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In the article we deepen the metric component of theory of infinite A2-continued fractions
1

a1 +
1

a2+
1

...

≡ [0; a1, a2, ..., an, ...] with a two-element alphabet A2 = { 1
2 , 1}, an ∈ A2, and

establish the normal property of numbers of the segment I = [12 ; 1] in terms of their A2-
representations: x = [0; a1, a2, ..., an, ...]. It is proved that almost all (in the sense of the Lebesgue
measure) numbers of segment I in their A2-representations use each of the tuples of elements
of the alphabet of arbitrary length as consecutive digits of the representation infinitely many
times.

We consider a function f defined by equality f(x = [0; a1, a2, ..., an, ...]) = e

∞∑
n=1

(2an−1)vn
,

where v1 + v2 + ...+ vn + ... is a given absolutely convergent series. For function f , structural
and functional relationships are indicated as well as necessary and sufficient conditions for

continuity (which are: vn =
v1(−1)n−1

2n−1
, v1 ∈ R) and monotonicity are found. In the case of

the continuity of the function f , we give the expression of its derivative and prove the singularity
(the equality of the derivative to zero almost everywhere in the sense of the Lebesgue measure)
using the above-mentioned normal property of numbers in terms of their A2-representation.
The relation between this new strictly monotonic singular function and the classical strictly
increasing Minkowski question-mark function is indicated.

Introduction. A continuous function is called a singular function if it is not constant and
has a derivative which is equal to zero almost everywhere (in the sense of the Lebesgue
measure). More than a hundred years ago, the first examples of singular functions and
singular probability distributions were published. They appeared against the background
of different scientific interests, in various branches of mathematics (they are set theory and
the Cantor function [9], number theory and the Minkowski function [6, 9], function theory
and the Sierpiński function [16], the theory of infinite Bernoulli convolutions, and a cascade
of different functions). The newly created theory of Lebesgue measure (1902) became a
theoretical basis and a powerful tool of developing the theory of such functions. At the
same time, there is still no general theory of singular functions; individual theories have
been developing fragmentary for a long time. The first significant outbreak of interest in
singular probability distributions, their characteristic functions, the Fourier transform took
place in the 30-40s of the previous century [5, 9]. The Jessen-Wintner theorem on the
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Lebesgue purity of the distribution of the sum with probability 1 of a convergent series
whose elements are independent discretely distributed random variables [4] was fundamental
in this regard. Many continuum classes of singular functions related to different encoding
systems (representations) of real numbers have been studied today [9]. Monotonic [15],
non-monotonic [13] and nowhere monotonic [11,14] are among them.

In 1911, H. Minkowski [6] gave an original definition of continuous strictly increasing
function in terms of Farey fractions and the operation “mediant sum of fractions”. This
function establishes a one-to-one correspondence between all quadratic irrationalities of the
segment [0; 1] and rational numbers of the same segment (this is the so-called “question-mark
function” ?(x)). In 1938, Denjoy [2] was the first to prove the singularity of the Minkowski
function. In 1943, Salem found an analytical representation of this function in terms of
elementary continued fractions:

?(x = [0;1 , a2, ..., an, ...]) = 21−a1 − 21−a1−a2 + ...+ (−1)n+121−a1−a2−...−.an + ...,

an ∈ N , and gave own proof of singularity.
Today it is known that the Minkowski function is the unique continuous solution of the

system of two functional equations:

f
( x

1 + x

)
=

1

2
f(x), f(1− x) = 1− f(x).

The Minkowski function allows various generalizations. Since ?(x) is the distribution
function of the random variable ξ = [0; ξ1, ξ2, ..., ξk, ...], the elements of the continued repre-
sentation of which are independent and identically distributed random variables taking the
values 1, 2, ..., k, ... with probabilities p1 = 2−1, p2 = 2−2,...,pk = 2−k, ... respectively, we
have one of the simplest generalizations of the Minkowski function by replacing probabilities
with pk = (1− q)qk−1, where q ∈ (0; 1). In the papers [1,10], a more general construction of
the random variable ξ, when the digits ξk are independent and not identically distributed,
was studied. As a result, another generalization of the Minkowski function was obtained.

In the article [12], a one-parameter generalization φµ of the Minkowski function is con-
structed as a unique continuous solution of the system of functional equations{

φµ(
x

1+x
) = 1− µφµ(x),

φµ(1− x) = 1− φ1−µ(x),
µ ∈ (0; 1).

The function φµ is singular strictly increasing for each value µ, moreover φ 1
2
(x) =?(x).

This article is devoted to a new singular function defined in terms of non-elementary
continued fractions, the elements of which are the numbers 1

2
and 1.

1. Basic concepts and facts of the theory of continued A2-fractions. Let A ≡ {0; 1}
be an alphabet, L ≡ A×A× . . . be a space of sequences of elements of the alphabet (zeros
and ones); A2 ≡ {1

2
; 1}, L2 ≡ A2 × A2 × . . . .

It is known [3] that, for any x ∈ [1
2
; 1], there exists a sequence (ak) ∈ L2 such that

x =
1

a1 +
1

a2 +
1

...

≡ [0; a1, a2, . . . , ak, . . .]. (1)
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The infinite continued fraction (1) is called A2-continued fraction (A2-fraction), and its
symbo- lic notation [0; a1, ..., ak, ...] is called A2-representation of number x. There are num-
bers that have two A2-representation, because [0; a1, ..., am,

1
2
, (1

2
, 1)] = [0; a1, ..., am, 1, (1,

1
2
)]

(here the parentheses mean the period). We say that these numbers are A2-binary. The re-
maining numbers have a single A2-representation. We say that these numbers are A2-unary.

The theory of A2-continued fractions started in the work [3]. We will recall the key
concepts and facts of this theory, which we will use further.

A2-representation is easily recoded by alphabet A, that is:

x = [0; a1, a2, . . . , ak, . . .] ≡ ∆A
α1α2...αk...

,

where αk = 2ak − 1, k ∈ N. It is called A-representation of number x.

Definition 1. A-cylinder of rank m with a base c1...cm is a set

∆A
c1c2...cm

= {x : x = ∆A
c1c2...cmβ1...βn..., (βn) ∈ L}

of all numbers x ∈ [1
2
; 1] such that the first m digits of their representation are equal to

c1, c2, ..., cm respectively.

Clearly, ∆A
c1...cm

= ∆A
c1...cm0 ∪∆A

c1...cm1; [
1
2
; 1] =

⋃
c1∈A

...
⋃

cm∈A
∆A

c1...cm
;

1) A-cylinder ∆A
c1...cm

is a segment with endpoints: ∆A
c1...cm(01) and ∆A

c1...cm(10), and endpoint
is left or right if the number m is even or odd;

2) the length of the cylinder ∆A
c1...cm

is calculated by the formula

|∆A
c1...cm

| = 1

(qm−1 + qm)(qm−1 + 2qm)
≤ 1

q2m−1

,

where qm is a denominator of rank m of convergent of a continued A2-fraction, i.e., the
denominator of a rational number, which is the value of the expression [0; a1, a2, ..., am],
that is calculated by formulas q0 = 1, q1 = a1, qn+1 = an+1qn + qn−1, where an = cn+1

2
;

3) basic metric relation for A-representation of numbers is calculated by formulas:

|∆A
c1...cmc|

|∆A
c1...cm

|
=

1 + a qm−1

qm

2a2 + 1 + 2a qm−1

qm

, a =
c+ 1

2
, (2)

in particular,
|∆A

c1...cm0|
|∆A

c1...cm
|
=

2 + qm−1

qm

3 + 2 qm−1

qm

,
|∆A

c1...cm1|
|∆A

c1...cm
|
=

1 + qm−1

qm

3 + 2 qm−1

qm

,

where
|∆A

c1...cm0|
|∆A

c1...cm1|
=

2 + qm−1

qm

1 + qm−1

qm

= 1 +
1

1 + qm−1

qm

.

2. Normal properties of numbers in terms of their A-representation.

Definition 2. The property B of the A-representation of the number x ∈ [1
2
; 1] is called

normal if the set HB of numbers possessing the property is a set of complete Lebesgue
measure, i.e., λ([1

2
; 1] \HB) = 0.
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Theorem 1. Let (c1, ..., cp) be an ordered set of zeros and ones. The set

D0 = {x : x = ∆A
α1α2...αn..., αk+1αk+2...αk+p ̸= c1...cp ∀k ∈ N}

of all numbers of the segment [1
2
; 1] whose A-representation does not contain the set c1...cp

as consecutive digits of the representation is of zero Lebesgue measure.

Proof. Remark that in cases where p = 1 or p = 2 and c1 ̸= c2 the statement is obvious
because the set D0 is countable. We exclude these cases in the sequel.

Since

D0 ⊂ F ≡ {x : x = ∆A
α1...αn..., where αkp+1αkp+2...α(k+1)p ̸= c1...cp ∀k ∈ N},

to prove the statement it is enough to prove that λ(F ) = 0.
Let F0 ≡ [1

2
; 1], Fm ≡ {x : x = ∆A

α1...αn..., αkp+1αkp+2...α(k+1)p ̸= c1...cp, k = 1,m}.

It is obvious that F ⊂ Fm+1 ⊂ Fm and F =
∞⋂

m=1

Fm = lim
m→∞

Fm. Then

λ(F ) ≤ λ(Fm) ∀m ∈ N and λ(F ) = lim
m→∞

λ(Fm).

Since F1 = [1
2
; 1] \∆A

c1...cp
, we have λ(F1) =

1
2
− |∆A

c1...cp
| > 0.

If we give the Lebesgue measure of the set Fm in the form

λ(Fm) =
1

2

λ(Fm)

λ(Fm−1)
· λ(Fm−1)

λ(Fm−2)
· ... · λ(F2)

λ(F1)
· λ(F1)

λ(F0)
,

we obtain

λ(F ) = lim
m→∞

λ(Fm) =
1

2

∞∏
m=1

λ(Fm)

λ(Fm−1)
.

Taking into account the equalities Fm−1 \ Fm ≡ Fm, we obtain Fm = Fm−1 \ Fm. Then

λ(F ) =
1

2

∞∏
m=1

λ(Fm−1)− λ(Fm)

λ(Fm−1)
=

1

2

∞∏
m=1

[1− λ(Fm)

λ(Fm−1)
].

Since
|∆A

α1...αnc1...cp
|

|∆A
α1...αn

|
=

|∆A
α1...αnc1...cp

|
|∆A

α1...αnc1...cp−1
|
·
|∆A

α1...αnc1...cp−1
|

|∆A
α1...αnc1...cp−2

|
· ... ·

|∆A
α1...αnc1

|
|∆A

α1...αn
|
,

from the basic metric relation for A2-continued fractions and its corollaries it follows that
there exist two positive constants d1, d2, d1 < d2, such that

0 < d1 <
|∆A

α1...αp...αkp+1...α(k+1)pc1...cp
|

|∆A
α1...αp...αkp+1...α(k+1)p

|
< d2 < 1.

Hence, λ(Fm)
λ(Fm−1)

≥ 1 − d2 > 0; and then
∑∞

m=1
λ(Fm)

λ(Fm−1)
= ∞. Taking into account the

connection of divergence of infinite products and their corresponding series, we have λ(F ) =
0. Therefore, λ(D0) = 0 and λ([1

2
; 1] \D0) =

1
2
.

Corollary 1. The equality λ(D0 ∩∆A
c1...cm

) = 0 is satisfied for any tuple c1...cm.
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Theorem 2. Let (a1, ..., am) be an arbitrary ordered tuple of zeros and ones. Let H be a
set of all numbers of the segment [1

2
; 1] such that their A-representation contains this tuple

infinitely many times. Then H is a set of full measure, i.e.,

λ
([1

2
; 1
]
\H

)
= 0. (3)

Proof. By the previous theorem, it follows that the set [1
2
; 1] \D0 is a set of full measure.

Let Dk be a set of numbers that use the tuple of digits a1...am exactly k times. Then it is
obvious that there exists n0 ∈ N such that numbers of all A-cylinders of rank n > n0 never
use this tuple of digits. Then, by the corollary of the previous theorem and the σ-additivity
of the Lebesgue measure, it follows that λ(Dk) = 0. Then λ(

⋃∞
k=1) = 0 as a measure of the

countable union of sets of zero measure. Thus, since[1
2
; 1
]
\H = D0 ∪D1 ∪D2 ∪ ...,

we have the equality (3). This completes the proof.

Corollary 2. The property of the number x ∈ [1
2
; 1] to use each of the possible tuples of

digits as consecutive digits of the A-representation infinitely many times is normal.

3. Quasi-exponential functions related to the A-representation of numbers. We
consider the class of functions defined by equality

f(x = ∆A
α1α2...αk...

) =
∞∏
k=1

λ
αk(x)
k , (4)

where (λk) is a given sequence of positive numbers such that the infinite product P ≡
∏∞

k=1 λk

is absolutely convergent. For the binary representation of the argument, functions of this type
were considered by B. Sendov in his work [17], for Q2-representation, they were considered
in work [7], for Q∗

2-representation, they were considered in work [8].

Remark 1. For the function f to be well defined by equality (4) we use only one of two
existing representation for A-binary numbers, which has a period (10).

The following equations are obvious:

1) f(∆A
(0)) = 1, f(∆A

(1)) = P,

f(x = ∆A
c1...cm1(10)) = λc1

1 λ
c2
2 ...λ

cm
m λm+1λm+2 . . . λm+2k..., k ∈ N;

2)
f(∆A

a1a2...ak...
)

f(∆A
b1b2...bk...

)
=

∞∏
k=1

λak−bk
k , particularly f(∆A

α1...αmcαm+2...
) = λ2c−1

m+1f(∆
A
α1...αm[1−c]αm+2...

).

Since λk > 0, we have λk = evk for some real number vk. Therefore, we can write
equality (4) in the form

f(x = ∆A
α1α2...αn...) =

∞∏
k=1

evkαk = e

∞∑
k=1

vkαk

. (5)

Moreover, from the absolute convergence of the infinite product λ1 · λ2 · ... · λk · ... it follows
that the series v1 + v2 + ...+ vk + ... is absolutely convergent.
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Since the definition of the function f is based on a chain of dependencies[1
2
; 1
]
∋ x ↔ (αn) ∈ L → φ(x) =

∞∑
i=1

viαi(x) → f(x) = eφ(x),

function f is composite: f(x) = eφ(x), where the inner function is

φ(x = ∆A
α1α2...αn...) = v1α1(x) + v2α2(x) + ...+ vnαn(x) + ... . (6)

Lemma 1. Let r0 = v1 + v2 + · · ·+ vn + . . . be absolutely convergent series, where vn ∈ R.
In order that equality

vn +
∞∑
k=1

vn+2k−1 =
∞∑
k=1

vn+2k (7)

holds for any n ∈ N, it is necessary and sufficient that the equality

vn =
v1(−1)n−1

2n−1
, v1 ∈ R, (8)

holds for any n ∈ N.

Proof. Necessity. Assume that equality (7) is satisfied. We prove that equality (8) is satisfied
for all n ∈ N.

If n = 1 then equality (7) is equivalent to the v1 + v2 − v3 + v4 − v5 + · · · = 0. Adding
2(v3 + v5 + . . . ) to both parts, we get r0 = 2(v3 + v5 + . . . ). Hence,

v1 + v2 + v4 + · · · = r0
2

= v3 + v5 + v7 + . . . .

If n = 2 then we have v2 + v3 + v5 + v7 + . . . = v4 + v6 + v8 + . . .. Therefore,

v2 + v3 − v4 + v5 − v6 + v7 − v8 + ... = 0.

Adding 2(v4 + v6 + v8 + . . .) to both previous parts, we get

v2 + v3 + v5 + · · · = r1
2

= v4 + v6 + v8 + . . . .

Hence,
r0
2

= v1 + v2 +
r1
2
,

r0
2

= v1 + v2 +
r0 − v1

2
,

v1 + v2 −
v1
2

= 0, v2 = −v1
2
.

For a general case, we add right part of equality (7) to both parts of this equality. Then

∞∑
k=1

vm+2k =
rm−1

2
= vm +

∞∑
k=1

vm+2k−1.

Then, for n = m+ 1, we obtain

rm
2

= vm+1 +
∞∑
k=1

vm+2k,
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rm−1

2
= vm + vm+1 +

rm
2
,

rm−1

2
= vm + vm+1 +

rm−1 − vm
2

,

vm+1 = −vm
2
.

Hence, we receive equality (8) in n steps.

Sufficiency. If we substitute the expression vn =
v1(−1)n−1

2n−1
directly in (7), we receive

vn +
∞∑
k=1

vn+2k−1 =
v1(−1)n−1

2n−1
+

∞∑
k=1

vn+2k−1 =
∞∑
k=1

vn+2k.

Theorem 3. The function f(x) is continuous at each A-unary point, and it is continuous
at A-binary point x∗ = ∆A

c1...cm0(01) = ∆A
c1...cm1(10) if and only if the following equality holds:

vm +
∞∑
k=1

vm+2k−1 =
∞∑
k=1

vm+2k.

Proof. Let x0 = ∆A
α1α2...αn... be an arbitrary A-unary number. Consider x = ∆A

a1...an...
such

that x ̸= x0. Then there exists m such that am ̸= αm but ai = αi if i < m. Moreover,
x → x0 is equivalent to m → ∞. Hence, we have

f(x)

f(x0)
=

m−1∏
i=1

λai−αi
i · λam−αm

m ·
∞∏

i=m+1

λai−αi
i ,

but
m−1∏
i=1

λai−αi
i = 1, lim

m→∞
λm = 1 = lim

m→∞

m−1∏
i=1

λai−αi
i .

Therefore, lim
x→x0

f(x) = f(x0), i.e., function f is continuous at the point x0.

It is easy to prove that function f is continuous at the point x∗ if and only if images of
two formally different representations calculated by the formula (5) are equal:

f(∆A
c1...cm−11(10)

) = ec1v1+···+cm−1vm−1+vm+vm+1+vm+3+···+vm+2k+1+...,

f(∆A
c1...cm−10(01)

) = ec1v1+···+cm−1vm−1+vm+2+vm+4+···+vm+2k+....

Obviously, these values are equal when

vm + vm+1 + vm+3 + · · ·+ vm+2k+1 + · · · = vm+2 + vm+4 + · · ·+ vm+2k + . . . ,

in other words, when equality (7) is true.

Corollary 3. The function f defined by equality (4) is continuous on the segment [1
2
; 1] if

and only if λk = e
c(−1)k−1

2k−1 for some c ∈ R and for all k ∈ N.

Theorem 4. Each continuous function φ and f respectively defined by equality (6) and (4)
respectively is strictly decreasing for v1 > 0, strictly increasing for v1 < 0, and a constant
for v1 = 0.
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Proof. It is clear that φ and f have the same type of monotonicity i.e. they are simultane-
ously decreasing or increasing. We prove the theorem for v1 > 0 only (the proof is similar
for v1 < 0).

Let f be continuous function defined by (4), and let (vn) be the corresponding series,

namely λn = evn . Taking into account lemma, we get vn =
v1(−1)n−1

2n−1
. To prove the theorem,

it is sufficient to show that the function φ(x = ∆A
α1α2...αn...) = α1v1+ ...+αnvn+ ... is strictly

decreasing. We consider two arbitrary different points of segment [1
2
; 1]:

x1 = ∆A
c1...cm1α1α2...

and x2 = ∆A
c1...cm0β1β2...

.

For them we have

φ(x1)− φ(x2) =
v1(−1)m

2m
+ v1

∞∑
n=1

(αn − βn)(−1)m+n

2n+m
.

If m is an even number, then x1 < x2 and

φ(x1)− φ(x2) >
v1
2m

− v1(
1

2m+1
+

1

2m+2
+ ...) = 0.

Hence, φ(x1) > φ(x2). If m is an odd number, then x1 > x2 and

φ(x1)− φ(x2) < − v1
2m

+ v1(
1

2m+1
+

1

2m+2 + ...
) = 0.

Hence, φ(x1) < φ(x2).
Strict inequalities are a consequence of the fact that x1 ̸= x2. Indeed, equality is possible

only if α1 = 1 and (α2k−1, α2k) = (β2k, β2k+1) = (1, 0) for all k ∈ N or equivalently numbers
x1 and x2 are A-binary numbers. Thus, φ is a strictly decreasing function.

4. Singularity of continuous quasi-exponential functions. In the sequel, we consider
the continuous functions φ and f defined by equalities (6) and (4) that is under condition (8).

At the same time, we take v1 =
1
2
, i.e., vn = (−1)n−1

2n
.

First, we prove a general additional statement.

Lemma 2. Let x0 be an internal point of the domain Dg of the continuous function g. If
there exists a derivative g′(x0) of the function g at the point x0, then it can be calculated
by the formula

g′(x0) = lim
n→∞

g(wn)− g(un)

wn − un

, (9)

where un ∈ Dg, wn ∈ Dg, un ≤ x0 ≤ wn, 0 < wn − un → 0 (n → ∞).
If limit (9) does not exist for some sequences (un) and (wn), then the classical derivative

g′(x0) does not exist either.

Proof. Let wn ≡ x0 + τn, un ≡ x0 − εn, τn > 0, εn > 0. Then

δ ≡ g(wn)− g(un)

wn − un

=
g(x0 + τn)− g(x0 − εn)

εn + τn
=

g(x0 + τn)− g(x0)

τn + εn
+

g(x0)− g(x0 − εn)

τn + εn
=

=
g(x0 + τn)− g(x0)

τn
· τn
τn + εn

+
g(x0)− g(x0 − εn)

εn
· εn
τn + εn

.
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Since the derivative g′(x0) exists, we have
g(x0 + τn)− g(x0)

τn
= g′(x0) + α(x0, τn), where lim

n→∞
α(x0, τn) = 0,

g(x0)− g(x0 − εn)

εn
= g′(x0) + β(x0, εn), where lim

n→∞
β(x0, εn) = 0.

Then δ = [g′(x0) + α(x0, τn)]
τn

τn + εn
+ [g′(x0) + β(x0, εn)]

εn
τn + εn

=

= g′(x0) + α(x0, τn) ·
τn

τn + εn
+ β(x0, εn) ·

εn
τn + εn

.

Taking into account the inequalities 0 < τn
τn+εn

= 1
1+ εn

τn

< 1, 0 < εn
τn+εn

= 1
τn
εn

+1
< 1, we have

lim
n→∞

g(wn)− g(un)

wn − un

= g′(x0).

The second part of the lemma is a consequence of the first part.

Corollary 4. If there exists a finite derivative of the function (6) at the point x0 = ∆A
α1...αn...,

then it can be calculated by each of the formulas

φ′(x0) = lim
n→∞

φ(∆A
α1...αn(01)

)− φ(∆A
α1...αn(10)

)

∆A
α1...αn(01)

−∆A
α1...αn(10)

=

= − lim
k→∞

1

22k|∆A
α1...α2k

|
= −2 lim

k→∞

2k∏
n=1

|∆A
α1...αn−1

|
2|∆A

α1...αn−1αn
|
= −2

∞∏
n=1

|∆A
α1...αn−1

|
2|∆A

α1...αn−1αn
|
. (10)

If limit (10) does not exist, then the classical derivative φ′(x0) does not exist.

The limit (10) is called cylindrical derivative of function φ at the point x0.

Theorem 5. If φ and f are continuous functions defined by equalities (6) and (4), then, for
almost all numbers x ∈ [1

2
; 1] (in the sense of Lebesgue measure), the equalities φ′(x) = 0 =

f ′(x) are satisfied.

Proof. Since function f is continuous and monotonic, by the famous Lebesgue theorem, it
follows that f has finite derivative at almost all internal points of the domain of definition.
We denote the set of all such points by V .

Let x0 be a point, where there exists a finite derivative φ′(x0) (of f
′(x0) respectively) and

x0 have the normal property of the A-representation, which is stated by Theorem 2. Then
x0 ∈ W = H ∩ V and the set W is of full Lebesgue measure (λ(W ) = 1

2
) as the intersection

of two sets of full measure.
Taking into account the corollary of previous lemma, we have

φ′(x0) = −2
∞∏
n=1

|∆A
α1...αn−1

|
2|∆A

α1...αn
|
, (11)

where αn = αn(x0) is an n -th digit of A-representation of a number x0. Since, taking into
account equalities (2)), multiplier

δn =
|∆A

α1...αn−1
|

2|∆α1...αn|
=

2a2 + 1 + 2a qn−1

qn

2(1 + a qn−1

qn
)

, where a ∈
{1

2
, 1
}
,
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δn =
2 + qn−1

qn
3
2
+ qn−1

qn

, if a =
1

2
, and δn =

2 + 2 qn−1

qn

3 + 2 qn−1

qn

, if a = 1,

does not tend to 1 for n → ∞, that is, the necessary condition of convergence of the infinite
product (11) is not satisfied, then φ′(x0) = 0, and therefore f ′(x0) = 0. Hence, the function
f is singular.
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