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One of the main directions in group theory is the study of the impact of characteristic
subgroups on the structure of the whole group. Such characteristic subgroups include different
Σ-norms of a group. A Σ-norm is the intersection of the normalizers of all subgroups of a
system Σ. The authors study non-periodic groups with the restrictions on such a Σ-norm,
the norm NG(Cp̄) of cyclic subgroups of non-prime order, which is the intersection of the
normalizers of all cyclic subgroups of composite or infinite order of G. It was proved that if G
is a mixed non-periodic group, then its norm NG(Cp̄) of cyclic subgroups of non-prime order is
either Abelian (torsion or non-periodic) or non-periodic non-Abelian. Moreover, a non-periodic
group G has the non-Abelian norm NG(Cp̄) of cyclic subgroups of non-prime order if and only
if G is non-Abelian and every cyclic subgroup of non-prime order of a group G is normal in it,
and G = NG(Cp̄). Additionally the relations between the norm NG(Cp̄) of cyclic subgroups of
non-prime order and the norm NG(C∞) of infinite cyclic subgroups, which is the intersection
of the normalizers of all infinite cyclic subgroups, in non-periodic groups are studied. It was
found that in a non-periodic group G with the non-Abelian norm NG(C∞) of infinite cyclic
subgroups norms NG(C∞) and NG(Cp̄) coincide if and only if NG(C∞) contains all elements
of composite order of a group G and does not contain non-normal cyclic subgroups of order 4.
In this case NG(Cp̄) = NG(C∞) = G.

1. Introduction. One of the main directions in group theory is the study of the impact of
characteristic subgroups on the structure of the whole group. Such characteristic subgroups
include different Σ-norms of the group. A Σ-norm is the intersection of the normalizers of all
subgroups of a system Σ (assuming that the system Σ is non-empty). It is clear that when
the Σ-norm coincides with a group, then all subgroups of the system Σ are normal in the
last one.

For the first time, R. Baer [1] considered the Σ-norm as a proper subgroup of a group
in 1935 for the system of all subgroups of this group. He called it the norm of a group and
denoted by N(G). Narrowing the system of subgroups one can get different Σ-norms which
can be considered as generalizations of the norm N(G). Recently the interest to study the
Σ-norms does not decrease in view of series of papers [2, 3, 4, 7, 8, 9, 10, 11, 12, 13].

The authors investigate the generalized norm of a group, which is closely related to the
properties of some systems of cyclic subgroups of a group. Let us note that the Baer norm
N(G) is the intersection of the normalizers of all cyclic subgroups of a group. That is why
the natural question arises, to investigate Σ-norms of a group for systems Σ consisting of
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some subsystems of cyclic subgroups, in particular, consider the case when the system Σ
contains only cyclic subgroups of infinite or composite order. The corresponding Σ-norm is
called the norm of cyclic subgroups of non-prime order of G and denoted by NG(Cp̄).

The authors focused on the study of the properties of the norm NG(Cp̄) of cyclic subgroups
of non-prime order in non-periodic groups, its impact on group properties and relations with
the norm NG(C∞) of infinite cyclic subgroups, which is the intersection of normalizers of all
infinite cyclic subgroups of a group G (see, [9, 12]).

As will be shown below, a non-periodic group G with the non-Abelian norm NG(Cp̄)
coincides with this norm. In this case, a group G is the semi-direct product of a normal
Abelian subgroup A, which contains all elements of non-prime order of this group, and a
cyclic subgroup of order 2, which induces an irreducible automorphism of order 2 on A.

Let us note that some results concerning the properties of the norm NG(Cp̄) were announ-
ced in [2, 11, 12].

2. Preliminary results.

Definition 1. The norm of cyclic subgroups of non-prime order of non-periodic group G is
the intersection of the normalizers of all cyclic subgroups of composite or infinite order of G
and is denoted by NG(Cp̄).

It is clear that in a non-periodic group G coinciding with its norm NG(Cp̄) all cyclic
subgroups of composite or infinite order are normal. Such non-Dedekind groups were studi-
ed in [6] and were called almost Dedekind groups. The structure of non-periodic almost
Dedekind groups is described in the following proposition.

Proposition 1. A non-periodic group G is almost Dedekind if and only if G = C ⋊ ⟨b⟩ ,
where C is a non-periodic Abelian group, |b| = 2, b−1cb = c−1 for any element c ∈ C.

Corollary 1. The center of a non-periodic almost Dedekind group is an elementary Abelian
(in particular, identity) 2-group.

The following result follows directly from Proposition 1.

Corollary 2. Any non-periodic group without involutions, in which each cyclic subgroup of
infinite or composite order is normal, is Abelian.

Further we will consider non-periodic groups G, in which the norm NG(Cp̄) of cyclic
subgroups of non-prime order is some (usually proper) subgroup of a group.

Let us formulate some statements characterizing the properties of the norm NG(Cp̄). We
will be used them actively in this section.

Lemma 1. Let G be a non-periodic group and NG(Cp̄) be its norm of cyclic subgroups of
non-prime order. Then the following statements take place:
1) NG(Cp̄) ⊇ N(G) ⊇ Z(G), where N(G) is the norm of G;
2) if the subgroup NG(Cp̄) is non-periodic, then NG(Cp̄) = NNG(Cp̄)(Cp̄);
3) every cyclic subgroup of infinite or composite order of the group NG(Cp̄) is normal in it;
4) if the norm NG(Cp̄) is non-periodic, then it is either Abelian or almost Dedekind;
5) if H is non-periodic subgroup of G, which contains the norm NG(Cp̄), then

NG(Cp̄) ⊆ NH(Cp̄);
6) if H ⊆ CG(NG(Cp̄)) and the group G1 = H ·NG(Cp̄) is non-periodic, then G1 = NG1(Cp̄).
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The proof of Lemma 1 follows directly from the definition of the norm of cyclic subgroups
of non-prime order.

Lemma 2. If the norm NG(Cp̄) of a non-periodic group G does not contain elements of
infinite order, then it is Abelian.

Proof. Let us suppose that, contrary to the lemma, the norm NG(Cp̄) is a periodic non-
Abelian group. Then for an arbitrary element x ∈ G, |x| = ∞ the subgroup ⟨x⟩ is NG(Cp̄)-
admissible, so, [⟨x⟩, NG(Cp̄)] ⊆ ⟨x⟩ ∩NG(Cp̄) = E and ⟨x⟩ ⊆ CG(NG(Cp̄)).

By Lemma 1 G1 = ⟨x⟩ ·NG(Cp̄) = ⟨x⟩×NG(Cp̄) is non-periodic almost Dedekind. Taking
into account that the center of such a group is elementary Abelian 2-group by Corollary 1.
It contradicts the condition x ∈ Z(G1). Thus, the assumption is false and the norm NG(Cp̄)
is Abelian.

Thus, if the norm NG(Cp̄) of cyclic subgroups of non-prime order is torsion, then it is
Abelian. Let us prove another sufficient condition for the Abelianity of this norm.

Lemma 3. If a non-periodic group G contains such a cyclic subgroup ⟨x⟩ of infinite or
composite order that ⟨x⟩ ∩NG(Cp̄) = E, then the norm NG(Cp̄) is Abelian.

Proof. Let the subgroup ⟨x⟩ satisfy conditions of the lemma, but the norm NG(Cp̄) be non-
Abelian. Then NG(Cp̄) is non-periodic non-Abelian group by Lemma 2. Since subgroups
⟨x⟩ and NG(Cp̄) are normal in the group G1 = ⟨x⟩NG(Cp̄), then G1 = ⟨x⟩ × NG(Cp̄) and
x ∈ Z(G1). By Lemma 1, G1 = NG1(Cp̄) and G1 is almost Dedekind. By Corollary 1, the
center of an almost Dedekind group is an elementary Abelian 2-group. It contradicts the
condition x ∈ Z(G1). Thus, the group NG(Cp̄) is Abelian and the lemma is proved.

Corollary 3. In a non-periodic group G with the non-Abelian norm NG(Cp̄) every cyclic
subgroup ⟨x⟩ of infinite or composite order has non-identity intersection with the norm
NG(Cp̄).

By Lemma 1 and Lemma 2, the norm NG(Cp̄) is either Abelian or almost Dedekind
(provided that the system of cyclic subgroups of composite or infinite order in NG(Cp̄) is
non-empty). On the other hand, it is possible when NG(Cp̄) does not contain cyclic subgroups
of composite or infinite order. In particular, such a property is inherent in periodic Olshansky
groups [15]. In periodic Olshansky groups all proper subgroups are cyclic and have prime
order.

Let us show that in the latter case the norm NG(Cp̄) of a non-periodic group G is an
elementary Abelian p-group.

Theorem 1. If the norm NG(Cp̄) of a non-periodic group G is a non-identity subgroup
and does not contain cyclic subgroups of infinite and composite order, then NG(Cp̄) is an
elementary Abelian p-group (p is prime).

Proof. By the condition of the theorem, NG(Cp̄) is torsion, all elements of which are of prime
order. By Lemma 2, the norm NG(Cp̄) is Abelian. Taking into account that it does not contain
elements of composite order, we get that NG(Cp̄) is an elementary Abelian p-group, where p
is prime. The theorem is proved.

The following example confirms the existence of non-periodic groups in which the norm
NG(Cp̄) satisfies the conditions of Theorem 1.
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Example 1. G = (⟨a⟩ × ⟨b⟩ × ⟨x⟩) ⋊ ⟨c⟩, |a| = |b| = 3, |x| = ∞, |c| = 2, [a, c] = [b, c] = 1,
c−1xc = x−1. In this group
NG(Cp̄) ⊆ NG(⟨ac⟩) ∩NG(⟨ax⟩) = (⟨a⟩ × ⟨b⟩ × ⟨c⟩) ∩ (⟨a⟩ × ⟨b⟩ × ⟨x⟩) = ⟨a⟩ × ⟨b⟩ = Z(G).

So, the norm of cyclic subgroups of non-prime order coincides with the center of the group
NG(Cp̄) = ⟨a⟩ × ⟨b⟩ = Z(G)

and the norm is the elementary Abelian group of order 9.

The following result determines sufficient conditions for the norm NG(Cp̄) be central.

Lemma 4. If the center Z(G) of a non-periodic group G contains elements of infinite order,
then the norm NG(Cp̄) is Abelian and coincides with the group center NG(Cp̄) = Z(G).

Proof. Let Z(G) contain elements of infinite order. Since Z(G) ⊆ NG(Cp̄), the norm NG(Cp̄)
is a non-periodic Abelian group by Proposition 1. Let us show that every element from
NG(Cp̄) is permutable with all elements of infinite order from G.

Let x ∈ NG(Cp̄), y ∈ G, |y| = ∞ and [x, y] ̸= 1. Since NG(Cp̄) is a non-periodic Abelian
group, it is generated by elements of infinite order. Thus, we can regard that |x| = ∞.

By the infinity of the subgroup ⟨y⟩, we get that it is NG(Cp̄)-admissible, so x−1yx = y−1

and ⟨x⟩∩⟨y⟩ = E. Taking into account that [x2, y] = 1 and the subgroup ⟨x2y⟩ is x-admissible,
we get x−1x2yx = x−2y−1 = x2y−1. But in this case one has x4 = 1. This contradicts its
choice. So, [x, y] = 1 for any element x ∈ NG(Cp̄) and y ∈ G, |y| = ∞.

Let y ∈ G, |y| < ∞. Suppose that [x, y] ̸= 1. Let us take an element z ∈ Z(G),
|z| = ∞. Then |yz| = ∞ and the subgroup ⟨yz⟩ is NG(Cp̄)-admissible. If x−1yzx = yz, then
x−1yx = y by the equalities x−1yzx = x−1yxz = yz, which contradicts the assumption.
Thus, x−1yzx = (yz)−1. On the other hand,

x−1yzx = x−1yxx−1zx = x−1yxz = y−1z−1,

that is x−1yx = y−1z−2, which contradicts the above.
Thus, [⟨y⟩, NG(Cp̄)] = E for every element y ∈ G, so, NG(Cp̄) = Z(G). The lemma is

proved.

Corollary 4. An arbitrary non-periodic central-by-finite group G has the Abelian norm
NG(Cp̄) and NG(Cp̄) = Z(G).

Lemma 5. If the center Z(G) of a non-periodic group G contains elements of composite
order, then its norm NG(Cp̄) is Abelian.

Proof. Let us suppose that the norm NG(Cp̄) is non-Abelian. Then it is non-periodic and
almost Dedekind by Lemma 4. Since the center of such a group does not contain elements
of non-prime order by Corollary 1, the assumption is false and the norm NG(Cp̄) is Abelian.
The lemma is proved.

Combining the results of Lemma 4 and Lemma 5, we get the following statement.

Corollary 5. If the center Z(G) of a non-periodic group G contains non-identity elements
of non-prime order, then the norm NG(Cp̄) of such a group is Abelian.
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Let us note that the norm NG(Cp̄) of cyclic subgroups of non-prime order in a non-periodic
group G is quite closely related to the norm NG(C∞) of infinite cyclic subgroups, which is
an intersection of the normalizers of all infinite cyclic subgroups of this group (see [12]). It
is explained by the fact that the class of non-periodic groups, in which all infinite cyclic
subgroups are normal, contains the class of non-periodic groups with a normal system of
cyclic subgroups of non-prime order. Therefore, the norm of NG(Cp̄) of a non-periodic group
is contained in the norm NG(C∞) of infinite cyclic subgroups of a group NG(Cp̄) ⊆ NG(C∞).
Clearly, in torsion free groups these norms coincide NG(Cp̄) = NG(C∞).

This allows the usage of some results for groups with restrictions on the norm of infinite
cyclic subgroups [9] for the characterization of groups with restrictions on the norm of cyclic
subgroups of non-prime order of a group.

3. Non-periodic groups with the non-Abelian norm of cyclic subgroups of non-
prime order. Let us consider the impact of the properties of the norm of non-prime order
cyclic subgroups on the properties of a group. In this section we will consider non-periodic
groups in which the norm NG(Cp̄) of cyclic subgroups of non-prime order is non-Abelian.
Also, the relations between the given norm NG(Cp̄) and the norm NG(C∞) of infinite cyclic
subgroups of a group will be studied.

By Proposition 1 in torsion free groups the norm NG(Cp̄) is Abelian. Let us show that it
is the central subgroup of a group (so it coincides with the norm of infinite cyclic subgroups
and Baer norm).

Theorem 2. If G is a torsion free group, then its norm NG(Cp̄) coincides with the center
of a group, with the norm N(G) of a group, and with the norm NG(C∞) of infinite cyclic
subgroups NG(Cp̄) = NG(C∞) = N(G) = Z(G).

Proof. Suppose that NG(Cp̄) ̸= Z(G). Then there exist such elements x ∈ NG(Cp̄) and
y ∈ G, that [x, y] ̸= 1. By the definition of a subgroup NG(Cp̄) we get x−1yx = y−1.
Therefore, ⟨x⟩ ∩ ⟨y⟩ = E and since [x2, y] = 1, ⟨x2y⟩ is x-invariant subgroup. So

x−1x2yx = (x2y)−1 = y−1x−2 = x−2y−1 = x2y−1.

But in this case x4 = 1, which contradicts the condition. Thus, NG(Cp̄) = Z(G). The
equalities NG(Cp̄) = NG(C∞) and N(G) = NG(Cp̄) in torsion free groups are evident. The
theorem is proved.

Corollary 6. A torsion free group G, which is a finite extension of the norm NG(Cp̄), is
Abelian.

Proof. Let [G : NG(Cp̄)] < ∞. Then by Theorem 2, NG(Cp̄) = Z(G), so [G : Z(G)] < ∞. By
Theorem 1.4 [5], in this case |G′| < ∞. Since G is torsion free group, it can be only when
G′ = E. Thus, a group G is Abelian.

Let us consider the mixed non-periodic groups. The following examples claim that the
norm NG(Cp̄), which is a proper subgroup of a mixed non-periodic group G, can either
coincide with the norm NG(C∞) or not coincide.

Example 2. G = (⟨a⟩ × ⟨b⟩) ⋊ ⟨c⟩, |a| = |b| = ∞, |c| = 3, c−1ac = b, c−1bc = a−1b−1. In
this group, one has Z(G) = E and all infinite cyclic subgroups are contained in the group
⟨a, b⟩. Moreover, the set of cyclic subgroups of non-prime order coincides with the set of
infinite cyclic subgroups. So, NG(Cp̄) = NG(C∞). Since ⟨c⟩ ⊈ NG(⟨a⟩), ⟨c⟩ ⊈ NG(Cp̄) and
NG(Cp̄) = NG(C∞) = ⟨a⟩ × ⟨b⟩ is the non-central Abelian group, which is generated by all
elements of infinite order.
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Example 3. G = (⟨a⟩ × ⟨b⟩) ⋊ ⟨c⟩, |a| = |b| = ∞, |c| = 6, c−1ac = ab, c−1bc = a−1. In
this case, one has Z(G) = E and all infinite cyclic subgroups are contained in the subgroup
⟨a, b⟩. So, NG(C∞) = (⟨a⟩ × ⟨b⟩)⋊ ⟨c3⟩ . But

NG(Cp̄) ⊆ NG(⟨c⟩) ∩NG(⟨ac⟩) = ⟨c⟩ ∩ ⟨ac⟩ = Z(G) = E.

Thus, NG(Cp̄) ̸= NG(C∞).

By Proposition 1, Lemma 2 and above examples, we come to the following result.

Theorem 3. If G is a mixed non-periodic group, then its norm NG(Cp̄) of cyclic subgroups
of non-prime order is either Abelian (torsion or non-periodic) or non-periodic non-Abelian.

Further, we will consider the mixed non-periodic groups with the non-Abelian norm
NG(Cp̄). By Theorem 3, the norm NG(Cp̄) is non-periodic almost Dedekind. So, by Proposi-
tion 1, NG(Cp̄) = C ⋊ ⟨b⟩ , where C is non-periodic Abelian, |b| = 2, b−1cb = c−1 for any
element c ∈ C.

By Theorem 2 and Proposition 1, we get the following statement.

Corollary 7. A non-periodic group G, which is a finite extension of the norm NG(Cp̄), is
almost Abelian.

Let D be the subgroup generated by all elements of infinite order of a group G.

Lemma 6. If a non-periodic group G has the non-Abelian norm NG(Cp̄), then the subgroup
D is Abelian and contains all elements of infinite or composite order of the group.

Proof. Let the norm NG(Cp̄) be non-Abelian, that is NG(Cp̄) = C ⋊ ⟨b⟩ , where C is a
non-periodic Abelian group, |b| = 2, b−1cb = c−1 for any element c ∈ C.

Let us prove that the subgroup C ⊂ NG(Cp̄) is contained in the center Z(D) of the
subgroup D. We take such arbitrary elements c ∈ C and a ∈ D, that [c, a] ̸= 1. Without loss
of generality we conclude |a| = |c| = ∞.

Since ⟨a⟩�G1 = ⟨a⟩NG(Cp̄), c
−1ac = a−1 and ⟨a⟩∩ ⟨c⟩ = E. Thus, [c2, a] = 1, |c2a| = ∞

and ⟨c2a⟩ is c-invariant subgroup. But then c−1(c2a)c = c−2a−1 = c2a−1 and c4 = 1. This
contradicts the choice of the element c. So, C ⊆ Z(D).

Let us show that the subgroup D contains all elements of composite order of a group G.
Let y ∈ G be an arbitrary element of composite order. Then ⟨y⟩ ◁ G2 = ⟨y⟩NG(Cp̄) and
[G2 : CG2(y)] < ∞. So, there exist such an element c ∈ C, |c| = ∞, that [c, y] = 1. Since
|cy| = ∞, cy ∈ D, so y ∈ D, which is desired conclusion.

Now we will study how the element b acts on elements of the subgroup D. For any element
a ∈ D, |a| = ∞ we have ⟨a⟩ � ⟨a⟩NG(Cp̄). So, if [a, b] = 1, then |ba| = ∞ and ba ∈ D.
By the proved above [c, ab] = 1 for any element c ∈ C, |c| = ∞, which is impossible. Thus,
b−1ab = a−1, where a ∈ D is an arbitrary element of infinite order.

Let |a| < ∞, where a ∈ D. Let us take such an element c ∈ C, that |c| = ∞. Then
|ca| = ∞ and b−1(ca)b = (ca)−1 = c−1a−1 = c−1b−1ab, and in this case b−1ab = a−1.

Let us denote by x and y such arbitrary elements of the group D, that [x, y] ̸= 1. Then
b−1(xy)b = (xy)−1 = y−1x−1 = b−1xbb−1yb = x−1y−1,

so, [x, y] = 1, which contradicts their choice. Thus, the subgroup D is Abelian. The lemma
is proved.

From the proof of Lemma 6 we get the following result characterizing the properties of
non-periodic groups with the non-Abelian norm NG(Cp̄).
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Theorem 4. A non-periodic group G has the non-Abelian norm NG(Cp̄) of cyclic subgroups
of non-prime order if and only if all elements of infinite order of the group generate a normal
Abelian subgroup D, which contains all elements of non-prime order of a group G, and there
exist the element b of order 2, b−1ab = a−1 for any element a ∈ D. Moreover,

NG(Cp̄) = D ⋊ ⟨b⟩ .

Corollary 8. If the norm NG(Cp̄) of a non-periodic group G is non-Abelian, then the
quotient group G/NG(Cp̄) is torsion and does not contain elements of infinite and composite
order.

Lemma 7. If a non-periodic group G with the non-Abelian norm NG(Cp̄) of cyclic subgroups
of non-prime order contains a normal infinite cyclic subgroup, then NG(Cp̄) = G.

Proof. By the condition of the lemma and Theorem 4, NG(Cp̄) = D ⋊ ⟨b⟩ , where D is a
non-periodic Abelian group, |b| = 2 and b−1ab = a−1 for any element a ∈ D.

Let ⟨x⟩ � G, |x| = ∞. Then by Theorem 4 x ∈ D, b−1xb = x−1, [G : CG(⟨x⟩)] = 2 and
so, G = CG(⟨x⟩)⋊ ⟨b⟩ .

Let y be an arbitrary non-identity element from CG(⟨x⟩). If y is of non-prime order, then
y ∈ D by Lemma 6. Let |y| = p, where p is prime. Since [x, y] = 1, |xy| = ∞. Then xy ∈ D
and y ∈ D. Thus, CG(⟨x⟩) = D and NG(Cp̄) = G, which is the desired conclusion.

Theorem 5. A non-periodic group G has the non-Abelian norm NG(Cp̄) of cyclic subgroups
of non-prime order if and only if G is non-Abelian and every cyclic subgroup of non-prime
order of a group G is normal in it, and G = NG(Cp̄).

Proof. The sufficiency is evident, so we will prove only necessity.
Let the norm NG(Cp̄) of cyclic subgroups of non-prime order of non-periodic group G

be non-Abelian. Then NG(Cp̄) = D ⋊ ⟨b⟩ , and by Theorem 4 the subgroup D contains all
elements of non-prime order of a group G, |b| = 2 and b−1ab = a−1 for any element a ∈ D.

Suppose that NG(Cp̄) ̸= G and x is an arbitrary element of a group G, which is not
contained in the norm NG(Cp̄). Then |x| = p, where p is prime.

Let p ̸= 2. In the quotient group G = G/D we have |b| = 2, b ∈ Z(G). So, the element
xb is of order 2p. Thus, its preimage xb is also of non-prime order. By Theorem 4, one has
xb ∈ NG(Cp̄) and x ∈ NG(Cp̄). This contradicts its choice.

Let p = 2 and |x| = 2. Then [x, b] = 1 and |xb| = 2. One has |xb| = 2, because in other
case the element xb is of non-prime order and is contained in D. Therefore, x ∈ NG(Cp̄),
which contradicts its choice.

Let us show, that for an arbitrary element a ∈ D, |a| = ∞ we have [x, a] ̸= 1. And in
another case |xa| = ∞ and by Lemma 6, xa ∈ D. So, x ∈ D, which contradicts its choice.
Therefore, by the conditions D � G and [D, ⟨x⟩] ⊆ D, we can regard that x−1ax = ac,
c ∈ D, c ̸= 1.

Since |x| = 2, [x2, a] = 1. Thus, a = x−2ax2 = acx−1cx and x−1cx = c−1. If |c| > 2, then
by [xb, c] = 1 we conclude that the element xbc is of non-prime order. By Lemma 6, xbc ∈ D,
so x ∈ NG(Cp̄), which is impossible. Thus, |c| = 2. But in this case [a2, x] = 1, |a2x| = ∞
and a2x ∈ D, x ∈ D. Thus, the assumption is false and G = NG(Cp̄).

The theorem is proved.

Corollary 9. If the norm NG(Cp̄) of cyclic subgroups of non-prime order of a non-periodic
group G is a proper subgroup of a group, then it is Abelian.
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Corollary 10. A non-periodic group G with the non-Abelian norm NG(Cp̄) is soluble of
degree 2.

Corollary 11. If a non-periodic group G contains a non-normal cyclic subgroup of composite
or infinite order, then its norm NG(Cp̄) is Abelian.

Corollary 12. If the norm NG(Cp̄) of a non-periodic group G is non-Abelian, then every
cyclic subgroup of non-prime order is normal in G.

In other words, from the non-Abelianity of the norm NG(Cp̄) we get the normality of all
subgroups of non-prime (in particular, infinite) in a group. So, we get the following statement.

Corollary 13. If the norm NG(Cp̄) of cyclic subgroups of non-prime order of a non-periodic
group G is non-Abelian, then all infinite cyclic subgroups are normal in G and

G = NG(Cp̄) = NG(C∞).

Let us note that the condition of the non-Abelianity of the norm NG(Cp̄) in Corollary 13
is substantial. Example 3 confirms the existence of groups with unit norm NG(Cp̄), in which
the condition NG(Cp̄) = NG(C∞) (and the norm of infinite cyclic subgroups is non-Abelian)
is violated. On the other hand, with some additional restrictions on the norm NG(C∞) these
norms can coincide.

Corollary 14. Let G be a non-periodic group with the non-Abelian norm NG(C∞) of infinite
cyclic subgroups. The norms NG(C∞) and NG(Cp̄) coincide if and only if NG(C∞) contains all
elements of composite order of a group G and does not contain non-normal cyclic subgroups
of order 4. In this case,

NG(Cp̄) = NG(C∞) = G.

The proof of Corollary 14 follows from Theorem 5 and the main theorem [9], which
characterizes mixed non-periodic groups with the non-Abelian norm NG(C∞).
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