ ∈
(
0, r

2λb(r)

)
such that if |t| = r∗

L(z0)
, then z0 + tb /∈ Gb

r1
(Ψ), and

therefore z0 + tb /∈ Gb
r1
(F ). By Theorem 2, for all these points z0 + tb we obtain∣∣∣∣∂bΦ(z0 + tb)

Φ(z0 + tb)

∣∣∣∣ ≤ ∣∣∣∣∂bΨ(z0 + tb)

Ψ(z0 + tb)

∣∣∣∣+ ∣∣∣∣∂bF (z0 + tb)

F (z0 + tb)

∣∣∣∣ ≤ (P ∗
Ψ + P ∗

F )L(z
0 + tb), (6)

where P ∗
Ψ and P ∗

F depend only on r1, i.e. only of r. Since the function ∂bΦ(z)
Φ(z)

is analytic in

K0, applying the maximum modulus principle to the function ∂bΦ(z0+tb)
Φ(z0+tb)

as a function of
variable t, we obtain that the modulus of this function at the point t = 0 does not exceed
the maximum modulus of this function on the circle

{
t ∈ C : |t| = r∗

L(z0)

}
. It means that

obtained inequality (6) also holds for z0 instead z0 + tb.
Thus, for arbitrary r ∈ (0, β) and z0 ∈ Bn\Gb

r (F ) we have proved the first condition
of Theorem 3. Above we have already shown that the second condition of Theorem 3 is
also true. Hence, by the mentioned theorem, the function Φ(z) has bounded L-index in the
direction b.

4. Sum of functions of bounded L-index in direction. Above we wrote that the product
of analytic in the unit ball functions of bounded L-index in a direction is a function from the
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same class ( [8]). But the class of analytic functions of bounded index is not closed under the
addition. The corresponding example was constructed by W. Pugh (see [15, 17]) in the case
of entire function of single variable. A generalization of Pugh’s example for entire functions
of bounded L-index in direction is proposed in [7].

Let us consider an intersection of the hyperplane ⟨z,b⟩ = 0 with the unit ball. The
intersection we denote by A = {z ∈ Bn : ⟨z,b⟩ = 0}, where ⟨z,b⟩ :=

∑n
j=1 zjbj. Obviously

that
⋃

z0∈A{z0 + tb : |t| ≤ 1−|z0|
|b| } = Bn.

Let z0 ∈ A be a given point. If F (z0 + tb) ̸≡ 0 as a function of variable t ∈ C, then there
exists t0 ∈ Sz0 such that F (z0 + t0b) ̸= 0. We denote

B(z0, t) =

{
t0 ∈ Sz0 : |t0 − t| < min

{
β

2L(z0 + tb)
,
1− |z0 + bt|

2|b|

}
, F (z0 + t0b) ̸= 0

}
,

B(z0) =
⋃

|t|≤(1−|z0|)/|b|

B(z0, t).

Theorem 4. Let L : Bn → R+ be a positive continuous function satisfying (3) with β ≥ 3,
the functions F , G ∈ H̃b(Bn) satisfy the following conditions:
1) G(z) has bounded L-index in the direction b ∈ Cn \ {0} with Nb(G,L,Bn) = N < +∞;
2) there exists α ∈ (0, 1) such that for all z ∈ Bn and p ≥ N + 1 (p ∈ N)

|∂p
bG(z)|

p!Lp(z)
≤ αmax

{
|∂k

bG(z)|
k!Lk(z)

: 0 ≤ k ≤ N

}
; (7)

3) for every z = z0 + tb ∈ Bn with z0 ∈ A and some t0 ∈ B(z0, t) with r = |t− t0|L(z0 + tb)
the inequality

max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
≤ max

{
|∂k

bG(z0 + tb)|
k!Lk(z0 + tb)

: 0 ≤ k ≤ N

}
; (8)

is valid;
4) either (∃c > 0)(∀z0 ∈ A)(∀t ∈ Sz0) (∃t0 ∈ B(z0, t) obeying (8) and if |t−t0|L(z0+tb) ≤ 1),
then

max
{
|F (z0 + t′b)| : |t′ − t0| =

2

L(z0 + tb)

}/
|F (z0 + t0b)| ≤ c < +∞,

or for L ∈ Qb(Bn) (∃c > 0)(∀z0 ∈ A) (∃t0 ∈ B(z0)) such that (8) is true and

max
{
|F (z0 + t′b)| : |t′ − t0| =

2λb(1)

L(z0 + t0b)

}/
|F (z0 + t0b)| ≤ c < +∞, (9)

where β ≥ 2λb(1).
Then for every ε ∈ C, |ε| ≤ 1−α

2c
, the function

H(z) = G(z) + εF (z) (10)

has bounded L-index in the direction b and Nb(H,L,Bn) ≤ N.
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Proof. We repeat our arguments from [8] where this theorem is proved for functions analytic
in the unit ball. We write Cauchy’s formula for the slice holomorphic function F (z0 + tb) as
analytic function of one complex variable t

∂p
bF (z0 + tb)

p!
=

1

2πi

∫
|t′−t|= r

L(z0+tb)

F (z0 + t′b)

(t′ − t)p+1
dt′. (11)

For the chosen r = |t − t0|L(z0 + tb) we deduce r
L(z0+tb)

= |t′ − t| ≥ |t′ − t0| − |t − t0| =
|t′ − t0| − r

L(z0+tb)
. Hence,

|t′ − t0| ≤
2r

L(z0 + tb)
. (12)

Equality (11) yields

|∂p
bF (z0 + tb)|

p!Lp(z0 + tb)
≤ 1

2πLp(z0 + tb)
· L

p+1(z0 + tb)

rp+1

2πr

L(z0 + tb)
×

×max

{
|F (z0 + t′b)| : |t′ − t|= r

L(z0 + tb)

}
≤

≤ 1

rp
max

{
|F (z0+t′b)| : |t′−t0|=

2r

L(z0+tb)

}
. (13)

If r = |t− t0|L(z0 + tb) > 1, then (13) yields

|∂p
bF (z0 + tb)|

p!Lp(z0 + tb)
≤ max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
. (14)

Let r = |t− t0|L(z0 + tb) ∈ (0; 1]. Setting r = 1 in (11) and (12), we analogously deduce

|∂p
bF (z0 + tb)|

p!Lp(z0 + tb)
≤ max

{
|F (z0 + t′b)| : |t′ − t0| =

2

L(z0 + tb)

}
=

=
max

{
|F (z0 + t′b)| : |t′ − t0|= 2

L(z0+tb)

}
max

{
|F (z0 + t′b)| : |t′ − t0|= 2r

L(z0+tb)

} max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
≤

≤
max

{
|F (z0 + t′b)| : |t′ − t0| = 2

L(z0+tb)

}
|F (z0 + t0b)|

max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
≤

≤ cmax

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
, (15)

where

c = sup
z0∈A,|t|<(1−|z0|)/|b|

max
{
|F (z0 + t′b)| : |t′ − t0| = 2

L(z0+tb)

}
|F (z0 + t0b)|

≥ 1

and t0 = t0(z, t) ∈ B(z0, t) is chosen in (8) and |t0−t| ≤ 1/L(z0+tb). From |t′−t0| = 2
L(z0+tb)

one has |t′| ≤ |t0|+ 2
L(z0+tb)

≤ |t|+ 3
L(z0+tb)

. Therefore, β ≥ 3.

If L ∈ Qb(Bn), then sup
{

L(z0+t0b)
L(z0+tb)

: |t− t0| ≤ 1
L(z0+tb)

}
≤ λb(1). This means that

L(z0 + tb) ≥ L(z0+t0b)
λb(1)

. Using this inequality, we choose in (15)

c := sup
z0∈A

max
{
|F (z0 + t′b)| : |t′ − t0| = 2λb(1)

L(z0+t0b)

}
|F (z0 + t0b)|

≥ 1



222 V. P. BAKSA, A. I. BANDURA, T. M. SALO

with t0 chosen in (8). Taking into account (14) and (15), one has

|∂p
bF (z0 + tb)|

p!Lp(z0 + tb)
≤ cmax

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
(16)

for all n ∈ N ∪ {0}, r ≥ 0, z0 ∈ A, t ∈ Sz0 .
We differentiate (10) p times, p ≥ N + 1, and apply (7), (16) and (8)

|∂p
bH(z0+tb)|
p!Lp(z0+tb)

≤ |∂p
bG(z0+tb)|

p!Lp(z0+tb)
+
|ε||∂p

bF (z0+tb)|
p!Lp(z0+tb)

≤ αmax

{
|∂k

bG(z0+tb)|
k!Lk(z0+tb)

: 0 ≤ k ≤ N

}
+

+c|ε|max

{
|F (z0 + t′b)| : |t′−t0|=

2r

L(z0+tb)

}
≤

≤ (α+c|ε|)max

{
|∂k

bG(z0+tb)|
k!Lk(z0+tb)

: 0≤k≤N

}
. (17)

If s ≤ N, then (16) is valid for p = s, but (7) does not hold. Thus, the differentiation of
(10) leads to the following estimate

|∂s
bH(z0 + tb)|
s!Ls(z0 + tb)

≥ |∂S
bG(z0 + tb)|
s!Ls(z0 + tb)

− |ε||∂s
bF (z0 + tb)|

s!Ls(z0 + tb)
≥

≥ |∂s
bG(z0 + tb)|

s!Ls(z0 + tb)
− c|ε|max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
, (18)

where 0 ≤ s ≤ N. From (8) and (18) we deduce

max
0≤s≤N

{
|∂s

bH(z0 + tb)|
s!Ls(z0 + tb)

}
≥ (1− c|ε|) max

0≤s≤N

{
|∂s

bG(z0 + tb)|
s!Ls(z0 + tb)

}
. (19)

If c|ε| < 1, then (17) and (19) imply

|∂p
bH(z0 + tb)|
p!Lp(z0 + tb)

≤ α + c|ε|
1− c|ε|

max
0≤s≤N

{
|∂s

bH(z0 + tb)|
s!Ls(z0 + tb)

}
(20)

for p ≥ N + 1. Assume that α+c|ε|
1−c|ε| ≤ 1. Hence, |ε| ≤ 1−α

2c
.

Let Nb(F,L, z
0 + tb) be the L-index in the direction b of the function F at the point

z0 + tb, i.e. Nb(F,L, z
0 + tb) is the smallest number m0, for which inequality (1) holds with

z = z0 + tb.
For |ε| ≤ 1−α

2c
validity of (20) means that for all z0 ∈ A and every t ∈ Sz0 such that

F (z0 + tb) ̸= 0 the L-index in the direction b at the point z0 + tb does not exceed N, i.e.,
Nb(F,L, z

0 + tb) ≤ N.
If for some z0 ∈ A F (z0 + tb) ≡ 0, one has H(z0 + tb) ≡ G(z0 + tb) and Nb(F,L, z

0 +
tb) = Nb(G,L, z0 + tb) ≤ N. Thus, H(z) has bounded L-index in the direction b with
Nb(H,L,Bn) ≤ N.

Every slice holomorphic function F ∈ H̃b(Bn) with Nb(F,L,Bn) = 0 satisfies inequality
(9) (see proof of necessity in [2, Theorem 2]).

If L ∈ Qb(Bn), then condition 2) in Theorem 4 always holds. The following theorem is
valid.
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Theorem 5. Let L ∈ Qb(Bn), α ∈ (1/β, 1) and F, G ∈ H̃b(Bn), which satisfy condition:
1) G(z) has bounded L-index in the direction b ∈ Cn \ {0};
2) for every z = z0+tb ∈ Bn, where z0 ∈ A, and some t0 ∈ B(z0, t), and r = |t−t0|L(z0+tb)

max

{
|F (z0 + t′b)| : |t′ − t0|=

2r

L(z0 + tb)

}
≤ max

0≤k≤Nb(Gα,Lα,Bn)

{
|∂k

bG(z0 + tb)|
k!Lk(z0 + tb)

}
;

3) c := sup
z0∈A

max
{
|F (z0 + t′b)| : |t′ − t0| = 2λb

2 (1)

L(z0+t0b)

}
|F (z0 + t0b)|

< ∞ where t0 is chosen in 2).

If |ε| ≤ 1−α
2c

, then the function H(z) = G(z)+εF (z) has bounded L-index in the direction
b with Nb(H,L,Bn) ≤ Nb(Gα, Lα,Bn), where Gα(z) = G(z/α), Lα(z) = L(z/α).

Proof. Condition 2) in Theorem 4 always holds for N = Nb(Gα, Lα) instead N = Nb(G,L).
Indeed, by Theorem 1, inequality (4) is satisfied for the function G. Substituting z0

α
, t

α
and

t0
α

instead z0, t and t0 in (4) we obtain

max

{
|G((z0 + tb)/α)| : |t− t0| =

r2α

L((z0 + t0b)/α)

}
≤

≤ P1max

{
|G((z0 + tb)/α)| : |t− t0| =

r1α

L((z0 + t0b)/α)

}
. (21)

By Theorem 1, inequality (21) means that Gα = G(z/α) has bounded Lα-index in the
direction b and vice versa. Then for p ≥ Nb(Gα, Lα) + 1 and α ∈ (1/β, 1)

|∂p
bGα(z)|
p!Lp

α(z)
=

|∂p
bG(z/α)|

p!αpLp(z/α)
≤ max

{
|∂s

bGα(z)|
s!Ls

α(z)
: 0 ≤ s ≤ Nb(Gα, Lα)

}
=

= max

{
|∂s

bG(z/α)|
s!αsLs(z/α)

: 0 ≤ s ≤ Nb(Gα, Lα)

}
.

Multiplying by αp, we deduce

|∂p
bG(z/α)|

p!Lp(z/α)
≤ max

{
αp−s|∂s

bG(z/α)|
s!Ls(z/α)

: 0 ≤ s ≤ Nb(Gα, Lα)

}
≤

≤ αmax

{
|∂s

bG(z/α)|
s!Ls(z/α)

: 0 ≤ s ≤ Nb(Gα, Lα)

}
. (22)

Since z is arbitrary, inequality (22) yields (7).
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