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The article is devoted to compactness of solutions of the Dirichlet problem for the Beltrami
equation in some simply connected domain. In terms of prime ends, we have proved correspondi-
ng results for the case when the maximal dilatations of these solutions satisfy certain integral
constraints. The first section is devoted to a presentation of well-known definitions that are
necessary for the formulation of the main results. In particular, here we have given a definition
of a prime end corresponding to Näkki’s concept. The research tool that was used to establish
the main results is the method of moduli for families of paths. In this regard, in the second
section we study mappings that satisfy upper bounds for the distortion of the modulus, and
in the third section, similar lower bounds. The main results of these two sections include the
equicontinuity of the families of mappings indicated above, which is obtained under integral
restrictions on those characteristics. The proof of the main theorem is done in the fourth secti-
on and is based on the well-known Stoilow factorization theorem. According to this, an open
discrete solution of the Dirichlet problem for the Beltrami equation is a composition of some
homeomorphism and an analytic function. In turn, the family of these homeomorphisms is
equicontinuous (Section 2). At the same time, the equicontinuity of the family of correspondi-
ng analytic functions in composition with some (auxiliary) homeomorphisms reduces to using
the Schwartz formula, as well as the equicontinuity of the family of corresponding inverse
homeomorphisms (Section 3).

1. Introduction. In our recent joint publication [22], we proved the compactness theorem
of the classes of solutions of the Dirichlet problem for the Beltrami equation in a simply
connected Jordan domain whose characteristics satisfy the constraints of the integral type. In
this article we are talking about solutions defined in an arbitrary simply connected domain.
Since such domains do not have to be Jordanian, this is a slight relaxation of conditions
compared to [22]. Note that, such solutions of the Dirichlet problem exist ai this case (see,
e.g., [15]). These solutions, generally speaking, do not have a homeomorphic extension to
the boundary of the domain in the usual sense, since simply connected domains do not have
to be locally connected on their boundary. However, such an extension exists in terms of the
so-called prime ends.

Let D be a domain in C. In what follows, a mapping f : D → C is assumed to be
sense-preserving, moreover, we assume that f has partial derivatives almost everywhere.
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Put
fz =

(fx + ify)

2
, fz =

(fx − ify)

2
.

The complex dilatation of f at z ∈ D is defined as follows

µ(z) = µf (z) :=


fz
fz
, for fz ̸= 0;

0, otherwise.

The maximal dilatation of f at z is the following function

Kµ(z) = Kµf (z) =
1 + |µ(z)|
1− |µ (z)|

. (1)

Note that the Jacobian of f at z ∈ D is calculated by the formula

J(z, f) = |fz|2 − |fz|2.

Since we assume that the map f is sense preserving, the Jacobian of this map is nonnegative
at all points of its differentiability.

Let D = {z ∈ C : |z| < 1}, and let µ : D → D be a Lebesgue measurable function.
Without reference to some mapping f, we define the maximal dilatation corresponding to its
complex dilatation µ by (1).

It is easy to see that

Kµf (z) =
|fz|+ |fz|
|fz| − |fz|

whenever partial derivatives of f exist at z ∈ D and, in addition, J(z, f) ̸= 0.
Let D be a domain in Rn, n ⩾ 2 and ω be an open set in Rk, k ∈ {1, . . . , n− 1}. Recall

some definitions (see, for example, [6], [8]).
A continuous mapping σ : ω → Rn is called a k-dimensional surface in Rn. A surface is

an arbitrary (n − 1)-dimensional surface σ in Rn. A surface σ is called a Jordan surface, if
σ(x) ̸= σ(y) for x ̸= y. Below we will use σ instead of σ(ω) ⊂ Rn, σ instead of σ(ω) and ∂σ
instead of σ(ω) \ σ(ω).

A Jordan surface σ : ω → D is called a cut of D, if σ separates D, that is D \ σ has more
than one component, ∂σ ∩D = ∅ and ∂σ ∩ ∂D ̸= ∅.

A sequence of cuts σ1, σ2, . . . , σm, . . . in D is called a chain, if:
(i) the set σm+1 is contained in exactly one component dm of the set D \ σm, wherein
σm−1 ⊂ D \ (σm ∪ dm);
(ii)

∞⋂
m=1

dm = ∅.

Two chains of cuts {σm} and {σ ′
k} are called equivalent, if for each m ∈ {1, 2, . . .} the

domain dm contains all the domains d ′
k, except for a finite number, and for each k ∈ {1, 2, . . .}

the domain d ′
k also contains all domains dm, except for a finite number.

The end of the domain D is the class of equivalent chains of cuts in D. Let K be the

end of D in Rn, then the set I(K) =
∞⋂
m=1

dm is called the impression of the end K. Let us to

show that

I(K) =
∞⋂
m=1

dm ⊂ ∂D. (2)
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Let ξ0 ∈ I(K). Observe that ξ0 ∈ ∂dm for any m ⩾ m0 and some m0 ∈ N.
Indeed, in the contrary case, ξ0 ∈ dmk

for some increasing sequence mk, k ∈ {1, 2, . . .}.
Now ξ0 ∈

∞⋂
k=1

dmk
and, since dm ⊃ dn for m < n, we have ξ0 ∈

∞⋂
m=1

dm, as well. The latter

contradicts with the definition (ii)
∞⋂
m=1

dm = ∅. Thus, ξ0 ∈ ∂dm for anym ⩾ m0. By the same

reasons, ξ0 ∈ ∂dm for any m ∈ N, not only for m ⩾ m0. On the other hand, by the definition
of domains dm, we have that ∂dm ∩ D ⊂ σm for any m ∈ N. Since σm−1 ⊂ D \ (σm ∪ dm),
we have that σm ∩ σn = ∅ for m ̸= n. It follows from this, that the situation ξ0 ∈ ∂dl0 ∩D
is possible at most for one l0 ∈ N. Thus, ξ0 ∈ ∂dm ∩ ∂D for any m ∈ {1, 2, . . .}. Therefore,
the relation (2) holds, as required.

Throughout the paper, Γ(E,F,D) denotes the family of all paths γ : [a, b] → Rn such
that γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D for every t ∈ [a, b].

In what follows, M denotes the modulus of a family of paths, and the element dm(x)
corresponds to the Lebesgue measure in Rn, n ⩾ 2, see [26]. Following [13], we say that the
end K is a prime end, if K contains a chain of cuts {σm} such that lim

m→∞
M(Γ(C, σm, D)) = 0

for some continuum C in D.
In the following, the following notation is used: the set of prime ends corresponding to

the domain D, is denoted by ED, and the completion of the domain D by its prime ends is
denoted DP .

Consider the following definition, which goes back to Näkki [13]. We say that the boundary
of the domain D in Rn is locally quasiconformal, if each point x0 ∈ ∂D has a neighborhood
U in Rn, which can be mapped by a quasiconformal mapping φ onto the unit ball Bn ⊂ Rn

so that φ(∂D ∩ U) is the intersection of Bn with the coordinate hyperplane.

For the sets A,B ⊂ Rn we set, as usual,

diamA = sup
x,y∈A

|x− y| , dist (A,B) = inf
x∈A,y∈B

|x− y|.

Sometimes we also write d(A) instead of diamA and d(A,B) instead of dist (A,B), if no
misunderstanding is possible.

The sequence of cuts σm, m ∈ {1, 2, . . .}, is called regular, if σm ∩ σm+1 = ∅ for m ∈ N
and, in addition, d(σm) → 0 as m → ∞. If the end K contains at least one regular chain,
then K will be called regular.

We say that a bounded domain D in Rn is regular, if D can be quasiconformally mapped
to a domain with a locally quasiconformal boundary whose closure is a compact in Rn, and,
besides that, every prime end in D is regular. Note that space DP = D∪ED is metric, which
can be demonstrated as follows. If g : D0 → D is a quasiconformal mapping of a domain D0

with a locally quasiconformal boundary onto some domain D, then for x, y ∈ DP we put:

ρ(x, y) := |g−1(x)− g−1(y)| , (3)

where the element g−1(x), x ∈ ED, is to be understood as some (single) boundary point
of the domain D0. The specified boundary point is unique and well-defined, see e.g. [6,
Theorem 2.1, Remark 2.1], cf. [13, Theorem 4.1]. It is easy to verify that ρ in (3) is a metric
on DP , and that the topology on DP , defined by such a method, does not depend on the
choice of the map g with the indicated property.

We say that a sequence xm ∈ D, m ∈ {1, 2, . . .}, converges to a prime end of P ∈ ED as
m→ ∞, write xm → P as m→ ∞, if for any k ∈ N all elements xm belong to dk except for a
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finite number. Here dk denotes a sequence of nested domains corresponding to the definition
of the prime end P. Note that for a homeomorphism of a domain D onto D ′, the end of the
domain D uniquely corresponds to some sequence of nested domains in the image under the
mapping.

Consider the following Cauchy problem:

fz = µ(z) · fz , (4)

∀ P ∈ ED : lim
ζ→P

Re f(ζ) = φ(P ), (5)

where φ : ED → R is a predefined continuous function. In what follows, we assume that D
is some simply connected domain in C.

The solution of the problem (4)–(5) is called regular, if one of two conditions is fulfilled:
or f(z) = const in D, or f is an open discrete W 1,1

loc (D)-mapping such that J(z, f) ̸= 0 for
almost any z ∈ D.

Given z0 ∈ D, a function φ : ED → R, a function Φ : R+ → R+ and a function M(Ω)
of open sets Ω ⊂ D, we denote by FM

φ,Φ,z0
(D) the class of all regular solutions f : D → C of

the Cauchy problem (4)–(5) that satisfy the condition Im f(z0) = 0 and, in addition,∫
Ω

Φ(Kµ(z)) ·
dm(z)

(1 + |z|2)2
⩽ M(Ω) (6)

for any open set Ω ⊂ D. The following statement generalizes [4, Theorem 2] to the case of
arbitrary simply connected domains.

Theorem 1. Let D be some simply connected domain in C, and let Φ : R+ → R+ be a
continuous increasing convex function which satisfies the condition

∞∫
δ

dτ

τΦ−1(τ)
= ∞

for some δ > Φ(0). Assume that the function M is bounded, and the function φ in (5) is
continuous. Then the family FM

φ,Φ,z0
(D) is compact in D.

2. Convergence theorems for mappings with upper estimates for modulus di-
stortion. The proof of the main result is based on the theorems on the global behavior
of mappings satisfying the weight Poletsky inequality. Results of a similar type in some
other situations have been obtained earlier, see, for example, [23]. The case considered below
concerns regular domains and mappings with one normalization condition. This case is consi-
dered for the first time in this degree of generality.

Given p ⩾ 1, Mp denotes the p-modulus of a family of paths, and the element dm(x)
corresponds to a Lebesgue measure in Rn, n ⩾ 2, see [26]. In what follows, we usually write
M(Γ) instead of Mn(Γ). Let x0 ∈ D, x0 ̸= ∞,

S(x0, r) = {x ∈ Rn : |x− x0| = r} , Si = S(x0, ri) , i ∈ {1, 2},
A = A(x0, r1, r2) = {x ∈ Rn : r1 < |x− x0| < r2}. (7)
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Everywhere below, unless otherwise stated, the closure A and the boundary ∂A of the set
A are understood in the topology of the space Rn = Rn ∪ {∞}. Let Q : Rn → [0,∞] be
a Lebesgue measurable function satisfying the condition Q(x) ≡ 0 for x ∈ Rn \ D, and let
p ⩾ 1. Given sets E and F and a given domain D in Rn = Rn∪{∞}, we denote by Γ(E,F,D)
the family of all paths γ : [0, 1] → Rn joining E and F in D, that is, γ(0) ∈ E, γ(1) ∈ F
and γ(t) ∈ D for all t ∈ (0, 1). According to [11, Сhap. 7.6], a mapping f : D → Rn is called
a ring Q-mapping at the point x0 ∈ D \ {∞} with respect to p-modulus, if the condition

Mp(f(Γ(S1, S2, D))) ⩽
∫

A∩D

Q(x) · ηp(|x− x0|) dm(x) (8)

holds for all 0 < r1 < r2 < d0 := sup
x∈D

|x − x0| and all Lebesgue measurable functions

η : (r1, r2) → [0,∞] such that
r2∫
r1

η(r) dr ⩾ 1. (9)

A mapping f : D → Rn is called a ring Q-mapping in D \{∞} with respect to p-modulus
if (8) holds for any x0 ∈ D \ {∞}. This definition can also be applied to the point x0 = ∞
by inversion: φ(x) = x

|x|2 , ∞ 7→ 0. In what follows, h denotes the so-called chordal metric
defined by the equalities

h(x, y) =
|x− y|√

1 + |x|2
√
1 + |y|2

, x ̸= ∞ ≠ y , h(x,∞) =
1√

1 + |x|2
. (10)

For a given set E ⊂ Rn, we set

h(E) := sup
x,y∈E

h(x, y) , (11)

The quantity h(E) in (11) is called the chordal diameter of the set E.
For given sets A,B ⊂ Rn, we put

h(A,B) = inf
x∈A,y∈B

h(x, y),

where h is a chordal metric defined in (10).

Let I be a fixed set of indices and let Di, i ∈ I, be some sequence of domains. Followi-
ng [14, Sect. 2.4], we say that a family of domains {Di}i∈I is equi-uniform with respect to
p-modulus if for any r > 0 there exists a number δ > 0 such that the inequality

Mp(Γ(F
∗, F,Di)) ⩾ δ (12)

holds for any i ∈ I and any continua F, F ∗ ⊂ D such that h(F ) ⩾ r and h(F ∗) ⩾ r.

Given a Lebesgue measurable function Q : Rn → [0,∞] and a point x0 ∈ Rn we set

qx0(t) =
1

ωn−1tn−1

∫
S(x0,t)

Q(x) dHn−1 , (13)

where Hn−1 denotes (n−1)-dimensional Hausdorff measure. The following lemma was proved
in [21, Lemma 2.1].
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Lemma 1. Let 1 ⩽ p ⩽ n, and let Φ : [0,∞] → [0,∞] be a strictly increasing convex
function such that the relation

∞∫
δ0

dτ

τ [Φ−1(τ)]
1

p−1

= ∞ (14)

holds for some δ0 > τ0 := Φ(0). Let Q be a family of functions Q : Rn → [0,∞] such that∫
D

Φ(Q(x))
dm(x)

(1 + |x|2)n
⩽M0 <∞ (15)

for some 0 < M0 < ∞. Now, for any 0 < r0 < 1 and for every σ > 0 there exists 0 < r∗ =
r∗(σ, r0,Φ) < r0 such that

r0∫
ε

dt

t
n−1
p−1 q

1
p−1
x0 (t)

⩾ σ , ε ∈ (0, r∗) ,

for any Q ∈ Q.

Consider some another auxiliary family of mappings.
For p ⩾ 1, a given number 0 < M0 < ∞, a domain D ⊂ Rn, n ⩾ 2, and a strictly

increasing convex function Φ: R+ → R+ denote by AΦ,p,M0(D) the family all open discrete
mappings f : D → Rn satisfying relations (8)–(9) with some Q = Qf in D with respect to
p-modulus. The following statement is true (see [21, Theorem 1.2]).

Lemma 2. Let p ∈ (n − 1, n), and let δ0 > τ0 := Φ(0) be such that the condition (14)
holds. Now the family AΦ,p,M0(D) is equicontinuous in D.

Here the equicontinuity of the family of mappings AΦ,p,M0(D) should be understood with
respect to the spaces (D, d) and (Rn, d), where d is the Euclidean metric.

Given p ⩾ 1, numbers δ > 0, 0 < M0 <∞, a domain D ⊂ Rn, n ⩾ 2, a point a ∈ D and
a strictly increasing convex function Φ: R+ → R+ denote by FΦ,a,p,δ,M0(D) the family of all
homeomorphisms f : D → Rn satisfying (8)–(9) in D for some Q = Qf such that

h(f(a), ∂f(D)) ⩾ δ, h(Rn \ f(D)) ⩾ δ

and, in addition, (15) holds.

Theorem 2. Let p ∈ (n− 1, n], let D be regular, and let D ′
f = f(D) be bounded domains

with a locally quasiconformal boundary which are equi-uniform with respect to p-modulus
over all f ∈ FΦ,a,p,δ,M0(D). If there is δ0 > τ0 := Φ(0) such that (14) holds, then any
f ∈ FΦ,a,p,δ,M0(D) has a continuous extension f : DP → Rn and, in addition, the family
FΦ,a,p,δ,M0(D) of all extended mappings f : DP → Rn is equicontinuous in DP .

Remark 1. In Theorem 2, the equicontinuity should be understood in the sense of mappings
acting between the spaces (X, d) and (X ′, d ′) , where X = DP is the replenishment of the
domain D by its prime ends, and d is one of the possible metrics that correspond to the
topological space DP in (3). In addition, X ′ = Rn and d ′ = h is a chordal (spherical) metric.

An example of a family of plane mappings fn(z) = zn, n ∈ {1, 2, . . .}, z ∈ D, indicates
the inaccuracy of Theorem 2 for mappings with branching, in particular, this theorem is not
true under the normalization condition fn(0) = 0, n ∈ {1, 2, . . .}.
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Proof of Theorem 2. Put f ∈ FΦ,A,p,δ,M0(D) and Q = Qf (x). Given x ∈ Rn we set

Q ′(x) =


Q(x), x ∈ D,Q(x) ⩾ 1;

1, x ∈ D,Q(x) < 1;

1, x ̸∈ D.

Observe that the function Q ′(x) satisfies the relation (15) up to some constant. Indeed,∫
D

Φ(Q ′(x))
dm(x)

(1 + |x|2)n
=

∫
{x∈D:Q(x)<1}

Φ(Q ′(x))
dm(x)

(1 + |x|2)n
+

+

∫
{x∈D:Q(x)⩾1}

Φ(Q ′(x))
dm(x)

(1 + |x|2)n
⩽M0 + Φ(1)

∫
Rn

dm(x)

(1 + |x|2)n
=M ′

0 <∞.

In this case, by Lemma 1
r0∫
ε

dt

t
n−1
p−1 q

′ 1
p−1
x0 (t)

→ ∞ (16)

as ε → 0 for any 0 < r0 < 1 and ε → 0, where q ′
x0
(t) = 1

ωn−1tn−1

∫
S(x0,t)

Q ′(x) dHn−1. Besides

that,
r0∫
ε

dt

t
n−1
p−1 q

′ 1
p−1
x0 (t)

<∞

for any ε ∈ (0, r0), because q ′
x0
(t) ⩾ 1 for almost any t ∈ (0, r0). Observe that, equi-uniform

domains with respect to p-modulus have strongly accessible boundaries with respect to p-
modulus, as well (see [23, Remark 1]). In this case, the condition (16) directly implies that
f ∈ FΦ,A,p,δ,M0(D) has a continuous extension to DP (see [20, Theorem 3]).

Observe that f ∈ FΦ,a,p,δ,M0(D) does not equal to infinity for p ̸= n (see, e.g., [5, Lemmas
2.6 and 3.1]). Now, the equicontinuity of FΦ,a,p,δ,M0(D) inside D follows by Theorem 4.1
in [17] for p = n and Lemma 2 for p < n.

We prove the equicontinuity of the family FΦ,a,p,δ,M0(D) in ED := DP \D. Let us assume
the opposite, namely that there are ε∗ > 0, P0 ∈ ED, a sequence xm ∈ DP , xm → P0 as
m→ ∞, and a mapping fm ∈ FΦ,a,p,δ,M0(D) such that

h(fm(xm), fm(P0)) ⩾ ε∗ , m ∈ {1, 2, . . .}. (17)

Since fm as a continuous extension at P0, we may assume that xm ∈ D and, in addition,
there is a sequence x ′

m ∈ DP , x
′
m → P0 as m→ ∞, such that

h(fm(xm), fm(x
′
m)) ⩾ ε∗/2 , m ∈ {1, 2, . . .}. (18)

Let dm, m ∈ {1, 2, . . .}, be a sequence of cuts σm corresponding to P0. By [8, Lemma 2]
the sequence σm may be chosen such that σm ⊂ S(x0, rm), where x0 ∈ ∂D and rm → 0 as
m→ ∞.

By the definition of the convergence of the sequence xm to P0 as m → ∞, there exists
m1 ∈ N such that xm1 ∈ d1. Similarly, there exists m2 > m1 such that xm2 ∈ d2. Etc. Given
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k ∈ N we may find mk > mk−1 such that xmk
∈ dk. Etc. Thus, xmk

∈ dk, k ∈ N. Relabeling
the sequence xmk

(if necessary), we may consider that xm ∈ dm for any m ∈ N. Similarly,
me may assume that x ′

m ∈ dm, m ∈ {1, 2, . . .}.
Since the domain D is regular, the space DP contains at least two prime ends P1 and

P2 ∈ ED. Let P1 ⊂ ED be a prime end that does not coincide with P0. Suppose that Gm,
m ∈ {1, 2, . . .}, is a sequence of domains that corresponds to a prime end P1. Since the
mapping fm has a continuous extension on DP for any m ∈ {1, 2, . . .}, we may choose a
sequence ζm ∈ Gm, ζm → P1 as m→ ∞, such that h(fm(ζm), fm(P1)) → 0 as m→ ∞. Note
that

h(fm(a), fm(ζm)) ⩾ h(fm(a), fm(P1))− h(fm(ζm), fm(P1)) ⩾ δ/2 , (19)

for any m ⩾ m0 and some m0 ∈ N. We construct a sequence of continua Km, m ∈ {1, 2, . . .}
as follows. We join the points ζ1 and a by an arbitrary path in D, which we denote by K1.
Next, we join the points ζ2 and ζ1 by a path K ′

1, in G1. Combining the paths K1 and K ′
1,

we obtain a path K2, joining the points a and ζ2. And so on. Suppose that at some step we
have a path Km, that join the points ζm and a. Join the points ζm+1 and ζm with a path
K ′
m, which lies in Gm. Combining the paths Km and K ′

m, we obtain a path Km+1. We show
that there is a number m1 ∈ N such that

∀ m ⩾ m1 : dm ∩Km = ∅. (20)

We prove this from the opposite, namely, suppose that (20) does not hold. Then there is an
increasing sequence of numbersmk → ∞, k → ∞, and points ξk ∈ Kmk

∩dmk
, m ∈ {1, 2, . . .}.

Then ξk → P0 as k → ∞.

Note that two cases are possible: either all elements ξk belong to D\G1 for k ∈ {1, 2, . . .},
or there is a number k1 such that ξk1 ∈ G1. In the second case, consider the sequence ξk,
k > k1. Note that two cases are possible: or ξk for k > k1 belong to D\G2, or there is k2 > k1
such that ξk2 ∈ G2. In the second case, consider the sequence ξk, k > k2, and so on. Assume
that the element ξkl−1

∈ Gl−1 is already constructed. Note that two cases are possible: either
ξk belong to D \ Gl for k > kl−1, or there is a number kl > kl−1 such that ξkl ∈ Gl, and
etc. This procedure can be both finite or infinite, depending on which we have two possible
situations:

1) or there are numbers n0 ∈ N and l0 ∈ N such that that ξk ∈ D \Gn0 for all k > l0;
2) or for each there is an element ξkl such that ξkl ∈ Gl, and the sequence kl is increasing

by l ∈ N.
Consider each of these cases separately and show that in both of them we come to a

contradiction. Let situation 1) holds. Observe that all elements of the sequence ξk belong
to Kn0 , hence there exists a subsequence ξkr , r ∈ {1, 2, . . .}, convergent as r → ∞ to some

point ξ0 ∈ D. However, ξk ∈ dmk
, i.e., ξ0 ∈

∞⋂
m=1

dm. Due to (2), ξ0 ∈ ∂D. The obtained

contradiction indicates the impossibility of the case 1). Suppose that case 2) holds, then
simultaneously ξk → P0 and ξk → P1 as k → ∞. Since space DP is metric with a metric ρ
in (3), by the triangle inequality it follows that P1 = P0, which contradicts the choice of P1.
The obtained contradiction indicates the validity of the relation (20).

By the relation (20) and by the definition of cuts σm ⊂ S(x0, rm), we obtain that

Γ (|γm|, Km, D) > Γ(S(x0, rm), S(x0, ε̃0), D) , m ⩾ 2 ,
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where ε̃0 is some positive number which may be chosen as ε̃0 := r1. Thus

fm(Γ (|γm|, Km, D)) > fm(Γ(S(x0, rm), S(x0, ε̃0), D)) ,

whence, by the definition of the class FΦ,a,p,δ,M0(D)

Mp(fm(Γ(|γm|, Km, D))) ⩽

⩽Mp(fm(Γ(S(x0, rm), S(x0, ε̃0), D)) ⩽
∫

A∩D

Qm(x) · ηp(|x− x0|) dm(x) , (21)

where η is any Lebesgue measurable function satisfying (9) for r1 7→ rm and r2 7→ ε̃0, in
addition, Qm := Qfm corresponds to the function Q in (8). Let us to prove the inequality

Mp(fm(Γ(S(x0, rm), S(x0, ε̃0), D)) ⩽
ωn−1

Ip−1
m

, (22)

where Im =
ε̃0∫
rm

dr

r
n−1
p−1 q

1
p−1
mx0

(r)

, qmx0(t) = 1
ωn−1tn−1

∫
S(x0,t)

Qm(x) dHn−1 and Qm := Qfm (we set

Qm(x) ≡ 1 for x ̸∈ D). To do this, we will reason similarly to the proof of Lemma 1 in [18].
We may assume that I ̸= 0, since (22) is obviously in this case. We may also assume that
I ̸= ∞, because otherwise we may consider Q(x) + δ instead of Q(x) in (22), and then go to
the limit as δ → 0. Let 0 ̸= I ̸= ∞. Then qx0(r) ̸= 0 for r ∈ (rm, ε̃0). Put

ψ(t) =

{
1/[t

n−1
p−1 q

1
p−1
x0 (t)], t ∈ (rm, ε̃0);

0, t /∈ (rm, ε̃0).

By the Fubini theorem ∫
A

Qm(x) · ψp(|x− x0|) dm(x) = ωn−1Im , (23)

where A = A(rm, ε̃0, x0) is defined in (7). Observe that the function η1(t) = ψ(t)/I, t ∈
(rm, ε̃0), satisfies (9). Now, by (8) and (23) we obtain relation (22), as required.

Finally, from (21), (22) and from Lemma 1 it follows that

Mp(fm(Γ(|γm|, Km, D))) ⩽
ωn−1(

ε̃0∫
rm

dr

r
n−1
p−1 q

1
p−1
mx0

(r)

)p−1 → 0 , m→ ∞ , (24)

where qmx0(t) =
1

ωn−1tn−1

∫
S(x0,t)

Qm(x) dHn−1 and Qm := Qfm corresponds to the function Q

in (13). The relation (21) contradicts the equi-uniformity of the sequence of domains D ′
m :=

fm(D). Indeed,
h(fm(Km)) ⩾ δ/2

according to (19), and
h(fm(|γm|)) > ε∗/2
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by the relation (18). Hence, since the sequence of domains D ′
m := fm(D) is equi-uniform, we

obtain that

Mp(fm(Γ(|γm|, Km, D))) =Mp(Γ(fm(|γm|), fm(Km), fm(D))) ⩾ δ∗ > 0

for some δ∗ > 0 and any m ∈ {1, 2, . . .}, which contradicts the relation (24). The obtained
contradiction indicates the incorrectness of the assumption in (17).

3. Equicontinuity of families of mappings with inverse Poletsky inequality. Let
f : D → Rn, n ⩾ 2, and let Q : Rn → [0,∞] be a Lebesgue measurable function such
that Q(x) ≡ 0 for x ∈ Rn \ f(D). Let A = A(y0, r1, r2) and let Γf (y0, r1, r2) denotes the
family of all paths γ : [a, b] → D such that f(γ) ∈ Γ(S(y0, r1), S(y0, r2), A(y0, r1, r2)), i.e.,
f(γ(a)) ∈ S(y0, r1), f(γ(b)) ∈ S(y0, r2), and γ(t) ∈ A(y0, r1, r2) for any a < t < b. We say
that f satisfies the inverse Poletsky inequality at y0 ∈ f(D) if the relation

M(Γf (y0, r1, r2)) ⩽
∫

A(y0,r1,r2)∩f(D)

Q(y) · ηn(|y − y0|) dm(y) (25)

holds for any Lebesgue measurable function η : (r1, r2) → [0,∞] such that

r2∫
r1

η(r) dr ⩾ 1. (26)

Given domains D,D ′ ⊂ Rn, points a ∈ D, b ∈ D ′ and a number M0 > 0 denote by
Sa,b,M0(D,D

′) the family of open discrete and closed mappings f of D onto D ′ satisfying
the relation (25) for some Q = Qf , ∥Q∥L1(D ′) ⩽M0 for any y0 ∈ f(D) such that f(a) = b.

Theorem 3. Assume that D has a weakly flat boundary, none of the components of which
degenerates into a point, and D ′ is regular. Then any f ∈ Sa,b,M0(D,D

′) has a continuous
extension f : D → D ′

P , while f(D) = D ′
P and, in addition, the family Sa,b,M0(D,D

′) of all
extended mappings f : D → D ′

P is equicontinuous in D.

Theorem 3 was proved in [24, Theorem 7.1] in the case of a fixed function Q (cf.
Theorem 4.2 in [22]). The proof of it may be found in [22, Theorem 4.2].

4. Compactness of families of solutions of the Dirichlet problem.

Proof of Theorem 1. In general, we will use the scheme of proving Theorem 1.2 in [22].

I. Let fm ∈ FM
φ,Φ,z0

(D), m ∈ {1, 2, . . .}. By Stoilow’s factorization theorem (see, e.g., [25,
5(III).V]) a mapping fm has a representation

fm = φm ◦ gm , (27)

where gm is some homeomorphism, and φm is some analytic function. By Lemma 1 in [19],
the mapping gm belongs to the Sobolev class W 1,1

loc (D) and has a finite distortion. Moreover,
by [1, (1).C, Ch. I]

fmz = φmz(gm(z))gmz, fmz = φmz(gm(z))gmz (28)
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for almost all z ∈ D. Therefore, by the relation (28), J(z, gm) ̸= 0 for almost all z ∈ D, in
addition, Kµfm

(z) = Kµgm (z).

II. We prove that ∂gm(D) contains at least two points. Suppose the contrary. Then either
gm(D) = C, or gm(D) = C \ {a}, where a ∈ C. Consider first the case gm(D) = C. By
Picard’s theorem φm(gm(D)) is the whole plane, except perhaps one point ω0 ∈ C. On the
other hand, for every m ∈ {1, 2, . . .} the function um(z) := Re fm(z) = Re (φm(gm(z))) is
continuous on the compact set D under the condition (5) by the continuity of φ. Therefore,
there exists Cm > 0 such that |Re fm(z)| ⩽ Cm for any z ∈ D, but this contradicts the
fact that φm(gm(D)) contains all points of the complex plane except, perhaps, one. The
situation gm(D) = C \ {a}, a ∈ C, is also impossible, since the domain gm(D) must be
simply connected in C as a homeomorphic image of the simply connected domain D.

Therefore, the boundary of the domain gm(D) contains at least two points. Then, accordi-
ng to Riemann’s mapping theorem, we may transform the domain gm(D) onto the unit disk
D using the conformal mapping ψm. Let z0 ∈ D be a point from the condition of the theorem.
By using an auxiliary conformal mapping

ψ̃m(z) =
z − (ψm ◦ gm)(z0)
1− z(ψm ◦ gm)(z0)

of the unit disk onto itself we may consider that (ψm ◦ gm)(z0) = 0. Now, by (27) we obtain
that

fm = φm ◦ gm = φm ◦ ψ−1
m ◦ ψm ◦ gm = Fm ◦Gm , m ∈ {1, 2, . . .} ,

where Fm := φm ◦ ψ−1
m , Fm : D → C, and Gm = ψm ◦ gm. Obviously, a function Fm is

analytic, and Gm is a regular Sobolev homeomorphism in D. In particular, ImFm(0) = 0 for
any m ∈ N.

III. We prove that the L1-norms of the functions KµGm
(z) are bounded from above by some

universal positive constant C > 0 over all m ∈ {1, 2, . . .}. Indeed, by the convexity of the
function Φ in (6) and by [3, Proposition 5, I.4.3], the slope [Φ(t)− Φ(0)] /t is a non-decreasing
function. Hence there exist constants t0 > 0 and C1 > 0 such that

Φ(t) ⩾ C1 · t ∀ t ∈ [t0,∞). (29)

Fix m ∈ N. By (6) and (29), we obtain that∫
D

KµGm
(z) dm(z) =

∫
{z∈D:KµGm

(z)<t0}

KµGm
(z) dm(z) +

∫
{z∈D:KµGm

(z)⩾t0}

KµGm
(z) dm(z) ⩽

⩽ t0 ·m(D) +
1

C1

∫
D

Φ(KµGm
(z)) dm(z) ⩽

⩽ t0 ·m(D) +

sup
z∈D

(1 + |z|2)2

C1

∫
D

Φ(KµGm
(z)) · 1

(1 + |z|2)2
dm(z) ⩽

⩽ t0 ·m(D) +

sup
z∈D

(1 + |z|2)2

C1

M(D) <∞ ,
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because M(D) <∞ by the assumption of the theorem.

IV. We prove that each map Gm, m ∈ {1, 2, . . .}, has a continuous extension to ED, in
addition, the family of extended maps Gm, m ∈ {1, 2, . . .}, is equicontinuous in DP . Indeed,
as proved in item III, KµGm

∈ L1(D). By [7, Theorem 3] (see also [9, Theorem 3.1]) each
Gm, m ∈ {1, 2, . . .}, is a ring Q-homeomorphism in D for Q = KµGm

(z), where µ is defined
in (4), and Kµ my be calculated by the formula (1). Note that the unit disk D is a uniform
domain as a finitely connected flat domain at its boundary with a finite number of boundary
components (see, for example, [12, Theorem 6.2 and Corollary 6.8]). Then the desired
conclusion follows by Theorem 2.

V. Let us prove that the inverse homeomorphisms G−1
m , m ∈ {1, 2, . . .}, have a continuous

extension G−1

m to ∂D in terms of prime ends in D, and {G−1

m }∞m=1 is equicontinuous in D as
a family of mappings from D to DP . Since by the item IV mappings Gm, m ∈ {1, 2, . . .}, are
ring KµGm

(z)-homeomorphisms in D, the corresponding inverse mappings G−1
m satisfy (25)

(in this case,D corresponds the unit disk D in (26), f 7→ Gm, Q 7→ KµGm
(z), and f(D) 7→ D).

Since G−1
m (0) = z0 for any m ∈ {1, 2, . . .}, the possibility of a continuous extension of G−1

m to
∂D, and the equicontinuity of {G−1

m }
∞
m=1 as mappings G−1

m : D → DP follow by Theorem 3.

VI. Since, as proved above the family {Gm}∞m=1 is equicontinuous in D, by Arzela-Ascoli
criterion there exists an increasing subsequence of numbers mk, k ∈ {1, 2, . . .}, such that
Gmk

converges locally uniformly in D to some continuous mapping G : D → C as k → ∞
(see, e.g., [26, Theorem 20.4]). By [22, Lemma 2.1], either G is a homeomorphism with values
in Rn, or a constant in Rn. Let us prove that the second case is impossible. Let us apply the
approach used in proof of the second part of Theorem 21.9 in [26]. Suppose the contrary: let
Gmk

(x) → c = const as k → ∞. Since Gmk
(z0) = 0 for all k ∈ {1, 2, . . .}, we have that c = 0.

By item V, the family of mappings G−1
m , m ∈ {1, 2, . . .}, is equicontinuous in D. Then

h(z,G−1
mk

(0)) = h(G−1
mk

(Gmk
(z)), G−1

mk
(0)) → 0

as k → ∞, which is impossible because z is an arbitrary point of D. The obtained contradi-
ction refutes the assumption made above. Thus, G : D → C is a homeomorphism.

VII. According to V, the family of mappings {G−1

m }∞m=1 is equicontinuous in D. By the
Arzela-Ascoli criterion (see, e.g., [26, Theorem 20.4]) we may consider that G−1

mk
(y), k ∈

{1, 2, . . .}, converges to some mapping F̃ : D → D as k → ∞ uniformly in D. Let us to prove
that F̃ = G

−1
. For this purpose, we show that G(D) = D. Fix y ∈ D. Since Gmk

(D) = D for
every k ∈ {1, 2, . . .}, we obtain that Gmk

(xk) = y for some xk ∈ D. Since D is regular, the
metric space (DP , ρ) is compact. Thus, we may assume that ρ(xk, x0) → 0 as k → ∞, where
x0 ∈ DP . By the triangle inequality and the equicontinuity of {Gm}

∞
m=1 in DP (see IV), we

obtain that

|G(x0)− y| = |G(x0)−Gmk
(xk)| ⩽ |G(x0)−Gmk

(x0)|+ |Gmk
(x0)−Gmk

(xk)| → 0

as k → ∞. Thus, G(x0) = y. Observe that x0 ∈ D, because G is a homeomorphism. Since
y ∈ D is arbitrary, the equality G(D) = D is proved. In this case, G−1

mk
→ G−1 locally

uniformly in D as k → ∞ (see, e.g., [16, Lemma 3.1]). Thus, F̃ (y) = G−1(y) for every y ∈ D.
Finally, since F̃ (y) = G−1(y) for any y ∈ D and, in addition, F̃ has a continuous

extension on ∂D, due to the uniqueness of the limit at the boundary points we obtain that
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F̃ (y) = G
−1
(y) for y ∈ D. Therefore, we have proved that G−1

mk
→ G

−1 uniformly in D with
as k → ∞ with respect to the metrics ρ in DP .

VIII. By VII, for y = eiθ ∈ ∂D

ReFmk
(eiθ) = φ

(
G

−1

mk
(eiθ)

)
→ φ

(
G

−1
(eiθ)

)
(30)

as k → ∞ uniformly on θ ∈ [0, 2π). Here we have used that φ is continuous in DP . Since by
the construction ImFmk

(0) = 0 for any k ∈ {1, 2, . . .}, by the Schwartz formula (see, e.g.,
[2, relation (66), sect. 6.3, ch. IV]) the analytic function Fmk

is uniquely restored by its real
part, namely,

Fmk
(y) =

1

2πi

∫
S(0,1)

φ
(
G

−1

mk
(t)
) t+ y

t− y
· dt
t
. (31)

Set
F (y) :=

1

2πi

∫
S(0,1)

φ
(
G

−1
(t)
) t+ y

t− y
· dt
t
. (32)

Let K ⊂ D be an arbitrary compact set, and let y ∈ K. By (31) and (32) we obtain that

|Fmk
(y)− F (y)| ⩽ 1

2π

∫
S(0,1)

∣∣φ(G−1

mk
(t))− φ(G

−1
(t))
∣∣ ∣∣∣∣ t+ y

t− y

∣∣∣∣ |dt|. (33)

Since K is compact, there is 0 < R0 = R0(K) <∞ such that K ⊂ B(0, R0). By the triangle
inequality |t+ y| ⩽ 1 +R0 and |t− y| ⩾ |t| − |y| ⩾ 1−R0 for y ∈ K and any t ∈ S1. Thus∣∣∣∣ t+ y

t− y

∣∣∣∣ ⩽ 1 +R0

1−R0

:=M =M(K).

Put ε > 0. By (30), for a number ε ′ := ε
M

there is N = N(ε,K) ∈ N such that∣∣φ(G−1

mk
(t)
)
− φ

(
G

−1
(t)
)∣∣ < ε ′

for any k ⩾ N(ε) and t ∈ S1. Now, by (33)

|Fmk
(y)− F (y)| < ε ∀ k ⩾ N. (34)

It follows from (34) that the sequence Fmk
converges to F as k → ∞ in the unit disk locally

uniformly. In particular, we obtain that ImF (0) = 0. Note that F is analytic function in D
(see comments before the relation (66) in [2, sect. 6.3, ch. IV]), and

ReF (reiψ) =
1

2π

2π∫
0

φ
(
G

−1
(eiθ)

) 1− r2

1− 2r cos(θ − ψ) + r2
dθ

for z = reiψ. By [2, relation (66), sect. 6.3, ch. IV]

lim
ζ→z

ReF (ζ) = φ(G
−1
(z)) ∀ z ∈ ∂D. (35)
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Observe that F either is a constant or open and discrete (see, e.g., [25, Ch. V, I.6 and II.5]).
Thus, fmk

= Fmk
◦Gmk

converges to f = F ◦G locally uniformly as k → ∞, where f = F ◦G
either is a constant or open and discrete. Moreover, by (35)

lim
ζ→P

Re f(ζ) = lim
ζ→P

ReF (G(ζ)) = φ(G−1(G(P ))) = φ(P ).

IX. Since by VI G is a homeomorphism, by [10, Theorem 1] G is a regular solution of the
equation (4) for some function µ : C → D. Since the set of points of the function F, where its
Jacobian is zero, consist only of isolated points (see [25, Ch. V, 5.II and 6.II]), f is regular
solution of the Dirichlet problem (4)–(5) whenever F ̸≡ const. Note that the relation (6)
holds for the corresponding function Kµ = Kµf (see e.g. [10, Lemma 1]).

Therefore, f ∈ FM
φ,Φ,z0

(D).
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12. R. Näkki, Extension of Loewner’s capacity theorem, Trans. Amer. Math. Soc., 180 (1973), 229–236.
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