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We study a composition of two functions belonging to a class of slice holomorphic functions
in the whole n-dimensional complex space. The slice holomorphy in the space means that for
some fixed direction b ∈ Cn\{0} and for every point z0 ∈ Cn the function is holomorphic on its
restriction on the slice {z0+ tb : t ∈ C}. An additional assumption on joint continuity for these
functions allows to construct an analog of theory of entire functions having bounded index. The
analog is applicable to study properties of slice holomorphic solutions of directional differential
equations, to describe local behavior and value distribution. In particular, we find conditions
providing boundedness of L-index in the direction b for a function f(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸

m times

), where

f : Cn → C, Φ: Cn → C are a slice entire functions, L : Cn → R+ is a continuous function. The
obtained results are also new in one-dimensional case, i.e. for n = 1, m = 1. They are deduced
using new approach in this area analog of logarithmic criterion. For a class of nonvanishing
outer functions in the composition the sufficient conditions obtained by logarithmic criterion
are weaker than the conditions by the Hayman theorem.

1. Notations and definitions. Let us introduce some notations from [1] (see also [10,11]).
Let R+ = (0,+∞), R∗

+ = [0,+∞), 0 = (0, . . . , 0), 1 = (1, . . . , 1), and b = (b1, . . . , bn) ∈
Cn \ {0} be a given direction, 1j = (0, . . . , 0, 1︸︷︷︸

j-th place

, 0, . . . , 0) ∈ Cn, L : Cn → R+ be a

continuous function. The slice functions for fixed z0 ∈ Cn we will denote as gz0(t) = F (z0+tb)
and lz0(t) = L(z0 + tb) for t ∈ C.

Let H̃n
b be the class of functions which are holomorphic on every slices {z0+ tb : t ∈ Sz0}

for each z0 ∈ Cn and let Hn
b be the class of functions from H̃n

b which are joint continuous.
The notation ∂bF (z) stands for the derivative of the function gz(t) at the point 0, i.e. for
every p ∈ N, ∂p

bF (z) = g
(p)
z (0), where gz(t) = F (z + tb) is an analytic function of complex

variable t ∈ Sz for given z ∈ Cn.

Together the hypothesis on joint continuity and the hypothesis on holomorphy in one
direction do not imply holomorphy in whole n-dimensional unit ball. There were presented
some examples to demonstrate it [2].
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A function F ∈ H̃n
b is said [2] to be of bounded L-index in the direction b, if there exists

m0 ∈ Z+ such that for all m ∈ Z+ and each z ∈ Cn inequality

|∂m
b F (z)|

m!Lm(z)
≤ max

0≤k≤m0

|∂k
bF (z)|

k!Lk(z)
(1)

is true. The least such integer number m0, obeying (1), is called the L-index in the direction
b of the function F and is denoted by Nb(F,L,Cn). For n = 1, b = 1, L(z) = l(z), z ∈ C
inequality (1) defines a function of bounded l-index with the l-index N(F, l) ≡ N1(F, l,C)
[19], and if in addition l(z) ≡ 1, then we obtain a definition of index boundedness with index
N(F ) ≡ N1(F, 1,C) [20, 21]. Similarly, an entire function F : Cn → C is called a function of
bounded L-index in a direction b ∈ Cn \ {0}, if it satisfies (1) for all z ∈ Cn.

We denote

λb(η) = sup
z∈Cn

sup
t1,t2∈C

{
L(z + t1b)

L(z + t2b)
: |t1 − t2| ≤

η

min{L(z + t1b), L(z + t2b)}

}
.

The notation Qn
b stands for a class of positive continuous functions L : Cn → R+, satisfying

for every η ∈ [0, β]
λb(η) < +∞. (2)

This class Qn
b is an auxiliary class to study entire functions and slice entire functions having

bounded L-index in the direction.
As in [28], Q ≡ Q1

1 and λ(η) ≡ λ1(η) in the cases when b = 1, n = 1, L ≡ l, where
l ∈ C → R+ is a continuous functon.

2. Introduction and formulation of the problem. Despite many studies on composition
of entire functions and slice entire functions and boundedness of L-index in direction and
boundedness of L-index in joint variables [4, 5, 9, 10, 19, 28], this topic is still interested
because it allows to discover new properties of functions having bounded index and apply
it to differential equations and value distribution theory. In particular, if an entire function
has a bounded index in some sense, then multiplicities of its zeros are uniformly bounded.
On the other hand, every entire function with uniformly bounded multiplicities of zeros has
the bounded index in the same sense [8, 13]. However, in some cases all known results on
composition (for example, see below Theorems 1 and 2) are not applicable even if we consider
two entire functions of one complex variable with bounded multiplicities of zeros.

Among many papers on composition of entire functions and index boundedness [5,9,10,
19,28] we should like to mention paper [4] because it is also devoted to slice entire functions.
There was investigated some composition of slice entire functions by usage the analog of
Hayman’s Theorem for this class of function (see below Theorem 5).

Let Φ ∈ H̃n
b be a function, satisfying

|∂j
bΦ(z)| ≤ K|∂bΦ(z)|j, K ≡ const > 0, (3)

for all z ∈ Cn and for all j ≤ p, where p is some positive integer number.

Theorem 1 ([4]). Let b ∈ Cn \ {0}, f ∈ H̃1(Cm), Φ ∈ H̃n
b be a function such that

∂bΦ(z) ̸= 0 for all z ∈ Cn. Suppose that l ∈ Qm
1 , l(w) ≥ 1 (w ∈ Cm), L ∈ Qb(Cn),

L(z)=
∣∣∂bΦ(z)∣∣l(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸

m times

).
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If the function f has bounded l-index in the direction 1 and the function Φ satisfies (3)
with p = N1(f, l,Cm), then the function F (z) = f(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸

m times

) has bounded L-index in

the direction b.
And if the function F (z) = f(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸

m times

) has bounded L-index in the direction b

and the function Φ satisfies (3) with p = Nb(F,L,Cn), then the function f has bounded
l-index in the direction 1.

Theorem 2 ([4]). Let b ∈ Cn \ {0}, l ∈ Qm
1 , l(w) ≥ 1 (w ∈ Cm), Φ ∈ H̃n

b, f ∈ H̃1(Cm) be
a function of bounded l-index in the direction 1.

Suppose that L ∈ Qb(Cn) with

L(z) = max {1, |∂bΦ(z)|} l(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸
m times

). (4)

and for all z ∈ Cn and k ∈ {1, 2, . . . , N1(f, l) + 1} one has

|∂k
bΦ(z)| ≤ K(l(Φ(z)))1/(N1(f,l)+1)|∂bΦ(z)|k, (5)

where K ≥ 1 is a constant. Then the function F (z) = f(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸
m times

) has bounded L-index

in the direction b.

Let us consider the case n = 1, m = 1, b = 1, i.e. for simplicity, we assume that the outer
and the inner functions of the composition are entire functions. If we consider the functions
f(z) = e2z and Φ(z) = z3/3 + z then the function Φ also does not satisfy assumption of
Theorem 1 because it vanishes at the point z = 0. Moreover, these functions do not satisfy
conditions of Theorem 2. Indeed, the function f has bounded index with l ≡ 1 and its
index equals 1 because |f (p)(z)|

p!
= 2p|e2z|/p! ≤ 2|e2z| = |f ′(z)|

1!
for all p ∈ N. Hence, for all

k ∈ {1, 2} and for all z the inequality |Φ(k)(z)| ≤ K|Φ′(z)|k must be satisfied. But for
k = 2 one has Φ′(z) = z2 + 1, Φ′′(z) = 2z. Then |Φ′′(i)| = 2, Φ′(i) = 0. This means that
inequality (5) is false for these function, i.e. Theorem 2 is not applicable. Another example
is f(z) = z · ez, Φ(z) = z2. As above, it can be proved that these functions do not obey
conditions of Theorem 1, Theorem 2.

These examples lead to the following problem: “to deduce sufficient conditions of index
boundedness for holomorphic functions which are applicable to a wider class of functions (in
particular, for our examples).”

All known papers on composition in theory of functions having bounded index are
devoted application of Hayman theorem analogs [18]. This theorem and its analogs for
various classes of holomorphic function are very convenient to establish conditions provi-
ding index boundedness for the functions. Also, it is applicable to analytic solutions of
differential equations and their systems. Hayman’s theorem shows that we can prove validity
of corresponding inequalities without factorials (compare inequalities (1) and (8)). Here we
continue our investigations initialized in [1–3], i.e. our main object are slice holomorphic
functions of bounded L-index in a direction. For these functions we examine their composi-
tion when the inner function is slice holomorphic in the unit ball and the outer function is
slice holomorphic in whole n-dimensional complex space.
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For such a composition we apply two theorem to establish sufficient conditions providi-
ng index boundedness in direction. They are Hayman’s theorem and logarithmic criterion.
The criterion describe behavior of the modulus of the logarithmic derivative outside some
exceptional set and distrubution of zeros. These two theorems play important role in analytic
theory of differential equations. They helped to find sufficient conditions by the coefficients
of equations providing index boundedness of every analytic solution. For the composition we
do not know results obtained by the logarithmic criterion (see [5,9,10,19,28]). In other words,
the present paper is the first paper on application of logarithmic criterion to composition of
holomorphic functions in the theory of bounded index. Moreover, we do not limit ourselves to
establishing some new sufficient conditions by the approach. We give a qualitative characteri-
stic of the conditions. In particular, we select a subclass of outer nonvanishing functions in
the composition for which the conditions obtained by new approach (the logarithmic cri-
terion) are weaker than the conditions obtained by old approach (the Hayman theorem).
Therefore, our main goal in the paper is following: to find weaker sufficient conditions of
boundedness of L-index in direction for composition of two slice holomorphic functions with
usage of new approach.

Indeed, we will obtain much more than some analog of known results. Proposition 1 and
Proposition 3 have no analogs in theory of bounded index even for composition of entire
functions. Moreover, the conditions in Proposition 1 obtained by the logarithmic criterion
are significantly weaker than in statements obtained by Hayman’s theorem (Theorem 1 and
Theorem 2) if an outer function of the composition does not vanish (see below Remark 1).

Proposition 3 firstly uses a connection between functions of bounded value distribution
and functions of bounded index. W. Hayman [18] proved that an entire function has bounded
value distribution if and only if its derivative has bounded index. Despite this fact we do
no know other results on functions of bounded index with the usage the notion of bounded
value distribution. Proposition 3 is the first result of such a type.

3. Auxiliary propositions We will use an analog of logarithmic criterion for function
from the class H̃n

b. The one-dimensional analog of the criterion is efficient to investigate
boundedness of l-index of infinite products [12,29,30]. As necessary conditions the criterion
was obtained by G. H. Fricke [14, 15] for entire functions of one complex variable having
bounded index.

Denote
Gb

r (F ) = Gb
r (F ;L) :=

⋃
z∈Cn : F (z)=0

{z + tb : |t| < r/L(z)}.

If n = 1 and b = 1 then we use the simplified notation Gr(F ;L) = G1
r (F ;L) and Gr(F ) =

G1
r (F ; 1) (for L ≡ 1). By nz0(r) = nb

(
r, z0, 1/F

)
:=

∑
|a0k|≤r 1 we denote counting function

of zeros a0k for the slice function F (z0 + tb) in the disc {t ∈ C : |t| ≤ r} for given z0 ∈ Cn.
If for given z0 ∈ Cn and for all t ∈ Sz : F (z0 + tb) ≡ 0, then we put nz0(r) = −1. Denote
n(r) = supz∈Cn nz(r/L(z)).

Theorem 3 ([3]). Let F ∈ H̃n
b, L ∈ Qn

b. If the function F has bounded L-index in the
direction b, then

1) for every r > 0 there exists P = P (r) > 0 that for each z ∈ Cn\Gb
r (F )∣∣∣∣∂bF (z)

F (z)

∣∣∣∣ ≤ PL(z); (6)
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2) for every r > 0 there exists ñ(r) ∈ Z+ such that for each z0 ∈ Cn with F (z0 + tb) ̸≡ 0

nb

(
r/L(z0), z0, 1/F

)
≤ ñ(r). (7)

Theorem 4 ([3]). Let L ∈ Qn
b, F ∈ H̃n

b, Cn \ Gb
β(F ) ̸= ∅. If the following conditions are

satisfied
1) there exists r1 > 0 such that n(r1) ∈ [−1;∞);

2) there exist r2 > 0, P > 0 such that 2r2 · n(r1) < r1/λb(r1) and for all z ∈ Cn\Gr2(F )
inequality (6) is true;

then the function F has bounded L-index in the direction b.

One should observe that the sufficient conditions in Theorem 4 are weaker than the
necessary conditions in Theorem 3. They are differed with existential and universal quanti-
fiers, respectively. In other words, from validity of inequalities (6) and (7) for some radius r
it follows their validity for all possible values of r belonging some interval.

Below we formulate a criterion that is analogous to Hayman’s theorem [18] obtained for
entire functions of single complex variable.

Theorem 5 ( [3]). Let L ∈ Qb(Cn). A function F ∈ H̃n
b is of bounded L-index in the

direction b if and only if there exist p ∈ Z+ and C > 0 such that for every z ∈ Cn one has

|∂p+1
b F (z)|
Lp+1(z)

≤ Cmax

{
|∂k

bF (z)|
Lk(z)

: 0 ≤ k ≤ p

}
. (8)

Among many papers on composition of entire functions and index boundedness [5,9,10,
19, 28] we should like to mention paper [4] because it is also devoted slice entire functions.
There was investigated some composition of slice entire functions by usage the analog of
Hayman’s Theorem for this class of function, i.e. Theorem 5.

4. Application of logarithmic criterion to composition In the theory of bounded
index Hayman’s theorem and the logarithmic criterion are most applicable in other problems.
Indeed, there are many papers on their applications to study properties of analytic solutions
of ordinary and partial differential equations and their systems. Moreover, Hayman’s theorem
also helps to deduce some conditions providing bounded L-index in direction for composition
of entire and analytic functions. But we do not know results on composition obtained with
application of logarithmic criterion. Here we will present such results. In this section we
suppose that 1 = (1, . . . , 1) ∈ Rm.

Proposition 1. Let b ∈ Cn \ {0}, Φ ∈ H̃n
b, f ∈ H̃m

1 be a function such that f(w) ̸= 0 for
all w ∈ Cm.

1) Suppose that l ∈ Qm
1 , L ∈ Qn

b and L(z) ≥
∣∣∂bΦ(z)∣∣l(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸

m times

) for all z ∈

Cn. If the function f has bounded l-index in the direction 1, then the function F (z) =
f(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸

m times

) has bounded L-index in the direction b.

2) Suppose that L ∈ Qn
b, ∂bΦ(z) ̸= 0 and l ∈ Qm

1 be such that l(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸
m times

) ≥ L(z)∣∣∂bΦ(z)

∣∣
for all z ∈ Cn. And if the function F (z) = f(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸

m times

) has bounded L-index in the

direction b, then the function f has bounded l-index in the direction 1.
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Proof. One should observe that

∂bF (z) = ∂1f(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸
m times

) · ∂bΦ(z). (9)

Since f(w) ̸= 0 for all w ∈ Cm, the composite function f(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸
m times

) does not vanish for

all z ∈ Cn that is Gb
r (F ) = ∅. Therefore, we must check only condition 2) from Theorem 4.

It is sufficient to prove inequality (6) for all z ∈ Cn. Indeed, in view of (9) one has

∣∣∣∣∂bF (z)

F (z)

∣∣∣∣ =
∣∣∣∣∣∣∣∣
∂1f(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸

m times

)

f(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸
m times

)

∣∣∣∣∣∣∣∣ · |∂bΦ(z)| (10)

Let f be of bounded l-index in the direction 1. Then by Theorem 3 for the class H̃m
1 inequality

(6) is valid for the function f and for all w ∈ Cm :

|∂1f(w)|
|f(w)|

≤ Pl(w) (11)

Substituting w = (Φ(z), . . . ,Φ(z)︸ ︷︷ ︸
m times

in (11) and applying this inequality to (10) we obtain

∣∣∣∣∂bF (z)

F (z)

∣∣∣∣ = Pl(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸
m times

) · |∂bΦ(z)| ≤ PL(z). (12)

Remind that the function F also does not vanish as the function f . Therefore, inequality
(12) yields that by Theorem 3 the function F has bounded L-index in the direction b. The
first part of Proposition 1 is proved.

The second part of the proposition can be proved by analogy to the first part.

It is possible to consider more general composition of slice entire functions. But the
conditions will be also stronger.

Proposition 2. Let b ∈ Cn \ {0}, Φj ∈ H̃n
b, j ∈ {1, . . . ,m}, f : Cm → C be an entire

function such that f(w) ̸= 0 for all w ∈ Cm. Suppose that l ∈ Qm
1j

for each j ∈ {1, 2, . . . ,m},
L ∈ Qn

b and

L(z) ≥
m∑
j=1

∣∣∂bΦj(z)
∣∣l(Φ1(z), . . . ,Φm(z))

for all z ∈ Cn. If the function f has bounded l-index in the each direction 1j, j ∈ {1, . . . ,m},
then the function F (z) = f(Φ1(z), . . . ,Φm(z)) has bounded L-index in the direction b.

Proof. One should observe that

∂bF (z) =
m∑
j=1

f ′
Φj
(Φ1(z), . . . ,Φm(z))∂bΦj(z). (13)
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Since f(w) ̸= 0 for all w ∈ Cm, the composite function f(Φ1(z), . . . ,Φm(z)) does not vanish
for all z ∈ Cn that is Gb

r (F ) = ∅. Therefore, we must check only condition 2) from Theorem 4.
It is sufficient to prove inequality (6) for all z ∈ Cn. Indeed, in view of (13) one has∣∣∣∣∂bF (z)

F (z)

∣∣∣∣ ≤ m∑
j=1

∣∣∣∣∣f ′
Φj
(Φ1(z), . . . ,Φm(z))

f(Φ1(z), . . . ,Φm(z))

∣∣∣∣∣ · |∂bΦj(z)| (14)

Let f be of bounded l-index in the each direction 1j. Then by analog of Theorem 3 for
the class of entire functions of m complex variables (see [6]) inequality (6) is valid for the
function f and for all w ∈ Cm :

|∂1j
f(w)|

|f(w)|
≤ Pl(w) (15)

Substituting w = (Φ1(z), . . . ,Φm(z)) in (15) and applying this inequality to (14) we obtain∣∣∣∣∂bF (z)

F (z)

∣∣∣∣ = Pl(Φ1(z), . . . ,Φm(z)) ·
m∑
j=1

|∂bΦj(z)| ≤ PL(z). (16)

Remind that the function F also does not vanish as the function f . Therefore, inequality
(16) yields that by Theorem 3 the function F has bounded L-index in the direction b.

The condition f(w) ̸= 0 can be replaced by some assumption on the function Φ.

Let us remind the definition of function having bounded value L-distribution in a directi-
on.

Function F ∈ H̃n
b is said [3] to be of bounded value L-distribution in a direction b if for

some p ∈ N and for every w ∈ C, z0 ∈ Cn such that F (z0 + tb) ̸≡ w, the inequality holds

n
( 1

L(z0)
, z0,

1

F − w

)
≤ p,

i.e. the equation F (z0 + tb) = w has at most p solutions in the disc {t : |t| ≤ 1
L(z0)

}. In
other words, the function F (z0 + tb) is p-valent in {t : |t| ≤ 1

L(z0)
} for each fixed z0 ∈ Cn. If

n = 1, b = 1 and L ≡ 1 then we obtain a definition of function of bounded value distribution
[16,17,23–25]. Another approach to multivalence of bivariate function is considered in [22].

The following statement holds.

Proposition 3. Let b ∈ Cn \ {0}, Φ ∈ H̃n
b, f : C → C be an entire function and F (z) =

f(Φ(z)).

Suppose that l ∈ Q, L ∈ Qn
b and L(z) ≥

∣∣∂bΦ(z)∣∣l(Φ(z)) for all z ∈ Cn. If the following
conditions are satisfied:

1) the function f has bounded l-index;
2) the function Φ has bounded value L-distribution in the direction b,
3) for every r1 > 0 there exists r2 > 0 and r3 > 0 such that

Gr2(f ; l) ⊂ Φ(Gb
r1
(F ;L)) ⊂ Gr3(f ; l),

then the function F has bounded L-index in the direction b.
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Proof. Taking into account the condition 3) inequality (12) can be proved by analogy to the
proof of Proposition 1.

One should observe that

∂bF (z) = f ′(Φ(z)) · ∂bΦ(z). (17)

We choose r1 > 0. Then in view of condition 3) there exists r2 > 0 and r3 > 0 such that
Gr2(f ; l) ⊂ Φ(Gb

r1
(F ;L)) ⊂ Gr3(f ; l). Then f(w) ̸= 0 for all w ∈ C \ Gr2(f ; l). Hence, the

composite function f(Φ(z)) does not vanish for all z ∈ Cn \ Gb
r1
(F ;L). Therefore, we must

check only condition 2) from Theorem 4 for r = r1. It is sufficient to prove inequality (6) for
all z ∈ Cn \Gb

r1
(F ;L). Indeed, in view of (17) one has∣∣∣∣∂bF (z)

F (z)

∣∣∣∣ = ∣∣∣∣f ′(Φ(z))

f(Φ(z))

∣∣∣∣ · |∂bΦ(z)| (18)

Let f be of bounded l-index. Then by Theorem 3 for entire functions of single variable (see
also [6, 27]) inequality (6) is valid for the function f and for all w ∈ C \Gr2(f ; l) we obtain

|∂1f(w)|
|f(w)|

≤ P (r2)l(w) (19)

Substituting w = Φ(z) in (19) and applying this inequality to (18) we conclude that for all
z ∈ Cn \Gb

r1
(F ;L)∣∣∣∣∂bF (z)

F (z)

∣∣∣∣ = P (r2)l(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸
m times

) · |∂bΦ(z)| ≤ P (r2)L(z). (20)

Inequality (7) holds for the function F because the equation F (z0+ tb) = 0 is equivalent
the equation Φ(z0 + tb) = ck, where ck are zeros of the function f, k ∈ N. In view of
condition 2), the equation Φ(z0 + tb) = ck has at most p(r1) solutions for fixed k at the disc
{t : |t| ≤ r1

L(z0)
} for each r1 ∈ (0;∞). In view of condition 3) the set {Φ(z0+ tb) : |t| ≤ r1

L(z0)
}

can contain at most n(r3) zeros of the function f. Therefore, the set {z0 + tb : |t| ≤ r1
L(z0)

}
has at most p(r1) · n(r3) zeros of the function F. Hence, it follows inequality (7). Then by
Theorem 4 the function F has bounded L-index in the direction b.

Remark 1. Proposition 1, Proposition 2 and Proposition 3 contain new results even in one-
dimensional case, i.e. for n = 1 and m = 1. Moreover, the restrictions by the inner function of
the composition in Proposition 1 are significantly weaker than in Theorem 1 and Theorem 2.
We do not require validity of (3) and (5). But the weakening is achieved by an additional
assumption that the outer function of the composition does not vanish (Proposition 1). In
Proposition 3, inequalities (3) and (5) for the inner function are replaced by the condition
that inner function of the composition has bounded value L-distribution in the direction b
and exceptional set of the resulting function containing its zeros is covered by corresponding
exceptional set of the outer function for some radii and vice versa.

One should observe that Proposition 1 and Proposition 3 are new even if n = 1, m = 1,
b = 1 and l ≡ 1, i.e. in the case of entire functions of bounded index. Below we formulate
the corresponding corollaries for a composition of entire functions.
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Corollary 1. Let Φ, f : C → C be entire functions.
1) Suppose that l ∈ Q and l(z) ≥ |Φ′(z)| for all z ∈ C. If the function f has bounded

index, then the function F (z) = f(Φ(z)) has bounded l-index.
2) Suppose that l ∈ Q, Φ′(z) ̸= 0 be such that l(z) ≤ |Φ′(z)| for all z ∈ D. And if the

function F (z) = f(Φ(z)) has bounded l-index, then the function f has bounded index.

Corollary 2. Let Φ, f : C → C be entire functions and F (z) = f(Φ(z)). Suppose that l ∈ Q
and l(z) ≥ |Φ′(z)| for all z ∈ C. If the following conditions are satisfied:

1) the function f has bounded index;
2) the function Φ has bounded value l-distribution,
3) for every r1 > 0 there exists r2 > 0 and r3 > 0 such that

Gr2(f) ⊂ Φ(Gr1(F ; l)) ⊂ Gr3(f),

then the function F has bounded l-index.

If we choose Φ(z) = az + b (a, b, z ∈ C, a ̸= 0) then Φ′(z) = a. Putting l(z) = |a|, we
conclude that by Corollary 1 the function F (az + b) has bounded l-index. But for l2(z) =
θl1(z) (θ ∈ C) the entire function f has bounded l1-index if and only if f is of bounded
l2-index [26]. Therefore, the function F (az+b) has bounded index (with l ≡ 1) i.e. the linear
replacement z by az + b does no change index boundedness. An analogous fact is also valid
for Φ(z) = a1z1 + . . .+ anzn + b.

Similarly, we can check assumptions of Proposition 3 for Φ(z) = az+b (a, b, z ∈ C, a ̸= 0).
As above, we put l(z) = |a|. The function Φ has bounded value l-distribution, because for
any w ∈ C and for any z0 ∈ C the equation az+b = w has at most one solution z = (w−b)/a
lying in the disc |z−z0| ≤ r/|a|, r > 0. Since |a|r1/l(z) = r1, the condition 3) of the corollary
is also satisfied because we can choose r2 and r3 such that r2 < r1 < r3. Thus, by Corollary 2
the function F (az + b) has bounded l-index and, as above, F is of bounded index (with
l ≡ 1) i.e. the linear replacement z by az + b again does no change index boundedness.

Moreover, in view of Proposition 2 an affine trasformation also does not change index
boundedness in any direction b. Indeed, let

Φj(z) = cj +
∑n

k=1 aj,kzk, where aj,k, cj ∈ C, j ∈ {1, . . . ,m}.
Suppose that a fuction f has bounded index in the each direction 1j, j ∈ {1, . . . ,m}, i.e.
l ≡ 1. Then we construct the function

L(z) =
∑m

j=1 |∂bΦj(z)| =
∑m

j=1 |∂b(cj +
∑n

k=1 aj,kzk)| =
∑m

j=1 |aj,kbk|.
Then by Proposition 2 the function

f(c1 +
∑n

k=1 a1,kzk, c2 +
∑n

k=1 a2,kzk, . . . , cm +
∑n

k=1 am,kzk)

has the bounded L-index in the direction b. But the functions L is a constant function. It
is known that a constant does not change index boundedness in a direction (see [3]). Thus,
the function f(c1 +

∑n
k=1 a1,kzk, c2 +

∑n
k=1 a2,kzk, . . . , cm +

∑n
k=1 am,kzk) has bounded index

in the direction b.
Note that Theorem 1, Theorem 2, Proposition 1, Proposition 3 differ only conditions by

the outer and inner function of the composition. But they claims that the composite function
has bounded L-index in the direction b with the same functions.

L(z)=
∣∣∂bΦ(z)∣∣· l(Φ(z),. . .,Φ(z)︸ ︷︷ ︸

m times

) or L(z) = max {1, |∂bΦ(z)|} · l(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸
m times

).
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But there exists functions which does not satisfy simultaneously conditions of these all
assertions.

For example, we put
f(z) = ez, Φ(z) = z2.

Then the function Φ does not satisfy Theorem 1 because it vanishes at the point z = 0. But
these functions satisfy conditions of Theorem 2. Indeed, the function f has bounded index
with l ≡ 1 and its index equals zero N(f, 1) = 0 because f ′ ≡ f. Hence, inequality (5) is valid
for k = 1. It transforms in the following obvious inequality |Φ′(z)| ≤ K|Φ′(z)|. Therefore, by
Theorem 2 the function f(Φ(z)) = ez

2 has bounded L-index with L(z) = max{1, 2|z|}.
In the introduction we show that the functions f(z) = e2z and Φ(z) = z3/3 + z does

not satisfy conditions of Theorem 1 and Theorem 2. Then we can apply Proposition 1 and
conclude the function f(Φ(z)) = e2(z

3/3+z) has bounded L-index with L(z) = |z|2 + 1.
Finally, the functions f(z) = z · ez, Φ(z) = z2 do not obey conditions of Theorem 1,

Theorem 2 and Proposition 1. But they satisfy conditions of Proposition 3 because the
index of the f equals to 1 with l ≡ 1 and the function Φ as a polynomial has bounded value
L-distribution with L(z) ≥ 2|z| and for each r1 > 0 we can choose r2 < r21 < r3 such that

Gr2(f) ⊂ Φ(Gr1(F ;L)) ⊂ Gr3(f).

Then by Proposition 3 the function f(Φ(z)) = z2ez
2 has bounded L-index.
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