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Let λ = (λn)
∞
n=0 be a nonnegative sequence increasing to +∞ such that λn+1 ∼ λn as

n → ∞, and let ρ ≥ 1 be a constant. Put

ω(λ) = lim
n→∞

ln lnn

lnλn
, C(ρ) =

{
ρ/(ρ− 1), when ρ > 1,

+∞, when ρ = 1.

Consider an entire (absolutely convergent in C) Dirichlet series F with the exponents λn, i.e.,
of the form F (s) =

∑∞
n=0 ane

sλn , and, for all σ ∈ R, put µ(σ, F ) = max{|an|eσλn : n ≥ 0} and
M(σ, F ) = sup{|F (s)| : Re s = σ}. Previously, the first of the authors and M.M. Sheremeta
proved that if ω(λ) < C(ρ), then the regular variation of the function lnµ(σ, F ) with index ρ
implies the regular variation of the function lnM(σ, F ) with index ρ, and constructed examples
of entire Dirichlet series F , for which lnµ(σ, F ) is a regularly varying function with index ρ, and
lnM(σ, F ) is not a regularly varying function with index ρ. For the exponents of the constructed
series we have λn = ln lnn for all n ≥ n0 in the case ρ = 1, and λn ∼ (lnn)(ρ−1)/ρ as n → ∞ in
the case ρ > 1. In the present article we prove that the exponents of entire Dirichlet series with
the same property can form an arbitrary sequence λ = (λn)

∞
n=0 not satisfying ω(λ) < C(ρ).

More precisely, if ω(λ) ≥ C(ρ), then there exists a regularly varying function Φ(σ) with index
ρ such that, for an arbitrary positive function l(σ) on [a,+∞), there exists an entire Dirichlet
series F with the exponents λn, for which lnµ(σ, F ) ∼ Φ(σ) as σ → +∞ and M(σ, F ) ≥ l(σ)
for all σ ≥ σ0.

1. Introduction. Let l(σ) be a positive and measurable function on [a,+∞). The function
l(σ) is said to be slowly varying ([1]) if l(cσ) ∼ l(σ) as σ → +∞ for any c > 0, and is said to
be regularly varying ([1]) if, for some real ρ, we have l(σ) = σρα(σ), where α(σ) is a slowly
varying function, and ρ is called the index of regular variation ([1]).

Problems of finding conditions for regular variation of the main characteristics of entire
functions, presented by power series, Dirichlet series or Taylor-Dirichlet series, were consi-
dered, in particular, in the articles [2–6]. In this article, we give some addentum to the results
from [4].

We denote by Λ the class of all nonnegative sequences λ = (λn)
∞
n=0 increasing to +∞,

i.e. 0 ≤ λ0 < λn < λn+1 (n ≥ 1) and lim
n→+∞

λn = +∞.

Let λ = (λn)
∞
n=0 be a sequence from the class Λ. Consider a Dirichlet series of the form

F (s) =
∞∑
n=0

ane
sλn (1)
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and by σa(F ) denote the abscissa of absolute convergence of this series. Put

β(F ) = lim
n→∞

1

λn

ln
1

|an|
.

For σ < σa(F ) we denote
M(σ, F ) = sup{|F (σ + it)| : t ∈ R}.

If β(F ) > −∞, then for all σ < β(F ) we put

µ(σ, F ) = max{|an|eσλn : n ≥ 0}, ν(σ, F ) = max{n ≥ 0 : |an|eσλn = µ(σ, F )}.

By D(λ) we denote the class of all Dirichlet series of the form (1) that do not reduce to
exponential polynomials and satisfy σa(F ) = +∞, and let D∗(λ) be the class of all Dirichlet
series of the form (1) that do not reduce to exponential polynomials and satisfy β(F ) = +∞.
It is well known that D(λ) ⊂ D∗(λ), and D(λ) = D∗(λ) if and only if lnn = O(λn) as n → ∞.

We put D = ∪λ∈ΛD(λ) and D∗ = ∪λ∈ΛD∗(λ). Then D is a proper subset of D∗.
If F ∈ D∗, then σ = o(lnµ(σ, F )) as σ → +∞. Therefore, the function lnµ(σ, F ) cannot

be regularly varying with index ρ < 1, because for each slowly varying function α(σ) we have
lnα(σ) = o(lnσ) as σ → +∞ (see, for example, [1]). Necessary and sufficient conditions for
the function lnµ(σ, F ) to be regularly varying with index ρ ≥ 1 was given in [4] (for series
of the Taylor-Dirichlet type, see a similar statement in [5]).

Theorem A ([4]). Let ρ ≥ 1 and let F ∈ D∗ be a Dirichlet series of the form (1). Then the
following statements are equivalent:

(i) lnµ(σ, F ) is a regularly varying function with index ρ;
(ii) λν(σ,F ) is a regularly varying function with index ρ− 1;
(iii) σλν(σ,F )/ lnµ(σ, F ) → ρ as σ → +∞;
(iv) there exists an increasing sequence (nk)

∞
k=0 of nonnegative integers such that

κk :=
ln |ank

| − ln |ank+1
|

λnk+1
− λnk

↑ +∞, k → ∞; (2)

|an|eκkλn ≤ |ank
|eκkλnk , nk < n < nk+1, k ≥ 0; (3)

ck :=
κkλnk+1

κkλnk+1
+ ln |ank+1

|
→ ρ, k → ∞; (4)

dk :=
κkλnk

κkλnk
+ ln |ank

|
→ ρ, k → ∞. (5)

Note that conditions (2), (4) and (5) imply the relation

λn+1 ∼ λn, n → +∞. (6)

Therefore, if (6) does not hold and ρ ≥ 1, then there does not exist a Dirichlet series F ∈ D∗

of the form (1) such that the function lnµ(σ, F ) is regularly varying function with index ρ.
The following theorem together with Theorem A gives conditions for the regular variation

of the function lnM(σ, F ).

Theorem B ([4]). Let ρ ≥ 1 and let F ∈ D be a Dirichlet series of the form (1). If

lim
n→∞

ln lnn

lnλn

< C(ρ) :=

{
ρ/(ρ− 1), when ρ > 1,

+∞, when ρ = 1.
, (7)

then lnM(σ, F ) is a regularly varying function with index ρ if and only if lnµ(σ, F ) is a
regularly varying function with the same index.
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Examples of Dirichlet series F ∈ D of the form (1), for which lnµ(σ, F ) is a regularly
varying function with given index ρ ≥ 1, and lnM(σ, F ) is not a regularly varying function
with the same index, were also constructed in [4]. For the exponents of the constructed series
we have λn = ln lnn for all n ≥ n0 in the case ρ = 1, and λn ∼ (lnn)(ρ−1)/ρ as n → ∞ in
the case ρ > 1. The following theorem shows that the exponents of Dirichlet series with the
same property can form an arbitrary sequence λ = (λn)

∞
n=0 from the class Λ satisfying (6)

and not satisfying (7).

Theorem 1. Let ρ ≥ 1 and let λ = (λn)
∞
n=0 be a sequence from the class Λ, for which (6)

holds, and (7) is false. Then there exists a Dirichlet series F ∈ D(λ) such that lnµ(σ, F ) is a
regularly varying function with index ρ, and lnM(σ, F ) is not a regularly varying function.

Theorem 1 follows from the following stronger theorem.

Theorem 2. Let ρ ≥ 1 and let λ = (λn)
∞
n=0 be a sequence from the class Λ, for which

(6) holds, and (7) is false. Then there exists a regularly varying function Φ(σ) with index ρ
such that, for an arbitrary positive function l(σ) on [a,+∞), there exists a Dirichlet series
F ∈ D(λ), for which lnµ(σ, F ) ∼ Φ(σ) as σ → +∞ and M(σ, F ) ≥ l(σ) for all σ ≥ σ0.

2. Auxiliary results. We write Φ ∈ Ω if Φ(σ) is a continuous function on [a,+∞) satysfying
Φ(σ)/σ → +∞ as σ → +∞. If Φ ∈ Ω, then let Φ̃(x) be the Young-conjugate function of
Φ(σ), i.e.

Φ̃(x) = max{xσ − Φ(σ) : σ ∈ [a,+∞)}, x ∈ R.

The following lemma is well known (see, for example, [7]).

Lemma 1. Let Φ ∈ Ω and let F ∈ D∗ be a Dirichlet series of the form (1). Then we have
lnµ(σ, F ) ≤ Φ(σ) for all σ ≥ σ0 if and only if ln |an| ≤ −Φ̃(λn) for all n ≥ n0.

Let q > 1 and let Φ(σ) = σq for all σ ≥ 0. Then Φ ∈ Ω and, as it is easy to show,

Φ̃(x) = (q − 1)(x/q)ρ/(ρ−1), x ≥ 0.

Using this fact and Lemma 1, we obtain the following statement.

Lemma 2. Let ρ ≥ 1 and F ∈ D∗ be a Dirichlet series of the form (1). Then

lim
σ→+∞

ln lnµ(σ, F )

lnσ
= ρ

if and only if

lim
n→∞

ln ln(1/|an|)
lnλn

= C(ρ).

Theorem C ([7,8]). Let λ = (λn)
∞
n=0 be a sequence from the class Λ and let G ∈ D∗(λ)\D(λ)

be a Dirichlet series of the form

G(s) =
∞∑
n=0

bne
sλn (8)

such that bn ≥ 0 for all integers n ≥ 0. Then, for an arbitrary positive function l(σ) on
[a,+∞), there exists a Dirichlet series F ∈ D(λ) of the form (1) such that either an = bn or
an = 0 for each integer n ≥ 0 and M(σ, F ) ≥ l(σ) for all σ ≥ σ0.
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Lemma 3. Let a > 1 and let β(σ) be an arbitrary positive, bounded function on [a,+∞)
such that

ln β(σ) = o(lnσ), σ → +∞. (9)

Then there exists a slowly increasing, continuous function α(σ) on [a,+∞) such that we
have α(σ) ≥ β(σ) for all σ ≥ a.

Proof. We may assume without loss of generality that β(σ) > 1 on [a,+∞). Then the
function η(σ) = ln β(σ)/ lnσ will be positive and bounded from above by some constant M
on [a,+∞). We choose a sequence (εk)

∞
k=0 decreasing to 0 such that ε0 = M . It is clear that

there exists a sequence (σk)
∞
k=0 increasing to +∞ such that σ0 = a, η(σ) ≤ εk for all σ ≥ σk

and every integer k ≥ 1, and in addition lnσk−1 = o(lnσk) as k → +∞.
We put α(σ) = σε0 for all σ ∈ [σ0, σ1). Let k ≥ 1 be an integer, and

α(σ) = exp

(
εk lnσ +

k∑
j=1

(εj−1 − εj) lnσj

)
for all σ ∈ [σk, σk+1). Then, as it is easy to see, α(σk − 0) = α(σk) and the function α(σ)
is continuous and increasing on [σk, σk+1). This implies that the function α(σ) is continuous
and increasing on [a,+∞).

Next, if σ ∈ [σk, σk+1) for some integer k ≥ 0, then

lnα(σ) ≥ εk lnσ ≥ η(σ) lnσ = ln β(σ).

Therefore, α(σ) ≥ β(σ) for all σ ∈ [a,+∞).
It remains to prove that α(σ) is a slowly varying function. We put δ(σ) = lnα(σ)/ lnσ

for all σ ∈ [a,+∞) and prove, first of all, that the function δ(σ) is nonincreasing on [a,+∞)
and δ(σ) → 0 as σ → +∞. Since δ(σ) = ε0 for all σ ∈ [σ0, σ1) and

δ(σ) = εk +
1

lnσ

k∑
j=1

(εj−1 − εj) lnσj

for all σ ∈ [σk, σk+1) and every integer k ≥ 1, the function δ(σ) is nonincreasing on each
of the intervals [σk, σk+1). Then the continuity of the function δ(σ) on [a,+∞) implies that
this function is nonincreasing on [a,+∞). In addition, for every integer k ≥ 2 we have

δ(σk) = εk +
1

lnσk

k−1∑
j=1

(εj−1 − εj) lnσj + εk−1 − εk ≤

≤ lnσk−1

lnσk

k−1∑
j=1

(εj−1 − εj) + εk−1 =
(ε0 − εk−1) lnσk−1

lnσk

+ εk−1.

Recalling that lnσk−1 = o(lnσk) as k → +∞, we see that δ(σk) → 0 as k → +∞, and
therefore δ(σ) → 0 as σ → +∞.

Since the function α(σ) is increasing and the function δ(σ) is nonincreasing on [a,+∞),
for each σ ≥ a we obtain

0 ≤ lnα(2σ)− lnα(σ) = δ(2σ) ln 2σ − δ(σ) lnσ ≤ δ(σ) ln 2σ − δ(σ) lnσ = δ(σ) ln 2.

Hence α(2σ) ∼ α(σ) as σ → +∞, because δ(σ) → 0 as σ → +∞. Therefore, since the
function α(σ) is monotonic on [a,+∞), this function is slowly varying.
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Lemma 4 ([10]). Let λ = (λn)
∞
n=0 be a sequence from the class Λ and let F be a Dirichlet

series of the form (1). If there exists an increasing sequence (nk)
∞
k=0 of nonnegative integers

such that an = 0 for all n < n0, ank
̸= 0 for every integer k ≥ 0, and the conditions (2) and

(3) hold, then F ∈ D∗ and, moreover, ν(σ, F ) = n0 for all σ < κ0 and ν(σ, F ) = nk+1 for all
σ ∈ [κk,κk+1) and every integer k ≥ 0.

Lemma 5. Let γ(σ) be a continuous, increasing to +∞ function on [a,+∞) and let λ =
(λn)

∞
n=0 be a sequence from the class Λ satisfying (6). Then there exists a Dirichlet series

F ∈ D(λ) such that λν(σ,F ) ∼ γ(σ) as σ → +∞.

Proof. Suppose without loss of generality that γ(a) < 0. Let n0 = 0 and, for every integer
k ≥ 0, set nk+1 = min{n > nk : λn ≥ λnk

+ 1}. It is clear that the sequence η = (λnk
)∞k=0

belongs to the class Λ and for it we have

λnk+1
∼ λnk

, ln k = O(λnk
) (10)

as k → ∞. Put a0 = an0 = 1 and let

κk = γ−1(λnk
), ank+1

=
k∏

j=0

e−κj(λnj+1−λnj ).

for every integer k ≥ 0. Let also an = 0 for all integers n ≥ 0 such that λn is not a member
of the sequence η. Consider Dirichlet series (1) with the coefficients an defined in this way.
Since this series can also be written in the form

F (s) =
∞∑
k=0

ank
esλnk ,

by Lemma 4 we obtain F ∈ D∗(η). But, by the second of relations (10), D∗(η) = D(η).
Therefore, F ∈ D(λ). In addition, by Lemma 4, for all σ ∈ [κk,κk+1) and every integer
k ≥ 0, we obtain

γ(σ) < γ(κk+1) = λnk+1
= λν(σ,F ) =

λnk+1

λnk

γ(κk) ≤
λnk+1

λnk

γ(σ).

Therefore, according to the first of relations (10), we have λν(σ,F ) ∼ γ(σ) as σ → +∞.

3. Proof of Theorem 2. Let ρ ≥ 1 and let λ = (λn)
∞
n=0 be a sequence from the class Λ,

for which (6) holds, and (7) is false. First of all, we show that there exists a Dirichlet series
G ∈ D∗(λ)\D(λ) of the form (8) such that bn ≥ 0 for all integers n ≥ 0, and for this series
we have

lim
σ→+∞

ln lnµ(σ,G)

lnσ
= ρ. (11)

Since (7) is false, for an arbitrary constant γ ∈ [1, C(ρ)) the set of those integers n ≥ 0, for
which lnn ≥ λγ

n, is infinite. Therefore, if we fix some sequence (γk)
∞
k=0 of points in [1, C(ρ))

increasing to C(ρ), we can find an increasing sequence (nk)
∞
k=0 of integers such that n0 = 0

and, for each integer k ≥ 0, the inequalities nk+1 ≥ 2nk and lnnk+1 ≥ λγk
nk+1

hold. For all
integers k ≥ 0 and n ∈ [nk, nk+1), we put bn = exp(−λγk

n ) and consider Dirichlet series (8)
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with such coefficients bn ≥ 0. Then, as it is easy to see, β(G) = +∞, that is, G ∈ D∗(λ). If
n ∈ [nk, nk+1), then

ln ln(1/|bn|)
lnλn

= γk ↑ C(ρ), k → +∞.

Using Lemma 2, we obtain (11). In addition, for each integer k ≥ 0 we have

nk+1−1∑
n=nk

bn ≥ (nk+1 − nk)bnk+1
≥

nk+1)

2
bnk+1

≥ 1

2
.

This implies that series (8) diverges at the point s = 0. Therefore, G /∈ D(λ).
Next, let a > 0 be a fixed number such that µ(a,G) > e. Put β(σ) = 2 lnµ(σ,G)/σρ for

all σ ≥ a. Then (11) implies (9), and therefore, according to Lemma 3, there exists a slowly
increasing to +∞, continuous function α(σ) on [a,+∞) such that α(σ) ≥ β(σ) for all σ ≥ a.
Put γ(σ) = ρσρ−1α(σ) for each σ ≥ a and let

Φ(σ) =

∫ σ

a

γ(t)dt, σ ≥ a.

By Lemma 5, there exists a Dirichlet series F1 ∈ D(λ) of the form, say,

F1(s) =
∞∑
n=0

a1,ne
sλn

such that λν(σ,F1) ∼ γ(σ) as σ → +∞, and a1,n ≥ 0 for every integer n ≥ 0. It is clear that
λν(σ,F1) is a regularly varying function with index ρ− 1. By L’Hôpital’s rule and Theorem A,
we have

Φ(σ) ∼ lnµ(σ, F1) ∼ σλν(σ,F1)/ρ ∼ σρα(σ), σ → +∞, (12)

that is, Φ(σ) is a regularly varying function with index ρ.
Now let l(σ) be an arbitrary positive function on [a,+∞). According to Theorem C, there

exists a Dirichlet series F2 ∈ D(λ) of the form

F2(s) =
∞∑
n=0

a2,ne
sλn

such that a2,n = bn or a2,n = 0 for every integer n ≥ 0, and M(σ, F2) = F2(σ) ≥ l(σ) for all
σ ≥ σ0.

For each integer n ≥ 0 we put an = a1,n+ a2,n and consider Dirichlet series (1) with such
coefficients an. It is clear that F ∈ D(λ) and

M(σ, F ) = F1(σ) + F2(σ) ≥ F2(σ) ≥ l(σ), σ ≥ σ0.

In addition, using (12), for all sufficiently large σ we have

µ(σ, F2) ≤ µ(σ,G) = exp(σρβ(σ)/2) ≤ exp(σρα(σ)/2) ≤ µ(σ, F1),

and hence µ(σ, F1) < µ(σ, F ) ≤ 2µ(σ, F1). Therefore, lnµ(σ, F ) ∼ lnµ(σ, F1) ∼ Φ(σ) as
σ → +∞. Theorem 2 is proved.

4. Some open problems. In this section, we formulate some unsolved problems that
naturally arise in connection with the above results.
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Problem 1. Let ρ ≥ 1. Describe the class Λρ of all sequences λ ∈ Λ for which there exists a
Dirichlet series F ∈ D(λ) such that lnM(σ, F ) is a regularly varying function with index ρ.

The following statement gives the solution of a similar problem for lnµ(σ, F ).

Proposition 1. Let ρ ≥ 1 and let λ = (λn)
∞
n=0 be a sequence from the class Λ. Then there

exists a Dirichlet series F ∈ D(λ) (F ∈ D∗(λ)) such that lnµ(σ, F ) is a regularly varying
function with index ρ if and only if (6) holds.

As we noted above, the necessity of condition (6) in Proposition 1 directly follows from
Theorem A as a consequence of conditions (2), (4) and (5). The sufficiency of condition (6) is
a direct consequence of Lemma 5, although theorem A can also be used for its justification.

Note that in case of a positive answer to the question of the following problem, the class
Λρ will coincide with the class of all sequences λ = (λn)

∞
n=0 from the class Λ satisfying (6).

Problem 2. Let ρ ≥ 1 and let F ∈ D be a Dirichlet series such that lnM(σ, F ) is a regularly
varying function with index ρ. Does (6) necessarily hold then?

Let λ = (λn)
∞
n=0 be a sequence from the class Λ. Consider an arbitrary Dirichlet series F

of the form (1). If σa(F ) > −∞, then for all σ < σa(F ) we put

M(σ, F ) =
∞∑
n=0

|an| eσλn .

Note that if an ≥ 0 for every integer n ≥ 0, then M(σ, F ) = M(σ, F ) for all σ < σa(F ). For
an arbitrary integer n ≥ 0 we put Tn =

∑∞
k=n |ak| and consider the Dirichlet series

F ∗(s) =
∞∑
n=0

Tne
sλn .

It is well known that F ∈ D if and only if F ∗ ∈ D∗ (see, for example, [9]).
If F ∈ D is a Dirichlet series of the form (1) with nonnegative coefficients an, then in

this case the answer to the question of Problem 2 is positive. This follows from the following
statement.

Proposition 2. Let ρ ≥ 1 and let F ∈ D be a Dirichlet series of the form (1). Then the
following statements are equivalent:

(i) lnM(σ, F ) is a regularly varying function with index ρ;
(ii) lnµ(σ, F ∗) is a regularly varying function with index ρ;
(iii) there exists an increasing sequence (nk)

∞
k=0 of nonnegative integers such that

κk :=
ln |Tnk

| − ln |Tnk+1
|

λnk+1
− λnk

↑ +∞, k → ∞;

|Tn|eκkλn ≤ |Tnk
|eκkλnk , nk < n < nk+1, k ≥ 0;

ck :=
κkλnk+1

κkλnk+1
+ ln |Tnk+1

|
→ ρ, k → ∞;

dk :=
κkλnk

κkλnk
+ ln |Tnk

|
→ ρ, k → ∞.

The equivalence of statements (i) and (ii) in Proposition 2 is easy to prove by using the
following inequalities

µ(σ, F ∗) ≤ M(σ, F ) ≤ σ + ε

ε
µ(σ + ε, F ∗),
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which hold for arbitrary σ ≥ 0 and ε > 0 (see [9]). The equivalence of statements (ii) and
(iii) follows from Theorem A applied to the series F ∗.

In connection with Theorem 1, the following problem arises.

Problem 3. Let ρ ≥ 1 and let λ = (λn)
∞
n=0 be an arbitrary sequence from the class Λ, for

which (6) holds, and (7) is false. Does there exist a Dirichlet series F ∈ D(λ) such that
lnM(σ, F ) is a regularly varying function with index ρ, and lnµ(σ, F ) is not a regularly
varying function?

Note that examples of Dirichlet series F ∈ D of the form (1), for which lnM(σ, F ) is a
regularly varying function with given index ρ > 1, and lnµ(σ, F ) is not a regularly varying
function with the same index, were constructed in [4]. For the exponents of the constructed
series we have λn ∼ (lnn)(q−1)/q as n → ∞, where 1 < q ≤ ρ.
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