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The article is devoted to mappings with bounded and finite distortion of planar domains.
Our investigations are devoted to the connection between mappings of the Sobolev class and
upper bounds for the distortion of the modulus of families of paths. For this class, we have
proved the Poletsky-type inequality with respect to the so-called inner dilatation of the order p.
We separately considered the situations of homeomorphisms and mappings with branch points.
In particular, we have established that homeomorphisms of the Sobolev class satisfy the upper
estimate of the distortion of the modulus at the inner and boundary points of the domain.
In addition, we have proved that similar estimates of capacity distortion occur at the inner
points of the domain for open discrete mappings. Also, we have shown that open discrete and
closed mappings satisfy some estimates of the distortion of the modulus of families of paths at
the boundary points. The results of the manuscript are obtained mainly under the condition
that the so-called inner dilatation of mappings is locally integrable. The main approach used
in the proofs is the choice of admissible functions, using the relations between the modulus
and capacity, and connections between different modulus of families of paths (similar to Hesse,
Ziemer and Shlyk equalities). In this context, we have obtained some lower estimate of the
modulus of families of paths in Sobolev classes. The manuscript contains some examples related
to applications of obtained results to specific mappings.

1. Introduction. This article is devoted to establishing estimates of the distortion of the
modulus of families of paths under mappings. The study of modulus and capacity inequalities
is fundamentally important, since they are the main tools for the study of various mappings.
In this sense, we could point to a fairly wide range of applications in which the modulus and
capacity estimates are used. For example, such estimates participate under establishing the
equicontinuity of families of maps, the removability of an isolated singularity, the possibility
of a continuous extension to the boundary, see, e.g. [2]–[4], [7], [11], [12], [16]–[19], [21], [22]
and [36]. In addition, modulus (capacity) inequalities may be used in proofs of the existence
theorems of Beltrami equations and the investigation of the Dirichlet problem for it (see,
e.g., [5], [8], [19], [24] and [32]).

The main object of the study is the Sobolev classes on the plane. Our manuscript refers to
the case when the inequality under study involves an inner dilatation of an arbitrary order.
In addition, the mapping can admit branch points. Similar and close results of the authors
may be found in [15], [27], [29] and [30].
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Let us turn to the definitions and the formulation of the main result. In what follows, D
is a domain in C and dm(z) denotes the element of the Lebesgue measure on C. As a rule,
a mapping f : D → C is assumed to be sense-preserving, moreover, we assume that f has
partial derivatives in real and imaginary parts almost everywhere. Put z = x+ iy, i2 = −1,
fz = (fx + ify) /2 and fz = (fx − ify) /2. Note that the Jacobian of f at z ∈ D is calculated
by the formula

J(z, f) = |fz|2 − |fz|2 .

Given p ⩾ 1, the inner dilatation of the order p is defined as

KI,p(z, f) =
|fz|2 − |fz|2

(|fz| − |fz|) p
(1)

for J(z, f) ̸= 0; an addition, we set KI,p(z, f) = 1 for f ′(z) = 0 and KI,p(z, f) = ∞
otherwise.

Recall the definition of Sobolev classes, which is the key to this manuscript. In what
follows, Ck

0 (U) denotes the space of functions u : U → R with a compact support in U,
having k partial derivatives with respect to any variable that are continuous in U. We also
recall the concept of a generalized Sobolev derivative (see, for example, [23, Section 2, Ch. I]).
Let U be an open set, U ⊂ C, u : U → R some function, u ∈ L 1

loc(U). Suppose there is a
function v ∈ L 1

loc(U) such that∫
U

∂φ

∂xj
(z)u(z) dm(z) = −

∫
U

φ(z)v(z) dm(z)

for any function φ ∈ C1
0(U), j ∈ {1, 2}. Then we say that the function v is a generalized

derivative of the first order of the function u with respect to xj and denoted by ∂u
∂xj

(z) := v.

Here z = x1 + ix2, i
2 = −1.

A function u ∈ W 1,1
loc (U) if u has generalized derivatives of the first order with respect to

each of the variables in U, which are locally integrable in U.
A mapping f : D → C, f(z) = u(z) + iv(z), belongs to the Sobolev class W 1,1

loc , write
f ∈ W 1,1

loc (D), if u and v have generalized partial derivatives of the first order, which are
locally integrable in D in the first degree. We write f ∈ W 1,k

loc (D), k ∈ N, if all coordinate
functions f = (f1, . . . , fn) have generalized partial derivatives of the first order, which are
locally integrable in D to the degree k.

Recall that a mapping f between domains D and D ′ in C is of finite distortion if f ∈ W 1,1
loc

and, besides that, there is a function K(z) <∞ a.e. such that

∥f ′(z)∥2 ⩽ K(z) · J(z, f)

for a.e. z ∈ D, where ∥f ′(z)∥ = |fz|+ |fz|. For mappings of finite distortion, we refer to [11]
and to the reference therein.

Let Q : C → R be a Lebesgue measurable function satisfying the condition Q(z) ≡ 0 for
z ∈ C \D. Let z0 ∈ D, z0 ̸= ∞,

B(z0, r) = {z ∈ C : |z − z0| < r} , S(z0, r) = {z ∈ C : |z − z0| = r} , (2)
A = A(z0, r1, r2) = {z ∈ C : r1 < |z − z0| < r2} . (3)
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Recall that a path will be called a continuous mapping γ : I → Rn of a segment, interval or
half-interval I ⊂ R into n-dimensional Euclidean space Rn. By a family of paths Γ we mean
some fixed set of paths γ. A Borel function ρ : Rn → [0,∞] is called admissible for Γ, abbr.
ρ ∈ admΓ, if

∫
γ
ρ(x)|dx| ⩾ 1 for each (locally rectifiable) γ ∈ Γ. For α ⩾ 1, we define the

quantity

Mα(Γ) = inf
ρ∈admΓ

∫
Rn

ρα(x) dm(x) (4)

and call Mα(Γ) α-modulus of Γ [35, 6.1]; here m stands for the n-dimensional Lebesgue
measure. If α = n, we write M(Γ) :=Mn(Γ). Given α ⩾ 1, a mapping f : D → C is called a
ring Q-mapping at a point z0 ∈ D \ {∞} with respect to α-modulus, if the condition

Mα(f(Γ(C1, C2, D))) ⩽
∫

A∩D

Q(z) · η α(|z − z0|) dm(z) (5)

holds for all 0 < r1 < r2 < d0 := dist (z0, ∂D), for any continua C1 ⊂ B(z0, r1), C2 ⊂
D \B(z0, r2) and all Lebesgue measurable functions η : (r1, r2) → [0,∞] such that

r2∫
r1

η(r) dr ⩾ 1 . (6)

A mapping f is called a ring Q-mapping in D with respect to α-modulus, if condition (5) is
satisfied at every point z0 ∈ D, and a ring Q-mapping in D with respect to α-modulus, if
the condition (5) holds at every point z0 ∈ D. For the properties of such mappings see [19]
and [24].

Recall that a pair E = (A, C), where A is an open set in Rn, and C is a compact subset
of A, is called condenser in Rn.

Let G be an open subset of Rn and I = {x ∈ Rn : aj < xj < bj, j = 1, . . . , n} an open
n-dimensional interval. A mapping f : I → Rn is said to belong to the class ACL (absolutely
continuous on lines) if it is absolutely continuous on almost all intervals of straight lines in I
which are parallel to coordinate axes. We say that a mapping f : G → Rn belongs to the
class ACL in G if the restriction f

∣∣
I

belongs to the class ACL for any interval I, I ⊂ G.
A quantity

cappE = capp (A, C) = inf
u∈W0(E)

∫
A

|∇u|p dm(x) , (7)

where dm(x) denotes the element of the Lebesgue measure in Rn, W0(E) = W0 (A, C) is
a family of all nonnegative absolutely continuous on lines (ACL) functions u : A → R with
compact support in A and such that u(x) ⩾ 1 on C, is called p-capacity of the condenser E.

The main results of the paper are the following.

Theorem 1. Let f : D → C be a homeomorphism with a finite distortion and let 1 < α ⩽ 2.
Assume that KI,α(z, f) ∈ L1

loc(D). Then f satisfies the relation (5) at any point z0 ∈ D\{∞}
with Q(z) = KI,α(z, f).

For a mapping f : D → Rn, a set E ⊂ D, and y ∈ Rn, we define the multiplicity function
N(y, f, E) to be the number of preimages of y in E, i.e.,

N(y, f, E) = card {x ∈ E : f(x) = y} , N(f, E) = sup
y∈Rn

N(y, f, E). (8)
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Let X and Y be metric spaces. A mapping f : X → Y is discrete if f −1(y) is discrete for
all y ∈ Y and f is open if f maps open sets onto open sets. A mapping f : X → Y is called
closed if f(A) is closed in f(X) whenever A is closed in X. For mappings with a branching,
we have the following.

Theorem 2. Let f : D → C be an open and discrete bounded mapping with a finite di-
stortion such that N(f,D) < ∞. Let 1 < α ⩽ 2 and let z0 ∈ D. If KI,α(z, f) is integrable
over S(x0, r) for almost all r > 0, then f satisfies the relation

capα f(E) ⩽
∫
A

Nα−1(f,D)KI,α(z, f) · ηα(|z − z0|) dm(z) (9)

holds for E = (B(z0, r2), B(z0, r1)), A = A(z0, r1, r2), 0 < r1 < r2 < ε0 := dist (z0, ∂D), and
η : (r1, r2) → [0,∞] is arbitrary nonnegative Lebesgue measurable function satisfying the
relation (6). In particular, Theorem 2 holds if KI,α(z, f) ∈ L1

loc(D).

Note that, the relation (9) is given in terms of a capacity, but not a modulus. For the
modulus, we have the following.

Theorem 3. Let f : D → C be an open, discrete and closed bounded mapping of a finite
distortion and let 1 < α ⩽ 2. Assume that KI,α(z, f) ∈ L1

loc(D). Then, for any z0 ∈ ∂D, any
ε0 < d0 := sup

z∈D
|z − z0| and any compactum C2 ⊂ D \B(z0, ε0) there is ε1, 0 < ε1 < ε0, such

that the relation

Mα(f(Γ(C1, C2, D))) ⩽
∫

A(z0,ε,ε1)∩D

Nα−1(f,D)KI,α(z, f)η
α(|z − z0|) dm(z) (10)

holds for any ε ∈ (0, ε1) and any C1 ⊂ B(z0, ε) ∩D, where A(z0, ε, ε1) is defined in (3), and
η : (ε, ε1) → [0,∞] is an arbitrary Lebesgue measurable function satisfying the relation (6).

Remark 1. It should be noted that, the modulus and capacity inequalities for quasi-
conformal and quasiregular mappings (mappings with finite distortion) have been known
for a long time. In this case, the relations (5), (9) or (10) hold for α = 2 (see, for example,
[12], [19, Ch. 8] and [22, Ch. 2]). The fulfillment of modulus inequalities in Sobolev and
Orlicz-Sobolev classes is a separate topic. Relevant results related to the search of “minimal
conditions” under which these inequalities hold. As a rule, these conditions do not contain
N - and N −1-Luzin properties with respect to the Lebesgue measure. On the other hand, the
Sobolev classes have N -property on almost all circles, and this is already needed to prove
these relations. The same applies to the Orlicz-Sobolev classes in space, which have N -Luzin
property on almost all spheres under the Calderon condition.

In particular, estimates similar to (5), (9) or (10) were established in [15] for homeomorphi-
sms with α = 2 in (5), Q(z) = KI,2(z, f). The papers [27] and [30] deal with Orlicz-Sobolev
classes in space (the plane case is not studied here). The article [28] refer to the case when
the order of the modulus is equal to the dimension of the space. The case when mappings:
1) are defined in some planar domain, 2) are Sobolev mappings with a finite distortion, and
3) the order of the modulus α not necessarily equal to 2, is considered for the first time in
this manuscript.
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2. On lower estimates of the modulus. Let us give some important information concerni-
ng the relationship between the moduli of the families of paths joining the sets and the
moduli of the families of the sets separating these sets. Mostly this information can be found
in Ziemer’s publication, see [37]. Let G be a bounded domain in Rn, and C0, C1 are disjoint
compact sets in G. Put R = G \ (C0 ∪ C1) and R ∗ = R ∪ C0 ∪ C1. For a number p > 1 we
define a p-capacity of the pair C0, C1 relative to the closure G by the equality

Cp[G,C0, C1] = inf

∫
R

|∇u|p dm(x),

where the exact lower bound is taken for all functions u, continuous in R ∗, u ∈ ACL(R), such
that u = 1 on C1 and u = 0 on C0. These functions are called admissible for Cp[G,C0, C1].
We say that a set σ ⊂ Rn separates C0 and C1 in R ∗, if σ ∩ R is closed in R and there
are disjoint sets A and B, open relative R ∗ \ σ, such that R ∗ \ σ = A ∪ B, C0 ⊂ A and
C1 ⊂ B. Let Σ denote the class of all sets that separate C0 and C1 in R ∗. For the number
p′ = p/(p− 1) we define the quantity

M̃p′(Σ) = inf
ρ∈ãdmΣ

∫
Rn

ρ p′dm(x) (11)

where the notation ρ ∈ ãdmΣ means that ρ is nonnegative Borel function in Rn such that∫
σ∩R

ρ dHn−1 ⩾ 1 ∀σ ∈ Σ . (12)

Note that, according to the result of Ziemer,

M̃p ′(Σ) = Cp[G,C0, C1]
−1/(p−1) , (13)

see [37, Theorem 3.13] for p = n and [38, p. 50] for 1 < p < ∞, in addition, by the Hesse
result

Mp(Γ(E,F,D)) = Cp[D,E, F ] , (14)

where (E ∪ F ) ∩ ∂D = ∅ (see [9, Theorem 5.5]). Shlyk has proved that the requirement
(E ∪ F ) ∩ ∂D = ∅ can be omitted. In other words, the equality (14) holds for any disjoint
non-empty sets E,F ⊂ D (see [33, Theorem 1]).

Let S be a k-dimensional surface, in other words, S : Ds → Rn be a continuous mapping
of an open set Ds ⊂ Rk. We put N(y, S) = cardS−1(y) = card{x ∈ Ds : S(x) = y} and
recall this function a multiplicity function of the surface S with respect to a point y ∈ Rn.
Given a Borel set B ⊂ Rn, its k-measured Hausdorff area associated with the surface S is
determined by the formula

AS(B) = Ak
S(B) =

∫
B

N(y, S) dHky , (15)

see [6, item 3.2.1]. For a Borel function ρ : Rn → [0,∞] its integral over the k-dimensional
surface S is determined by the formula

∫
S

ρ dA =
∫
Rn

ρ(y)N(y, S) dHky. Surfaces of dimension
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k = n− 1 we will simply call “surfaces” without the prefix (n− 1). In what follows, Jkf(x)
denotes the k-dimensional Jacobian of the mapping f at a point x (see [6, § 3.2, Ch. 3]).

Let n ⩾ 2, and let Γ be a family of surfaces S. A Borel function ρ : Rn → R+ is called an
admissible for Γ, abbr. ρ ∈ admΓ, if ∫

S

ρn−1 dA ⩾ 1 (16)

for any S ∈ Γ. Given p ∈ (0,∞), a p-modulus of Γ is called the quantity

Mp(Γ) = inf
ρ∈admΓ

∫
Rn

ρp(x) dm(x) .

We also set M(Γ) :=Mn(Γ). Let p ⩾ 1. We say that some property P holds for p-almost all
surfaces of the domain D, if this property holds for all surfaces in D, except, maybe be, some
of their subfamily, p -modulus of which is zero. If we are talking about the conformal modulus
M(Γ) :=Mn(Γ), the prefix “n” in the expression “n-almost all”, as a rule, is omitted. We say
that a Lebesgue measurable function ρ : Rn → R+ is p-extensively admissible for the family
Γ of surfaces S in Rn, abbr. ρ ∈ extp admΓ, if the relation (16) is satisfied for p-almost all
surfaces S of the family Γ.

The next class of mappings is a generalization of quasiconformal mappings in the sense
of Gehring’s ring definition (see [7]; it is the subject of a separate study, see, e.g., [19,
Chapter 9]). Let D and D ′ be domains in Rn with n ⩾ 2. Suppose that x0 ∈ D \ {∞} and
Q : D → (0,∞) is a Lebesgue measurable function. A function f : D → D ′ is called a lower
Q-mapping at a point x0 relative to the p-modulus if

Mp(f(Σε)) ⩾ inf
ρ∈extp admΣε

∫
D∩A(x0,ε,r0)

ρp(x)

Q(x)
dm(x) (17)

for every spherical ring A(x0, ε, r0) = {x ∈ Rn : ε < |x − x0| < r0}, r0 ∈ (0, d0), d0 =
supx∈D |x − x0|, where Σε is the family of all intersections of the spheres S(x0, r) with the
domain D, r ∈ (ε, r0). If p = n, we say that f is a lower Q-mapping at x0. We say that f is
a lower Q-mapping relative to the p-modulus in A ⊂ D if (17) is true for all x0 ∈ A.

The following statement may be proved similarly to Theorem 9.2 in [19], so we omit the
arguments. We note that the statement of Theorem 9.2 in [19] refers to the case p = n, and
the statement given below related to a more general case p > n− 1.

Lemma 1. Let D, D ′ ⊂ Rn, let x0 ∈ D \ {∞}, and let Q be a Lebesgue measurable
function. A mapping f : D → D ′ is a lower Q-mapping relative to the p-modulus at a point
x0, p > n− 1, if and only if

Mp(f(Σε)) ⩾

r0∫
ε

dr

∥Q∥s(r)

for all ε ∈ (0, r0), r0 ∈ (0, d0), d0 = supx∈D |x − x0|, s = n−1
p−n+1

, where, as above, Σε

denotes the family of all intersections of the spheres S(x0, r) with D, r ∈ (ε, r0), ∥Q∥s(r) =
(
∫
D(x0,r)

Qs(x) dA)
1
s is the Ls-norm of Q over the set D(x0, r) = {x ∈ D : |x − x0| = r} =

= D ∩ S(x0, r).

The following statement may be found in [19, Theorem 9.1].
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Proposition 1. Let k = 1, . . . , n − 1, p ∈ [k,∞), and let E be a subset in an open set
Ω ⊂ Rn, n ⩾ 2. Then E is measurable by Lebesgue in Rn if and only if E is measurable with
respect to area on p-a.e. k-dimensional surface S in Ω. Moreover, m(E) = 0 if and only if
AS(E) = 0 on p-a.e. k-dimensional surface S in Ω, where AS(E) is defined in (15).

The following statement is established in Lemma 4.1 in [10].

Proposition 2. Let D be a domain in Rn, n ⩾ 2, p ∈ [n− 1,∞) and x0 ∈ D. The following
statements are equivalent:

(1) a property P holds for p-a.e. surfaces D(x0, r) := S(x0, r) ∩ D in the sense of p-
modulus, whenever the set E = {r ∈ R : P holds for D(x0, r)} is Lebesgue measurable;

(2) P holds for a.e. D(x0, r) with respect to the parameter r ∈ R.

The definition of quasiisometry, which is used below, can be found, for example, in [20,
section 1.1.7]. The following assertion holds (see, e.g., [20, Theorem, Section 1.1.7]).

Proposition 3. Sobolev classes are invariant under superposition with intrinsic quasii-
sometries. In other words, if f ∈ W 1,1

loc (D), D ⊂ Rn, n ⩾ 2, and g is a quasiisometric
mapping of some domain G ⊂ Rn onto D, then v = f ◦ g ∈ W 1,1

loc (G).

The following statement can be found in [20, Theorems 1 and 2, item I.1.1.3], cf. [22,
Proposition I.1.2].

Proposition 4. Given p ⩾ 1, we denote ACLp(D) the class of all mappings f : D → Rn,
n ⩾ 2, which belongs to the class ACL in D, the partitional derivatives of which are locally
integrable in D in the degree p. Then ACLp(D) = W 1,p

loc (D).

Proposition 5. If f : Rm → Rn is Lipschitzian and m ⩽ n, then∫
A

g(f(x))|J(x, f)| dm(x) =

∫
Rn

g(y)N(y, f, A) dHm(y)

whenever A is a Lebesgue measurable set, and g : Rn → R is measurable with a respect
to m-measured Hausdorff measure Hm. Here J(x, f) = det f ′(x) and N(y, f, A) is defined
in (8).

The following statement holds, cf. [13, Theorem 2.1], [27, Lemma 2.3] and [29, Lemma 2].

Theorem 4. Let p > 1 and let f : D → C be an open discrete mapping of a finite
distortion such that N(f,D) < ∞. Then f satisfies the relation (17) at any z0 ∈ D for
Q(z) = N(f,D) · Kp−1

I,α (z, f), where α := p
p−1

, KI,α(z, f) is defined by (1) and N(f,D) is
defined in (8).

Proof. In many ways, the proof of this lemma uses the scheme outlined in [28, Theorem 4].
Observe that, f = φ ◦ g, where g is some homeomorphism and φ is an analytic function, see
([34, 5.III.V]). Thus, f is differentiable almost everywhere (see, e.g., [14, Theorem III.3.1]).
Let B be a Borel set of all points z ∈ D, where f has a total differential f ′(z) and J(z, f) ̸= 0.
Observe that, B may be represented as a countable union of Borel sets Bl, l = 1, 2, . . . , such
that fl = f |Bl

are bi-lipschitzian homeomorphisms (see [6, items 3.2.2, 3.1.4 and 3.1.8]).
Without loss of generality, we may assume that the sets Bl are pairwise disjoint. Denote by
B∗ the set of all points z ∈ D in which f has a total differential, however, f ′(z) = 0.
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Since f is of finite distortion, f ′(z) = 0 for almost all z, where J(z, f) = 0. Thus, by the
construction the set B0 := D \ (B ∪B∗) has zero Lebesgue measure. Thus, by Proposition 1,
H 1(B0 ∩ Sr) = 0 for almost all circles Sr := S(z0, r) centered at z0 ∈ D, where, as usually,
H 1 denotes the linear Hausdorff measure, and “almost all” means in the sense of p-modulus.
Observe that, a function ψ(r) := H 1(B0∩Sr) is Lebesgue measurable by the Fubini theorem,
thus, the set E = {r ∈ R : H 1(B0∩Sr) = 0} is Lebesgue measurable. Now, by Proposition 2
we obtain that H 1(B0 ∩ Sr) = 0 for almost any r ∈ R.

Denote by D∗ := B(z0, ε0) ∩ D \ {z0}, 0 < ε0 < d0 = supz∈D |z − z0|, and consider the
division of D∗ by the ring segments Ak, k = 1, 2, . . . . Let φk be an auxiliary quasiisometry
which maps Ak onto rectangular Ãk such that arcs of circles map onto line segments. (For
instance, we may take φk(ω) = log(ω − z0), ω ∈ Ak). Consider a family of mappings gk =

f ◦ φ−1
k , gk : Ãk → C. Observe that, gk ∈ W 1,1

loc (see Proposition 3). Thus, gk ∈ ACL due to
Proposition 4. Since the absolute continuity on a fixed segment implies N -property with a
respect to the Lebesgue measure (see [6, Section 2.10.13]), we obtain that H 1((gk ◦φk)(B0∩
Ak ∩ Sr)) = H 1(f(B0 ∩ Ak ∩ Sr)) = 0. Therefore, by the subadditivity of the Hausdorff
measure, we obtain that H 1(f(B0 ∩ Sr)) = 0 for almost all r ∈ R.

Let us show that H 1(f(B∗ ∩ Sr)) = 0 for almost any r ∈ R. Indeed, let φk, gk and
Ak be such as above Ak = {z ∈ C : z − z0 = reiφ, r ∈ (rk−1, rk), φ ∈ (ψk−1, ψk)}, and let
Sk(r) be a part of the sphere S(z0, r) which belongs to the segment Ak, i.e. Sk(r) = {z ∈
C : z − z0 = reiφ, φ ∈ (ψk−1, ψk)}. By the construction, φk maps Sk(r) onto the segment
I(k, r) = {z ∈ C : z = log r + it, t ∈ (ψk−1, ψk)}. Applying Proposition 5, we obtain that

H 1(gk(φk(B∗ ∩ Sk(r)))) ⩽
∫

gk(φk(B∗∩Sk(r)))

N(y, gk, φk(B∗ ∩ Sk(r))) dH1y ⩽

⩽
∫

φk(B∗∩Sk(r))

|g ′
k(log r + it)|dt = 0

for almost all r ∈ (rk−1, rk). Thus, H 1(f(B∗ ∩ Sk(r))) = 0 for almost all r ∈ (rk−1, rk). By
subadditivity of the Hausdorff measure we obtain that H 1(f(B∗ ∩ Sr)) = 0 for almost all
r ∈ R, as required.

Let Γ be a family of all intersections of circles Sr, r ∈ (ε, ε0), ε0 < d0 = sup
z∈D

|z− z0|, with

a domain D. Given an admissible function ρ∗ ∈ adm f(Γ), ρ∗ ≡ 0 outside of f(D), we set
ρ ≡ 0 outside of D and on B0, and

ρ(z) : = ρ∗(f(z))

(
|fz|2 − |fz|2

|fz| − |fz|

)
for z ∈ D \B0 .

Given a fixed domain D ∗
r ∈ f(Γ), D ∗

r = f(Sr ∩D), observe that

D ∗
r =

∞⋃
j=0

f(Sr ∩Bj) ∪ f(Sr ∩B∗) ,

and, consequently, for almost all r ∈ (0, ε0), we obtain that

1 ⩽
∫
D ∗

r

ρ∗(y)dA∗ =
∞∑
j=0

∫
f(Sr∩Bj)

N(y, Sr ∩Bj)ρ∗(y)dH1y +

∫
f(Sr∩B∗)

N(y, Sr ∩B∗)ρ∗(y)dH 1y .

(18)
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Due to the above, by (18) we obtain that

1 ⩽
∫
D ∗

r

ρ∗(y)dA∗ =
∞∑
j=1

∫
f(Sr∩Bj)

N(y, Sr ∩Bj)ρ∗(y)dH 1y (19)

for almost all r ∈ (0, ε0). Observe that, l(f ′(z)) := min|h|=1 |f ′(z)h| = |fz| − |fz|, see [1,
relation (10).A.I]. Now, arguing on each Bj, j = 1, 2, . . ., by [6, item 1.7.6] and Proposition 5
and taking into account that |fz |2−|fz |2

|fz |−|fz | = ∥f ′(z)∥ ⩾ dA∗
dA we obtain that∫

Bj∩Sr

ρ dA =

∫
Bj∩Sr

ρ∗(f(z))

(
|fz|2 − |fz|2

|fz| − |fz|

)
dA =

=

∫
Bj∩Sr

ρ∗(f(z)) ·
(
|fz|2 − |fz|2

|fz| − |fz|

)
· 1

dA∗
dA

· dA∗

dA
dA ⩾

∫
Bj∩Sr

ρ∗(f(z)) ·
dA∗

dA
dA =

=

∫
f(Bj∩Sr)

ρ∗ dA∗ (20)

for almost any r ∈ (0, ε0). By (19) and (20) together with Proposition 2 we obtain that
ρ ∈ extp admΓ.

Using the change of variables on Bl, l = 1, 2, . . . (see Proposition 5), by the countable
additivity of the Lebesgue integral we obtain that∫

D

ρp(z)

Kp−1
I, p

p−1
(z)

dm(z) =
∞∑
l=1

∫
Bl

ρp(z)(|fz| − |fz|)p

|J(z, f)|p−1 dm(z) =

=
∞∑
l=1

∫
Bl

(|fz| − |fz|)p

|J(z, f)|p−1 · ρp∗(f(z))
(
(|fz|2 − |fz|2)p

(|fz| − |fz|)p
)
dm(z) =

=
∞∑
l=1

∫
Bl

ρp∗(f(z))|J(z, f)| dm(z) =
∞∑
l=1

∫
f(Bl)

ρp∗(y) dm(y) ⩽
∫

f(D)

N(f,D)ρp∗(y) dm(y) ,

as required.

We also need the following statement given in [22, Proposition 10.2, Ch. II].

Proposition 6. Let E = (A, C) be a condenser in Rn and let ΓE be the family of all paths
of the form γ : [a, b) → A with γ(a) ∈ C and |γ| ∩ (A \ F ) ̸= ∅ for every compact F ⊂ A.
Then capq E =Mq (ΓE) .

The following statement may be found in [25, Lemma 2].

Proposition 7. Let x0 ∈ Rn, p ⩾ 1, n ⩾ 2, 0 < r1 < r2 <∞, and let Q : Rn → [0,∞] be a
Lebesgue measurable function. Set A = A(x0, r1, r2) = {x ∈ Rn : r1 < |x− x0| < r2},

η0(r) =
1

Ir
n−1
p−1 q

1
p−1
x0 (r)

,
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where

I = I(x0, r1, r2) =

r2∫
r1

dr

r
n−1
p−1 q

1
p−1
x0 (r)

, qx0(r) :=
1

ωn−1rn−1

∫
S(x0,r)

Q(x) dHn−1

and ωn−1 denotes the area of the unit sphere Sn−1 := S(0, 1) in Rn. Then

ωn−1

Ip−1
=

∫
A

Q(x) · ηp0(|x− x0|) dm(x) ⩽
∫
A

Q(x) · ηp(|x− x0|) dm(x)

for any Lebesgue measurable function η : (r1, r2) → [0,∞] such that
r2∫
r1

η(r)dr = 1.

An analogue of the following assertion has been proved several times earlier under slightly
different conditions, see [28, Lemma 5] and [31, Lemma 4.2]. In the formulation given below,
this result is proved for the first time.

Lemma 2. Let D be a domain in Rn, n ⩾ 2, let p > n− 1, let x0 ∈ D and let f : D → Rn

be an open and discrete mapping satisfying the relation (17) at the point x0. Assume that
Q : D → [0,∞] is a Lebesgue measurable function such that the function Q ∗(x) = Q

n−1
p−n+1 (x)

has a finite integral over spheres S(x0, r) for almost any r > 0. Then the relation

capα f(E) ⩽
∫
A

Q ∗(x) · ηα(|x− x0|) dm(x) (21)

holds for α = p
p−n+1

and where E = (B(x0, r2), B(x0, r1)), A = A(x0, r1, r2), 0 < r1 < r2 <

ε0 := dist (x0, ∂D), and η : (r1, r2) → [0,∞] is arbitrary nonnegative Lebesgue measurable
function satisfying the relation (6). In particular, Lemma 2 holds if Q is locally integrable
in the degree s := n−1

p−n+1
in D.

Proof. Observe that s = α− 1. Due to Proposition 7, it is sufficient to prove that

capα f(E) ⩽
ωn−1

I∗α−1
,

where E is a condenser E = (B(x0, r2), B(x0, r1)), and q ∗
x0
(r) denotes the integral mean of

Qα−1(x) under S(x0, r),

q ∗
x0
(r) =

1

ωn−1rn−1

∫
S(x0,r)

Qα−1(x) dHn−1 , (22)

ωn−1 denotes the area of the unit sphere Sn−1 in Rn and

I ∗ = I ∗(x0, r1, r2) =

r2∫
r1

dr

r
n−1
α−1 q

∗ 1
α−1

x0 (r)
.

Let ε ∈ (r1, r2). We put C0 = ∂f(B(x0, r2)), C1 = f(B(x0, r1)), σ = ∂f(B(x0, ε)). Since f is
continuous in D, the set f(B(x0, r2)) is bounded.
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Since f is continuous, f(B(x0, r1)) is a compact subset of f(B(x0, ε)), and f(B(x0, ε)) is
a compact subset of f(B(x0, r2)). In particular, f(B(x0, r1)) ∩ ∂f(B(x0, ε)) = ∅ .

Let, as above, R = G \ (C0 ∪C1), G := f(D), and R ∗ = R ∪C0 ∪C1. Then R ∗. Observe
that, σ separates C0 from C1 in R ∗ = G. Indeed, the set σ∩R is closed in R, besides that, if
A := G \ f(B(x0, ε)) and B = f(B(x0, ε)), then A and B are open in G \σ, C0 ⊂ A, C1 ⊂ B
and G \ σ = A ∪B.

Let Σ be a family of all sets, which separate C0 from C1 inG. Below by
⋃

r1<r<r2
∂f(B(x0, r))

or
⋃

r1<r<r2
f(S(x0, r)) we mean the union of all Borel sets into a family, but not in the

theoretical-set sense (see [37, item 3, p. 464]). Let ρn−1 ∈ ãdm
⋃

r1<r<r2
∂f(B(x0, r)) in

the sense of the relation (12). Then ρ ∈ adm
⋃

r1<r<r2
∂f(B(x0, r)) in the sense of (16).

By the openness of the mapping f we obtain that ∂f(B(x0, r)) ⊂ f(S(x0, r)), therefore,
ρ ∈ adm

⋃
r1<r<r2

f(S(x0, r)) and, consequently, by (11)

M̃ p
n−1

(Σ) ⩾ M̃ p
n−1

( ⋃
r1<r<r2

∂f(B(x0, r))

)
⩾

⩾ M̃ p
n−1

( ⋃
r1<r<r2

f(S(x0, r))

)
⩾Mp

( ⋃
r1<r<r2

f(S(x0, r))

)
. (23)

However, by (13) and (14) we obtain that

(Mα(Γ(C0, C1, G)))
1/(1−α) = M̃ p

n−1
(Σ) . (24)

Let Γf(E) be the family of all paths which corresponds to the condenser f(E) in the sense of
Proposition 6, and let Γ ∗

f(E) be family of all rectifiable paths of Γf(E). Now, observe that, the
families Γf(E) and Γ(C0, C1, G) have the same families of admissible functions ρ. Thus,

Mα(Γf(E)) =Mα(Γ(C0, C1, G)) .

By Proposition 6, we obtain that Mα(Γf(E)) = capαf(E). By (24) we obtain that(
M̃ p

n−1
(Σ)
)α−1

=
1

capαf(E)
. (25)

Finally, by (23) and (25) we obtain that

capαf(E) ⩽

(
Mp

( ⋃
r1<r<r2

f(S(x0, r))

))1−α

.

By Lemma 1, we obtain that

capαf(E) ⩽

( r2∫
r1

dr

∥Q∥s(r)

)−s

=
ωn−1

I∗α−1
,

as required.
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3. Proof of the main results. The following result is proved in [30, Theorem 5].

Proposition 8. Let x0 ∈ ∂D, let f : D → Rn be an open, discrete and closed bounded

lower Q-mapping with respect to p-modulus in D ⊂ Rn, Q ∈ L
n−1

p−n+1

loc (Rn), n − 1 < p, and
α := p

p−n+1
. Then for any ε0 < d0 := supx∈D |x−x0| and any compactum C2 ⊂ D \B(x0, ε0)

there is ε1, 0 < ε1 < ε0, such that the inequality

Mα(f(Γ(C1, C2, D))) ⩽
∫

A(x0,ε,ε1)

Q
n−1

p−n+1 (x)ηα(|x− x0|) dm(x) , (26)

holds for any ε ∈ (0, ε1) and any compactum C1 ⊂ B(x0, ε) ∩D, where A(x0, ε, ε1) = {x ∈
Rn : ε < |x − x0| < ε1} and η : (ε, ε1) → [0,∞] is any nonnegative Lebesgue measurable
function such that

ε1∫
ε

η(r) dr = 1 . (27)

Remark 2. Note that, if (5) holds for any function η with condition (27), then the same
relationship holds for any function η with condition (6). Indeed, let η be a nonnegative
Lebesgue function that satisfies the condition (6). If J :=

∫ r2
r1
η(t) dt < ∞, then we put

η0 := η/J. Obviously, the function η0 satisfies condition (27). Then relation (5) gives that

Mα(f(Γ(C1, C2, D))) ⩽

⩽
1

Jα

∫
A

Q(x) · ηα(|x− x0|) dm(x) ⩽
∫
A

Q(x) · ηα(|x− x0|) dm(x) (28)

because J ⩾ 1. Let now J = ∞. Then, by [26, Theorem I.7.4], a function η is a limit
of a nondecreasing nonnegative sequence of simple functions ηm, m = 1, 2, . . . . Set Jm :=∫ r2
r1
ηm(t) dt <∞ and wm(t) := ηm(t)/Jm. Then, similarly to (28) we obtain that

Mα(f(Γ(C1, C2, D))) ⩽

⩽
1

Jα
m

∫
A

Q(x) · ηαm(|x− x0|) dm(x) ⩽
∫
A

Q(x) · ηαm(|x− x0|) dm(x) , (29)

because Jm → J = ∞ as m → ∞ (see [26, Lemma I.11.6]). Thus, Jm ⩾ 1 for suffi-
ciently large m ∈ N. Observe that, a functional sequence φm(x) = Q(x) · ηαm(|x − x0|),
m = 1, 2 . . . , is nonnegative, monotone increasing and converges to the function φ(x) :=
Q(x)·ηα(|x−x0|) almost everywhere. By the Lebesgue theorem on the monotone convergence
(see [26, Theorem I.12.6]), it is possible to pass to the limit on the right-hand side of the
inequality (29), which gives us the desired inequality (5).

The following result is proved in [29, Theorem 6].

Proposition 9. Let x0 ∈ ∂D, and let f : D → Rn be a bounded lower Q-homeomorphism

with respect to p-modulus in a domain D ⊂ Rn, Q ∈ L
n−1

p−n+1

loc (Rn), p > n− 1 and α := p
p−n+1

.

Then f is a ring Q
n−1

p−n+1 -homeomorphism with respect to α-modulus at this point, where
α := p

p−n+1
.
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Proof of Theorem 1. Fix z0 ∈ D. Two situations are possible: when z0 ∈ D, and when
z0 ∈ ∂D. Let z0 ∈ D. Set p := α

α−1
. Due to Theorem 4, f satisfies the relation (17) with

Q(z) := Kp−1
I,α (z, f). Now, f satisfies the relation (21) with Q ∗(z) := KI,α(z, f). Observe

that the relation

Mα(f(Γ(C1, C2, D))) ⩽ capα(f(B(z0, r2)), f(B(z0, r1))) (30)

holds for all 0 < r1 < r2 < d0 := dist (z0, ∂D) and for any continua C1 ⊂ B(z0, r1),
C2 ⊂ D \B(z0, r2). Indeed, f(Γ(C1, C2, D)) > Γf(E), where E := (f(B(z0, r2)), f(B(z0, r1))),
and Γf(E) is a family from Proposition 6 for the condenser f(E). The relation (30) finishes the
proof for the case z0 ∈ D. Let now z0 ∈ ∂D. Again, by Theorem 4, f satisfies the relation (17)
with Q(z) := Kp−1

I,α (z, f). Now f satisfies the relation (5) with Q ∗(z) := KI,α(z, f) by
Proposition 9.

Proof of Theorem 2 directly follows by Theorem 4 and Lemma 2.
Proof of Theorem 3 directly follows by Theorem 4 and Proposition 8.

4. Examples.

Example 1. Let Q(z) = log e
|z| , z ∈ D, let q0(r) := log e

r
, and let 1 < α < 2. Observe that∫ ε0

ε
dt

t
1

α−1 q
1

α−1
0 (t)

<∞ for any ε0 ∈ (0, 1) and any ε ∈ (0, ε0), in addition,

ε0∫
0

dt

t
1

α−1 q
1

α−1

0 (t)
= ∞ , (31)

where q0(t) is defined by (22). Set f(z) = z
|z|ρ(|z|), z ∈ D \ {0}, f(0) := 0 , where

ρ(|z|) =
(
1 +

2− α

α− 1

1∫
|z|

dt

t
1

α−1 q
1

α−1

0 (t)

)α−1
α−2

.

Observe that, f ∈ ACL and, besides that, f is differentiable in D almost everywhere. By
the technique used in [19, Proposition 6.3]

|J(z, f)| = δτ (z) · δr(z), ∥f ′(z)∥ = max{δτ (z), δr(z)} , l(f ′(z)) = min{δτ (z), δr(z)} ,

where l(f ′(z)) = |fz| − |fz|, ∥f ′(z)∥ = |fz|+ |fz|, δτ (z) = |f(z)|
|z| , δr(z) =

|∂|f(z)||
∂|z| . Thus,

∥f ′(z)∥ =

(
1 +

2− α

α− 1

1∫
|z|

dt

t
1

α−1 q
1

α−1

0 (t)

)α−1
α−2 1

|z|
,

l(f ′(z)) =

(
1 +

2− α

α− 1

1∫
|z|

dt

t
1

α−1 q
1

α−1

0 (t)

) 1
α−2 1

|z|
1

α−1 q
1

α−1

0 (|z|)
,

|J(z, f)| =
(
1 +

2− α

α− 1

1∫
|z|

dt

t
1

α−1 q
1

α−1

0 (t)

) α
α−2 1

|z|1+
1

α−1 q
1

α−1

0 (|z|)
.
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Observe that, f ∈ W 1,α
loc for α > 1. Indeed, ∥f ′(z)∥ is bounded outside of some nei-

ghborhood of the origin, in addition, for sufficiently small r > 0 and some C > 0, we
obtain that ∥f ′(z)∥ ⩽ C/|z|. Besides that, by the Fubini theorem

∫
B(0,r)

∥f ′(z)∥α dm(z) ⩽

C α2π ·
∫ r

0
r1−αdr < ∞. Let K be any compact set in D. Then there is R > 0 such that

K ⊂ B(0, R). Due to the above, we obtain that∫
K

∥f ′(z)∥α dm(z) ⩽
∫

B(0,r)

∥f ′(z)∥α dm(z) +

∫
B(0,R)\B(0,r)

∥f ′(z)∥α dm(z) < +∞ ,

therefore, f ∈ W 1,α
loc . Observe thatKI,α(z, f) = q0(|z|). By Theorem 1, f satisfies the inequali-

ty (5) with Q(z) = q0(|z|) at any point z0 ∈ D.

Example 2. Let f(z) = z
|z| ·

1
log 1

|z|
, z ∈ D\{0}, f(0) = 0. Observe that f is a homeomorphism

of the unit disk. Arguing similarly to Example 1, we obtain thatKI,α(z, f) = |z|α−2 log2α−3 1
|z| .

Obviously, KI,α(z, f) is integrable in D, thus, by Theorem 1 f satisfies the relation (5) at
any point z0 ∈ D for Q(z) = KI,α(z, f). Observe also that f is not quasiconformal mapping
because the «usual» dilatation KI,2(z, f) = log 1

|z| is unbounded.
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