
Математичнi Студiї. Т.59, №1 Matematychni Studii. V.59, No.1

УДК 512.536

O. V. Gutik, M. S. Mykhalenych

ON A SEMITOPOLOGICAL SEMIGROUP BF
ω WHEN A FAMILY F

CONSISTS OF INDUCTIVE NON-EMPTY SUBSETS OF ω

O. V. Gutik, M. S. Mykhalenych. On a semitopological semigroup BF
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Let BF

ω be the bicyclic semigroup extension for the family F of ω-closed subsets of ω
which is introduced in [19]. We study topologizations of the semigroup BF

ω for the family F of
inductive ω-closed subsets of ω. We generalize Eberhart-Selden and Bertman-West results about
topologizations of the bicyclic semigroup [6,12] and show that every Hausdorff shift-continuous
topology on the semigroup BF

ω is discrete and if a Hausdorff semitopological semigroup S
contains BF

ω as a proper dense subsemigroup then S \BF
ω is an ideal of S. Also, we prove the

following dichotomy: every Hausdorff locally compact shift-continuous topology on BF
ω with an

adjoined zero is either compact or discrete. As a consequence of the last result we obtain that
every Hausdorff locally compact semigroup topology on BF

ω with an adjoined zero is discrete
and every Hausdorff locally compact shift-continuous topology on the semigroup BF

ω ⊔ I with
an adjoined compact ideal I is either compact or the ideal I is open, which extent many results
about locally compact topologizations of some classes of semigroups onto extensions of the
semigroup BF

ω .

1. Introduction.We shall follow the terminology of [7,10,11,13,30]. By ω we denote the set
of all non-negative integers. Let P(ω) be the family of all subsets of ω. For any F ∈ P(ω)
and integer n we put nF = {n+ k : k ∈ F}.

A family F ⊆ P(ω) is called ω-closed if F1∩(−n+F2) ∈ F for all n ∈ ω and F1, F2 ∈ F .
A semigroup S is called inverse if for any element x ∈ S there exists a unique x−1 ∈ S

such that xx−1x = x and x−1xx−1 = x−1. The element x−1 is called the inverse of x ∈ S.
If S is an inverse semigroup then the semigroup operation on S determines the following

partial order ≼ on S: s ≼ t iff there exists e ∈ E(S) such that s = te, for s, t ∈ S. This order
is called the natural partial order on S [31].

The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by two
elements p and q and the condition pq = 1. Thus each element of C (p, q)) equals qmpn

for some m,n ∈ ω and the semigroup operation on C (p, q) can be described as follows
qkpl · qmpn = qk+m−min{l,m}pl+n−min{l,m},

for each k, l,m, n ∈ ω. It is well known that the bicyclic monoid C (p, q) is a bisimple (and
hence simple) combinatorial E-unitary inverse semigroup and every non-trivial congruence
on C (p, q) is a group congruence [10].
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On the other hand, we can we define the semigroup operation “·” on the set Bω = ω×ω
in the following way

(i1, j1) · (i2, j2) =

{
(i1 − j1 + i2, j2), if j1 ⩽ i2,

(i1, j1 − i2 + j2), if j1 ⩾ i2;

for each i1, i2, j1, j2 ∈ ω. It is well-known that the semigroup Bω is isomorphic to the bicyclic
monoid by the mapping h : C (p, q) → Bω, qkpl 7→ (k, l) (see: [10, Section 1.12] or [29, Exercise
IV.1.11(ii)]).

A topological (semitopological) semigroup is a topological space endowed with a continuous
(separately continuous) semigroup operation. If S is a semigroup and τ is a topology on S
such that (S, τ) is a topological semigroup, then we shall call τ a semigroup topology on S,
and if τ is a topology on S such that (S, τ) is a semitopological semigroup, then we shall
call τ a shift-continuous topology on S.

The well-known A. Weil Theorem states that every locally compact monothetic topological
group G (i.e., G contains a cyclic dense subgroup) is either compact or discrete (see [32]). A
semitopological semigroup S is called monothetic if it contains a cyclic dense subsemigroup.
Locally compact and compact monothetic topological semigroups were studied by Hewitt
[21], Hofmann [22], Koch [24], Numakura [28] and others (for more related information see
the books [8] and [23]). Koch in [24] posed the following problem: “If S is a locally compact
monothetic semigroup and S has an identity, must S be compact? ” From the other hand,
Zelenyuk in [33] constructed a countable monothetic locally compact topological semigroup
without an identity which is neither compact nor discrete and in [34] he constructed a
monothetic locally compact topological monoid with the same property. The topological
properties of monothetic locally compact (semi)topological semigroups are studied in [2,14,
35, 36]. In the paper [15] it is proved that every Hausdorff locally compact shift-continuous
topology on the bicyclic monoid with an adjoined zero is either compact or discrete. This
result was extended by Bardyla to the polycyclic monoid [3] and graph inverse semigroups [4],
and by Mokrytskyi to the monoid of order isomorphisms between principal filters of Nn with
an adjoined zero [27]. Also, in [18] it is proved that the extended bicyclic semigroup C 0

Z
with an adjoined zero admits continuum many different shift-continuous topologies, however
every Hausdorff locally compact semigroup topology on C 0

Z is discrete. In [5] Bardyla proved
that a Hausdorff locally compact semitopological McAlister semigroup M1 is either compact
or discrete. However, this dichotomy does not hold for the McAlister semigroup M2 and
moreover, M2 admits continuum many different Hausdorff locally compact inverse semigroup
topologies [5]. Also, different locally compact semitopological semigroups with zero were
studied in [16,17,26].

Next we shall describe the construction which is introduced in [19].
Let F be an ω-closed subfamily of P(ω). We can we define the semigroup operation “·”

on the set Bω × F in the following way

(i1, j1, F1) · (i2, j2, F2) =

{
(i1 − j1 + i2, j2, (j1 − i2 + F1) ∩ F2), if j1 ⩽ i2;

(i1, j1 − i2 + j2, F1 ∩ (i2 − j1 + F2)), if j1 ⩾ i2
for each i1, i2, j1, j2 ∈ ω. In [19] is proved that (Bω×F , ·) is an inverse semigroup. Moreover,
if a family F contains the empty set ∅ then the set I = {(i, j,∅) : i, j ∈ ω} is an ideal of
the semigroup (Bω × F , ·). For any ω-closed family F ⊆ P(ω) the following semigroup

BF
ω =

{
(Bω × F , ·)/I, if ∅ ∈ F ;
(Bω × F , ·), if ∅ /∈ F

is defined in [19]. The semigroup BF
ω generalizes the bicyclic monoid and the countable semi-
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group of matrix units. In [19] it is provd that BF
ω is a combinatorial inverse semigroup and

Green’s relations, the natural partial order on BF
ω and its set of idempotents are described.

The criteria of simplicity, 0-simplicity, bisimplicity, 0-bisimplicity of the semigroup BF
ω and

when BF
ω has the identity, is isomorphic to the bicyclic semigroup or the countable semi-

group of matrix units are given. In particularly in [19] is proved that the semigroup BF
ω is

isomorphic to the semigrpoup of ω×ω-matrix units if and only if F consists of a singleton
set and the empty set.

A subset F of ω is called inductive if n + 1 ∈ F provided n ∈ F . It is obvious that
the empty set ∅ is inductive. Also, a set F ⊆ ω is inductive if and only if F ⊆ −1 + F
(see [19, Lemma 6]). If F is a family in P(ω) of non-empty inductive subsets then the
semigroup BF

ω is a simple monoid (see [19, Corollary 2 and Theorem 4]). Group congruences
on the semigroup BF

ω and its homomorphic retracts when the family F consists of inductive
non-empty subsets of ω are studied in [20]. It is proven that a congruence C on BF

ω is a group
congruence if and only if its restriction on a subsemigroup of BF

ω , which is isomorphic to the
bicyclic semigroup, is not the identity relation. Also, all non-trivial homomorphic retracts of
the semigroup BF

ω are described.
By Proposition 1 of [20] for any ω-closed family F of inductive subsets in P(ω) there

exists an ω-closed family F ∗ of inductive subsets in P(ω) such that [0) ∈ F ∗ and the
semigroups BF

ω and BF∗

ω are isomorphic. Hence without loss of generality we may assume
that the family F contains the set [0). Also, ω-closeness of F implies that if [k) ∈ F for
some k ∈ ω then [l) ∈ F for all l ⩽ k with l ∈ ω.

In this paper we extend the results of [6, 12, 15] onto the semigroup BF
ω for an ω-closed

family F of inductive nonempty subsets of ω. In particular we show that every Hausdorff
shift-continuous topology on the semigroup BF

ω is discrete and if a Hausdorff semitopological
semigroup S contains BF

ω as a proper dense subsemigroup then S \ BF
ω is an ideal of S.

Also, we prove that every Hausdorff locally compact shift-continuous topology on BF
ω with

an adjoined zero is either compact or discrete.

2. On a topologization and a closure of the monoid BF
ω Later we shall need the

following proposition from [19], which describes the natural partial order on the semigroup
BF

ω in the general case of F .

Proposition 1 ([19, Proposition 6]). Let (i1, j1, F1) and (i2, j2, F2) be non-zero elements
of the semigroup BF

ω . Then (i1, j1, F1) ≼ (i2, j2, F2) if and only if F1 ⊆ −k + F2 and
i1 − i2 = j1 − j2 = k for some k ∈ ω.

Proposition 2. For every non-zero elements (i1, j1, F1) and (i2, j2, F2) of the semigroup BF
ω ,

both sets {
(i, j, F ) ∈ BF

ω : (i1, j1, F1) · (i, j, F ) = (i2, j2, F2)
}
,{

(i, j, F ) ∈ BF
ω : (i, j, F ) · (i1, j1, F1) = (i2, j2, F2)

}
are finite.

Proof. It is obvious that the set A =
{
(i, j, F ) ∈ BF

ω : (i1, j1, F1) · (i, j, F ) = (i2, j2, F2)
}

is a
subset of

B =
{
(i, j, F ) ∈ BF

ω : (i1, j1, F1)
−1 · (i1, j1, F1) · (i, j, F ) = (i1, j1, F1)

−1 · (i2, j2, F2)
}
.

By Lemmas 2 and 3 from [19], (i1, j1, F1)
−1 · (i1, j1, F1) = (j1, j1, F1) is an idempotent of BF

ω ,
and hence Lemma 1.4.6 of [25] implies that

B =
{
(i, j, F ) ∈ BF

ω : (i1, j1, F1)
−1 · (i2, j2, F2) ≼ (i, j, F )

}
.
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Proposition 1 implies that there exist finitely many i, j ∈ ω and F ∈ F such that
(i1, j1, F1)

−1 · (i2, j2, F2) ≼ (i, j, F ), and hence the set A is finite.

The following theorem generalizes the results on the topologizabily of the bicyclic monoid
obtained in [12] and [6].

Theorem 1. Let F be a family of non-empty inductive subsets of ω. Then every Hausdorff
shift-continuous topology τ on the semigroup BF

ω is discrete.

Proof. For any element (i, j, [k)) of the semigroup BF
ω we have that

(0, 0, [1)) · (i, j, [k)) = (i, j, (−i+ [1)) ∩ [k)) =


(0, j, [1)), if i = 0 and k ⩽ 1;

(0, j, [k)), if i = 0 and k ⩾ 2;

(i, j, [k)), if i ⩾ 1
and

(i, j, [k)) · (0, 0, [1)) = (i, j, [k) ∩ (−j + [1))) =


(i, 0, [1)), if j = 0 and k ⩽ 1;

(i, 0, [k)), if j = 0 and k ⩾ 2;

(i, j, [k)), if j ⩾ 1.
So (

(0, 0, [1)) ·BF
ω

)
∪
(
BF

ω · (0, 0, [1))
)
= BF

ω \ {(0, 0, [0))}. (1)

Since τ is Hausdorff, every retract of
(
BF

ω , τ
)

is its closed subset. It is obvious that (0, 0, [1))·
BF

ω and BF
ω · (0, 0, [1)) are retracts of the topological space

(
BF

ω , τ
)
, because (0, 0, [1))

is an idempotent of the semigroup BF
ω . Since any retract of Hausdorff space is closed

(see: [13, Ex. 1.5.c]), equality (1) implies that the point (0, 0, [0)) is an isolated point of
the space

(
BF

ω , τ
)
. By Corollary 2 of [19], BF

ω is a simple semigroup. This implies that
for any (i, j, [k)) ∈ BF

ω there exist (i1, j1, [k1)), (i2, j2, [k2)) ∈ BF
ω such that (i1, j1, [k1)) ·

(i, j, [k)) · (i2, j2, [k2)) = (0, 0, [0)), and moreover by Proposition 2 the equation (i1, j1, [k1)) ·
χ·(i2, j2, [k2)) = (0, 0, [0)) has finitely many solutions in the semigroup BF

ω . Since (0, 0, [0)) is
an isolated point of

(
BF

ω , τ
)
, the separate continuity of the semigroup operation in

(
BF

ω , τ
)

and the above arguments imply that
(
BF

ω , τ
)

is the discrete space.

The following proposition generalizes the results obtained for the bicyclic monoid in [12]
and [15].

Proposition 3. Let F be a family of non-empty inductive subsets of ω and BF
ω be a proper

dense subsemigroup of a Hausdorff semitopological semigroup S. Then I = S\BF
ω is a closed

ideal of S.

Proof. By Theorem 1, BF
ω is a dense discrete subspace of S, and hence BF

ω is an open
subspace of S.

Fix an arbitrary element y ∈ I. If xy = z /∈ I for some x ∈ BF
ω then there exists an

open neighbourhood U(y) of the point y in the space S such that {x} · U(y) = {z} ⊂ BF
ω .

The neighbourhood U(y) contains infinitely many elements of the semigroup BF
ω , which

contradicts Proposition 2. The obtained contradiction implies that xy = z ∈ I for all x ∈ BF
ω

and y ∈ I. The proof of the statement that yx ∈ I for all x ∈ BF
ω and y ∈ I is similar.

Suppose to the contrary that xy = z /∈ I for some x, y ∈ I. Then z ∈ BF
ω and the separate

continuity of the semigroup operation in S implies that there exist open neighbourhoods
U(x) and U(y) of the points x and y in S, respectively, such that {x} · U(y) = {z} and
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U(x)·{y} = {z}. Since both neighbourhoods U(x) and U(y) contain infinitely many elements
of the semigroup BF

ω , any of equalities {x} · U(y) = {z} and U(x) · {y} = {z} contradicts
mentioned above Proposition 2. The obtained contradiction implies that xy ∈ I.

3. On a semitopological locally compact monoid BF
ω with an adjoined zero. In this

section we assume that S = BF
ω ⊔ {0}, i.e., S the semigroup BF

ω with an adjoined zero 0.
We observe that the semigroup S is isomorphic to the semigroup BF0

ω , where the family F 0

consists of elements of F and the empty set ∅ (see [19, Lemma 1]). Later in the following
series of lemmas we assume that S is a Hausdorff locally compact semitopological semigroup
with the nonisolated zero 0 and the family F is ω-closed and consists of nonempty inductive
subsets of ω.

By Theorem 1, BF
ω is a discrete subspace of S. This implies the following lemma.

Lemma 1. Let U(0) and V (0) be any compact-and-open neighbourhoods of 0 in S. Then
the set U(0) \ V (0) is finite.

Since BF
ω is a discrete subspace of S without loss of generality we consider only compact-

and-open neighbourhoods of zero in S.
In the general case if the family F contains an inductive set F then

B{F}
ω = {(i, j, F ) : i, j ∈ ω}

is an inverse subsemigroup of BF
ω . Moreover, if F is non-empty then by Proposition 3 of [19],

B{F}
ω is isomorphic to the bicyclic semigroup.

Lemma 2. For any neighbourhood U(0) of 0 in S there exists F ∈ F such that the set
U(0) ∩B{F}

ω is infinite.

Proof. The statement of the lemma is obvious when the family F is finite. Hence we assume
that F is infinite.

Suppose to the contrary that the set U(0)∩B{F}
ω is finite for any F ∈ F . By the separate

continuity of the semigroup operation in S there exists a neighbourhood V (0) ⊆ U(0) of 0
in S such that V (0) · (0, 1, [0)) ⊆ U(0). Since

(i, j, F ) · (0, 1, [0)) = (i, j + 1, F )

for all i, j ∈ ω and any F ∈ F , we obtain that U(0)\V (0) is an infinite set, which contradicts
Lemma 1. The obtained contradiction implies the statement of the lemma.

Lemma 3. For any neighbourhood U(0) of 0 in S there exists F ∈ F such that the set
B{F}

ω \ U(0) is finite.

Proof. By Lemma 2 there exists F ∈ F such that the set U(0) ∩ B{F}
ω is infinite. By

Theorem 1 all non-zero elements of the semigroup S are isolated points in S, and hence
B{F}

ω ∪ {0} is a closed subset of S, which by Corollary 3.3.10 of [13] is locally compact. It
obvious that B{F}

ω ∪{0} is a subsemigroup of S, which by Proposition 3 of [19] is algebraically
isomorphic to the bicyclic monoid with an adjoined zero. By Theorem 1 of [15], B{F}

ω ∪ {0}
is compact, which implies the statement of the lemma.

Lemma 4. For any neighbourhood U(0) of 0 in S and any F ∈ F the set B{F}
ω \ U(0) is

finite.
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Proof. If the family F is a singleton then the statement of the lemma follows from Theorem 1
of [15]. Hence we assume that F is not a singleton.

We shall prove the statement of the lemma by induction.
By Lemma 3 there exists F0 ∈ F such that the set B{F0}

ω \ U(0) is finite. Since F0 is
inductive there exists k0 ∈ ω such that F = [k0). This proves that the base of induction
holds.

Next we shall show the inductive step. We consider two cases:

(1) if [k), [k + 1) ∈ F then the statement that the set B{[k)}
ω \ U(0) is finite implies that

the set B{[k+1)}
ω \ U(0) is finite, too;

(2) if [k), [k − 1) ∈ F then the statement that the set B{[k)}
ω \ U(0) is finite implies that

the set B{[k−1)}
ω \ U(0) is finite, too.

(1) The neighbourhood U(0) contains almost all elements of the form (i, j, [k)), i, j ∈ ω.
The separate continuity of the semigroup operation in S implies that there exists a nei-
ghbourhood V (0) ⊆ U(0) of 0 in S such that (1, 1, [k + 1)) · V (0) ⊆ U(0) and the set
U(0) \ V (0) is finite. This implies that V (0) contains almost all elements of the semigroup
B{[k)}

ω . Then the equalities

(1, 1, [k + 1)) · (0, p, [k)) = (1, 1 + p, [k + 1) ∩ (−1 + [k))) = (1, 1 + p, [k + 1)), p ∈ ω,

implies that the neighbourhood U(0) contains infinitely many elements of the semigroup
B{[k+1)}

ω . By Corollary 3.3.10 of [13] and Proposition 3 of [19], B{[k)}
ω ∪ {0} is a locally

compact semitopological semigroup which is algebraically isomorphic to the bicyclic monoid
with an adjoined zero. By Theorem 1 of [15] the set B{[k+1)}

ω \ U(0) is finite.
(2) Since the neighbourhood U(0) contains almost all elements of the form (i, j, [k)),

i, j ∈ ω, the separate continuity of the semigroup operation in S implies that there exists
a neighbourhood V (0) ⊆ U(0) of 0 in S such that (1, 1, [0)) · V (0) ⊆ U(0) and the set
U(0) \ V (0) is finite. Since V (0) contains almost all elements of the semigroup B{[k)}

ω and
the set U(0) \ V (0) is finite, the equalities

(1, 1, [0)) · (0, p, [k)) = (1, 1 + p, [0) ∩ (−1 + [k)) = (1, 1 + p, [k − 1)), p ∈ ω,

imply that the neighbourhood U(0) contains infinitely many elements of the semigroup
B{[k−1)}

ω . By Corollary 3.3.10 of [13] and Proposition 3 of [19], B{[k−1)}
ω ∪ {0} is a locally

compact semitopological semigroup which is algebraically isomorphic to the bicyclic monoid
with an adjoined zero. By Theorem 1 of [15] the set B{[k0−1)}

ω \ U(0) is finite.

Lemma 5. For any neighbourhood U(0) of 0 in S the set S \ U(0) is finite.

Proof. In the case when the family F is finite the statement of the lemma follows from
Lemma 4, and hence later we assume that F is infinite.

Suppose to the contrary that there exists a neighbourhood U(0) of 0 in S such that the
set S \U(0) is infinite. By Lemma 4 there exists a sequence {(mi, ni, [ki))}i∈ω ⊆ S \{0} such
that ki = kj if and only if i = j and (mi, ni, [ki)) /∈ U(0) and (mi + 1, ni + 1, [ki)) ∈ U(0)
for all i ∈ ω. By the separate continuity of the semigroup operation in S there exists a
neighbourhood V (0) ⊆ U(0) of 0 in S such that (0, 1, [0)) · V (0) · (1, 0, [0)) ⊆ U(0). Then
we have that

(0, 1, [0)) · (mi + 1, ni + 1, [ki)) · (1, 0, [0)) = (mi, ni + 1, (−1 + [0)) ∩ [ki)) · (1, 0, [0)) =
= (mi, ni + 1, [ki)) · (1, 0, [0)) = (mi, ni, [ki) ∩ (−1 + [0))) = (mi, ni, [ki)),
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which contradicts that U(0)\V (0) is an infinite set, a contradiction. The obtained contradi-
ction implies the statement of the lemma.

Definition 1 ([9]). We shall say that a semigroup S has the F-property if for every a, b, c, d ∈
S1 the sets {x ∈ S | a · x = b} and {x ∈ S | x · c = d} are finite.

Lemma 6 was proved in [17] and it shows that on the semigroup T with the F-property
there exists a Hausdorff compact shift-continuous topology τAc.

Lemma 6 ([17]). Let T be a semigroup with the F-property and T 0 be the semigroup T
with an adjoined zero. Let τAc be the topology on T 0 such that

(i) every element of T is an isolated point in the space (T 0, τAc);

(ii) the family B(0) = {U ⊆ T 0 : U ∋ 0 and T 0 \ U is finite} determines a base of the to-
pology τAc at zero 0 ∈ T 0.

Then (T 0, τAc) is a Hausdorff compact semitopological semigroup.

Remark 1. By Theorem 1 the discrete topology is a unique Hausdorff shift-continuous
topology on a semigroup T . So τAc is the unique compact shift-continuous topology on T .

Theorem 2. Let F be a family of inductive non-empty subsets of ω and S be the semigroup
BF

ω with an adjoined zero. Then every Hausdorff locally compact shift-continuous topology
on S is either compact or discrete.

Proof. In the case when zero of S is an isolated point of S the statement of the theorem
follows from Theorem 1. If zero of S is a non-isolated point of S then we apply Lemma 5.

Since the bicyclic monoid embeds into no Hausdorff compact topological semigroup [1]
and by Proposition 3 of [19] the semigroup BF

ω contains an isomorphic copy of the bicyclic
monoid, Theorem 2 implies the following theorem.

Theorem 3. Let F be a family of inductive non-empty subsets of ω and S be the semigroup
BF

ω with an adjoined zero. Then every Hausdorff locally compact semigroup topology on S
is discrete.

Remark 2. On the other hand, in [15] is constructed the Čech-complete non-discrete metri-
zable semigroup topology on the bicyclic semigroup with the adjoined zero.

We need the following simple lemma, which is implied from separate continuity of the
semigroup operation in semitopological semigroups.

Lemma 7. Let X be a Hausdorff semitopological semigroup and I be a compact ideal
in X. Then the Rees-quotient semigroup X/I with the quotient topology is a Hausdorff
semitopological semigroup.

The proof of the following lemma is simple (see [17]).

Lemma 8. Let X be a Hausdorff locally compact space and I be a compact subset of X.
Then there exists an open neighbourhood U(I) of I with the compact closure U(I).

Theorem 4. Let F be a family of inductive non-empty subsets of ω. Let (SI , τ) be a
Hausdorff locally compact semitopological semigroup, where SI = BF

ω ⊔I and I is a compact
ideal of SI . Then either (SI , τ) is a compact semitopological semigroup or the ideal I is open.
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Proof. Suppose that I is not open. By Lemma 7 the Rees-quotient semigroup SI/I with
the quotient topology τq is a semitopological semigroup. Let π : SI → SI/I be the natural
homomorphism which is a quotient map. Since the Rees-quotient semigroup SI/I is naturally
isomorphic to the semigroup S, without loss of generality we can assume that π(SI) = S
and the image π(I) is the zero 0 of S.

By Lemma 8 there exists an open neighbourhood U(I) of I with the compact closure
U(I). Since by Theorem 1 every point of BF

ω is isolated in (SI , τ) we have that U(I) = U(I)
and its image π(U(I)) is compact-and-open neighbourhood of zero in S. Since for any open
neighbourhood V (I) of I in (SI , τ) the set U(I) ∩ V (I) is compact, Theorem 2 implies that
S \ π(U(I)) is finite for any compact-and-open neighbourhood U(I) of I in (SI , τ). Then
compactness of I implies that (SI , τ) is compact as well.

Since the bicyclic monoid embeds into no Hausdorff compact topological semigroup [1]
and by Proposition 3 of [19] the semigroup BF

ω contains an isomorphic copy of the bicyclic
monoid, Theorem 4 implies

Theorem 5. Let F be an ω-closed family of inductive non-empty subsets of ω. Let (SI , τ)
be a Hausdorff locally compact topological semigroup, where SI = BF

ω ⊔I and I is a compact
ideal of SI . Then the ideal I is open.

Acknowledgements. The authors are grateful to the referee and the editor for several
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