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Let R be a prime ring and L a non-central Lie ideal of R. The purpose of this paper is
to describe generalized derivations of R satisfying some algebraic identities locally on L. More
precisely, we consider two generalized derivations F1 and F2 of a prime ring R satisfying one
of the following identities:

1. F1(x) ◦ y + x ◦ F2(y) = 0,

2. [F1(x), y] + F2([x, y]) = 0,

for all x, y in a non-central Lie ideal L of R. Furthermore, as an application, we study continuous
generalized derivations satisfying similar algebraic identities with power values on nonvoid open
subsets of a prime Banach algebra A. Our topological approach is based on Baire’s category
theorem and some properties from functional analysis.

1. Introduction. Throughout this paper R denotes an associative ring. We shall denote by
Z(R) the center of a ring R. An ideal P of R is a prime ideal if xRy ⊆ P yields x ∈ P
or y ∈ P. In particular, if the zero ideal of R is prime, then R is said to be a prime ring.
For x, y ∈ R, we will write [x, y] = xy − yx and x ◦ y = xy + yx for the Lie product and
Jordan product, respectively. An additive subgroup L of R is said to be a Lie ideal of R
if [x, r] ∈ L for all x ∈ L and r ∈ R. An additive mapping d : R −→ R is a derivation if
d(xy) = d(x)y + xd(y) for all x, y ∈ R. An additive mapping F : R −→ R is a generalized
derivation associated to a derivation d if F (xy) = F (x)y + xd(y) for all x, y ∈ R. A Banach
algebra is a normed algebra whose underlying vector space is a Banach space. The closure
of a subset X of a Banach algebra A, denoted by X, is the intersection of all closed subsets
of A containing X. The interior of a subset X of the Banach algebra A, denoted by

◦
X, is

the largest open set contained in X. Equivalently,
◦
X is the union of all open subsets of A

contained in X.
During the past few decades, there has been an ongoing interest concerning the relation-

ship between a ring R and the behavior of some special additive mappings defined on R. A
popular result due to Posner [17] states that a prime ring admitting a non-zero centralizing
derivation is a commutative integral domain. This remarkable theorem of Posner has been
influential and it has played a key role in the development of various notions. This result
was subsequently refined and extended by a number of algebraists. More specifically, they
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studied the commutativity of rings admitting suitably constrained generalized derivation
that satisfies specific identities.

In [13, Theorem 2.7] it is proved that if R is a prime ring of characteristic different from
two, admitting two generalized derivations F1 and F2 such that F1(x)F2(x)+F2(x)F1(x) = 0
for all x ∈ R then F1 = 0 or F2 = 0. An interesting result is demonstrated in [15, Theorem
2] by Hvala, it states that if F1 and F2 are two generalized derivations on a prime ring R of
characteristic different from two, verifying [F1(x), F2(x)] = 0 for all x ∈ R, then there exists
µ ∈ C such that F1 = µF2. Later Demir et al. in [12] obtained the same classification by only
considering the main identity on a non-central Lie ideal of a prime ring R, except possibly
when R satisfies the standard identity s4 of degree 4.

Also some authors extended various results on prime Banach algebras. The authors in [1,
Theorem 3.1] showed that if A is a unital prime Banach algebra, F a non-zero continuous
generalized derivation with associated derivation d and G1, G2 two nonvoid open subsets of A
satisfying F ((xy)m)−xmym ∈ Z(A) or F ((xy)m)−ymxm ∈ Z(A) for all (x, y) ∈ G1×G2 and
m = m(x, y) > 1, then A is commutative under the additional assumption that d(Z(A)) ̸= 0.

Motivated by the above mentioned results, it is natural to seek more refined conclusions by
considering generalized derivations that satisfy some specific identities only on a non-central
Lie ideal of a prime ring. Moreover, as an application, continuous generalized derivations
with power values in Banach algebras are also considered.

2. Main results. We will frequently use the following facts which are crucial for developing
the proofs of our main results without explicit mention. The following fact is an immediate
consequence of [8, Main Theorem].

Fact 1. Let R be a prime ring of characteristic different from 2, L a non-central Lie ideal
of R and F a generalized derivation of R such that F (L) ⊆ Z(R). Then either F = 0 or R
is embedded in a 2× 2 matrix ring over a field.

Fact 2 ([8]). Let R be a prime ring of characteristic different from 2 and F a generalized
derivation of R such that F (R) ⊆ Z(R). Then either F = 0 or R is commutative.

Fact 3 ([3], Lemma 2). Let R be a prime ring of characteristic different from 2, L a Lie
ideal of R and CR(L) = {a ∈ R : [a, x] = 0 ∀x ∈ L}. If L is not central then CR(L) = Z(R).

Fact 4 ([3], Lemma 3). Let R be a prime ring of characteristic different from 2, L a Lie
ideal of R then CR([L,L]) = CR(L).

Fact 5 ([3], Lemma 1). Let R be a prime ring of characteristic different from 2, L a non-
central Lie ideal of R. Then there exists a non-zero two-sided ideal I of R such that 0 ̸=
[I, R] ⊆ L.

The following fact is an easy consequence of Fact 5 and [11, Theorem 1].

Fact 6. Let R be a prime ring of characteristic different from 2, Qr be the right Martindale
quotient ring of R, C be the extended centroid of R, F and G be the non-zero generalized
derivations of R and L be a non-central Lie ideal of R. If R is not embedded in M2(K), the
algebra of 2 × 2 matrices over a field K, and the composition (FG) acts as a generalized
derivation on the elements of L, then (FG) is a generalized derivation of R and one of the
following holds:

1. there exists α ∈ C such that F (x) = αx, for all x ∈ R;
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2. there exists α ∈ C such that G(x) = αx, for all x ∈ R;
3. there exist a, b ∈ Qr such that F (x) = ax, G(x) = bx, for all x ∈ R;
4. there exist a, b ∈ Qr such that F (x) = xa, G(x) = xb, for all x ∈ R;
5. there exist a, b ∈ Qr, α, β ∈ C such that F (x) = ax+ xb, G(x) = αx+ β(ax− xb), for

all x ∈ R.

Fact 7 ([12], Main Theorem). Let R be a prime ring of characteristic different from 2, U be
its right Utumi quotient ring, C be its extended centroid, L be a non-central Lie ideal of R.
Let F : R → R and G : R → R be non-zero generalized derivations on R. If [F (u), G(u)] = 0
for all u ∈ L, then one of the following holds:

1. there exists µ ∈ C such that for any x ∈ R, G(x) = µF (x);
2. R satisfies s4, the standard identity of degree 4 (which is the same as R is embedded

in a 2× 2 matrix ring over a field).

Fact 8 ([19], Theorem 2). Let K be a commutative ring with unity, R be a prime K-algebra,
G be a generalized derivation of R, I be a non-zero two-sided ideal of R, f(x1, ..., xn) be
a multilinear polynomial over K, n ≥ 1 be a fixed integer. If G

(
f(r1, ..., rn)

)n
= 0, for all

r1, ..., rn ∈ I, then either f(x1, ..., xn) is central valued on R or G = 0.

Fact 9 ([9], Theorem 2). If I is a non-zero ideal of the prime ring R, then I, R and Qr satisfy
the same generalized polynomial identities with coefficients in Qr.

Lemma 1. Let R be a prime ring of characteristic different from 2, L a Lie ideal of R and
F,G two generalized derivations of R such that F (x)y + yG(x) = 0 for all x, y ∈ L. Then
one of the following holds: 1. F = G = 0; 2. L ⊆ Z(R); 3. R is embeded in a 2 × 2 matrix
ring over a field.

Proof. Suppose that R is not embedded in a 2× 2 matrix ring over a field, L ⊈ Z(R) and

F (x)y + yG(x) = 0 for all x, y ∈ L. (1)

Invoking Fact 5, there exists a non-zero two-sided ideal I of R such that 0 ̸= [I, R] ⊆
L. Equation (1) gives F (x)[u, r] + [u, r]G(x) = 0 for all r ∈ R, u ∈ I, x ∈ L. Simple
computations leads to [u, r][G(x), r] = 0 for all r ∈ R, u ∈ I, x ∈ L. That is

[u, r]I[G(x), r] = 0 for all r ∈ R, u ∈ I, x ∈ L.

The primeness of R yields [G(x), r] = 0 for all r ∈ R, x ∈ L. That is G(L) ⊆ Z(R), it
follows from Fact 1 that G = 0. Hence, equation (1) yields F = 0.

Lemma 2. Let R be a prime ring of characteristic different from 2, L be a Lie ideal of R
and G be a generalized derivation of R such that G([x, y]) = 0 for all x, y ∈ L. Then one of
the following holds: 1. G = 0; 2. L ⊆ Z(R).

Proof. Suppose that L ⊈ Z(R). The main equality along with Fact 5 for all r, s ∈ R, u, v ∈ I
give G

([
[u, r], [v, s]

])
= 0 with I a non-zero two-sided ideal of R. Qr being a prime C-algebra

then Fact 8 and Fact 9 combined yield either G = 0 or[
[u, r], [v, s]

]
∈ Z(R) for all u, v ∈ I, r, s ∈ R. (2)

Set U = [I, R] := span{[x, y] | x ∈ I, y ∈ R}, it is clear that U is a Lie ideal of R. Equation
(2) and Fact 4 give CR(U) = CR([U,U ]) = R. Then [I, R] is central. A contradiction, thus
G = 0.
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In ([2, Theorem 2.1]), the authors investigated commutativity in the rings admitting a
generalized derivation F that satisfy F (x ◦ y) = 0 for all x, y in a nonzero ideal I of a
semiprime ring R.

In our situation we consider an identity with two generalized derivations on a non-central
Lie ideal of R, at the end, we achieve some classifications.

Theorem 1. Let R be a prime ring of characteristic different from 2, C be its extended
centroid, L be a non-central Lie ideal of R and F1, F2 be two generalized derivations of R. If

F1(x) ◦ y + x ◦ F2(y) = 0 for all x, y ∈ L, (3)

then one of the following holds:

1. there exists λ ∈ C such that F1(x) = λx and F2(x) = −λx for any x ∈ R;

2. R is embedded in a 2× 2 matrix ring over a field.

Proof. Suppose that R is not embedded in a 2×2 matrix ring over a field. Firstly we point out
that, if F1(L) ⊆ Z(R), then Fact 1 implies F1 = 0 and relation (3) reduces to x ◦ F2(y) = 0
for any x, y ∈ L, then F2 = 0 follows by Lemma 1.

Hence, in the sequel we assume that there exists u0 ∈ L such that F1(u0) /∈ Z(R). Denote
a = F1(u0). In this sense, relation (3) yields

a ◦ y + u0 ◦ F2(y) = 0 for all y ∈ L. (4)

Application of Fact 6 implies that one of the following cases occurs:

1. there exists µ ∈ C such that F2(x) = µx, for all x ∈ R;

2. there exist α, β ∈ C such that F2(x) = αx+ β[u0, x], for all x ∈ R.

In the first case, it follows from relation (4) that a ◦ y + u0 ◦ (µy) = 0 for all y ∈ L.
This further implies that [a, [u, r]] + 2[u, r]a+ [µu0, [u, r]] + 2[u, r]u0 = 0 for all r ∈ R, u ∈ I,
with I a non-zero two-sided ideal of R. Simple computations yield [a+ µu0, r]I[u, r] = 0 for
all r ∈ R, u ∈ I. Invoking ([6], Lemma 7.24) one can see that a + µu0 ∈ C. In particular
[F1(u0), u0] = 0.

Now let us consider F2(x) = αx + β[u0, x], for all x ∈ R. We may assume β ̸= 0,
otherwise [F1(u0), u0] = 0 follows by the same argument as above. In this case, relation (4)
is a ◦ y + u0 ◦ (αy + β[u0, y]) = 0 for all y ∈ L. Arguing as above, we get by the end to
[u, r][a+ αu0 − βu2

0, r] = 0 for all r ∈ R, u ∈ I.

Invoking again ([6, Lemma 7.24]) we deduce a + αu0 − βu2
0 ∈ C. Then [F1(u0), u0] = 0.

Generally, in all cases we get [F1(u), u] = 0 for any u ∈ L. Using Fact 7, there exists
λ ∈ C such that F1(x) = λx. Relation (3) becomes x ◦ G(y) = 0 for all x, y ∈ L with
G(x) = F2(x) + λx. Lemma 1 yields F2(x) = −λx.

It is proved in [18, Theorem 3.3], that if R is a prime ring of characteristic different from
2, F is a generalized derivation of R satisfying F ([x, y]) = [x, y] for all x, y in a square closed
Lie ideal U of R, then U ⊆ Z(R).

Our result investigate a more generalized identity considered on a non-central Lie ideal
and give the corresponding classification to the involved generalized derivation.
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Theorem 2. Let R be a prime ring of characteristic different from 2, C be its extended
centroid, L be a non-central Lie ideal of R and F1, F2 be two generalized derivations of R. If

[F1(x), y] + F2([x, y]) = 0 for all x, y ∈ L, (5)

then one of the following holds:

1. there exists λ ∈ C such that F1(x) = λx and F2(x) = −λx for any x ∈ R;

2. R is embedded in a 2× 2 matrix ring over a field.

Proof. Assume that R is not embedded in a 2 × 2 matrix ring over a field. Note that, if
F1(L) ⊆ Z(R), then Fact 1 yields F1 = 0 and relation (5) reduces to F2([x, y]) = 0 for all
x, y ∈ L, it follows from Lemma 2 that F2 = 0. Hence, we futher assume that there exists
u0 ∈ L such that F1(u0) /∈ Z(R) and denote a = F1(u0). As a matter of fact, relation (5)
implies

[a, y] + F2([u0, y]) = 0 for all y ∈ L. (6)

Application of Fact 6 implies that one of the following cases holds:

1. there exists µ ∈ C such that F2(x) = µx, for all x ∈ R;

2. there exist α, β ∈ C such that F2(x) = β−1
(
u0 ◦ x− αx

)
, for all x ∈ R.

The first case together with relation (6) yield [a + µu0, y] = 0 for all y ∈ L. Which gives
[F1(u0), u0] = 0. On the other hand, for F2(x) = β−1

(
u0 ◦ x− αx

)
. Relation (6) reduces to[

a, [v, r]
]
+ β−1

(
u0 ◦

[
u0, [v, r]

]
− α

[
u0, [v, r]

])
= 0 for all r ∈ R, v ∈ I.

with I a non-zero two-sided ideal of R. The direct calculations lead us to
[v, r][a− αu0 − β−1u2

0, v] = 0 for all r ∈ R, v ∈ I.

Then a−αu0−β−1u2
0 ∈ C. Thus [F1(u0), u0] = 0. Generally, in all cases we get [F1(u), u] = 0

for any u ∈ L. Using Fact 7, there exists λ ∈ C such that F1(x) = λx. Relation (5) becomes
G([x, y]) = 0 for all x, y ∈ L with G(x) = F2(x) + λx. Using again Lemma 2 it follows that
F2(x) = −λx.

3. Applications on prime Banach Algebras. Throughout this section, A denotes a real
or complex Banach algebra. To prove our main results we need the following lemma.

Lemma 3 ([4]). Let A be a Banach algebra. If P (t) =
∑n

k=0 bkt
k is a polynomial in the real

variable t with the coefficients in A, and if for an infinite set of real values of t, P (t) ∈ M,
where M is a closed linear subspace of A, then every bk lies in M.

Theorem 3. Let A be a noncommutative prime Banach algebra, O1, O2 be nonempty open
subsets on A, F1, F2 be continuous generalized derivations of A and n be a fixed positive
integer. Suppose that F1 and F2 satisfy one of the following assertions:

i) (F1(x) ◦ y)n + x ◦ F2(y) = 0 for all (x, y) ∈ O1 ×O2;

ii) [F1(x), y]
n + F2([x, y]) = 0 for all x, y ∈ O1 ×O2.

Then F1 = F2 = 0.

Proof. i) Suppose that

(F1(x) ◦ y)n + x ◦ F2(y) = 0 for all (x, y) ∈ O1 ×O2. (7)
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Let u ∈ A and x ∈ O1. Then x+ tu ∈ O1 for a sufficiently small real t. F1, F2 are continuous,
one can obviously see that Fi(ru) = rFi(u) for all u ∈ A, r ∈ R, i ∈ {1, 2}. Replacing x by
x+ tu in equation (7), we get(

F1(x) ◦ y + (F1(u) ◦ y)t
)n

+
(
x ◦ F2(y) + (u ◦ F2(y))t

)
= 0. (8)

Let Pn,m(u, x, y) denotes the sum of all monic monomials with n occurrences of F1(x) ◦ y
and m occurrences of F1(u) ◦ y. It follows from equation (8) that

Q(t) =
n∑

k=0

Pn−k,k(u, x, y)t
k +

(
x ◦ F2(y) + (u ◦ F2(y))t

)
= 0.

Setting Q(t) =
∑n

k=0 qk(u, x, y)t
k; with q0(u, x, y) = (F1(x) ◦ y)n + x ◦ F2(y), q1(u, x, y) =

Pn−1,1(u, x, y) + u ◦ F2(y) and qk(u, x, y) = Pn−k,k(u, x, y) for all k ∈ {2, ..., n}. As (0) is a
closed linear subspace of A, then Lemma 3 yields qk(u, x, y) = 0 for all k ∈ {0, ..., n}. In
particular qn(u, x, y) = 0, thus

(F1(u) ◦ y)n = 0 for all (u, y) ∈ A×O2.

Similarly, one can show that

(F1(u) ◦ v)n = 0 for all u, v ∈ A. (9)

As a consequence of the continuity of F1, it is clear that (u, v) 7→ F1(u)◦v is bilinear. Invoking
Fact 8 and equation (9), we obtain F1(u) ◦ v ∈ Z(A) for all u, v ∈ A. ([5, Theorem 2.2])
forces F1 = 0. Equation (7) reduces to x ◦ F2(y) = 0 for all (x, y) ∈ O1 × O2. Using the
same techniques as above, we get to u ◦ F2(v) = 0 for all u, v ∈ A. Invoking again ([5,
Theorem 2.2]) it follows that F2 = 0.
ii) Assume that

[F1(x), y]
n + F2([x, y]) = 0 for all (x, y) ∈ O1 ×O2. (10)

Let u ∈ A and x ∈ O1. Then x+ tu ∈ O1 for a sufficiently small real t. Taking x+ tu instead
of x in equation (10), we get(

[F1(x), y] + [F1(u), y]t
)n

+ F2([x, y]) + (F2([u, y]))t = 0. (11)

Let Pn,m(u, x, y) denote the sum of all monic monomials with n occurrences of [F1(x), y] and
m occurrences of [F1(u), y]. Equation (11) becomes

Q(t) =
n∑

k=0

Pn−k,k(u, x, y)t
k + F2([x, y]) + (F2([u, y]))t = 0.

Let us consider

Q(t) =
n∑

k=0

qk(u, x, y)t
k

with q0(u, x, y) = ([F1(x), y])
n + F2([x, y]), q1(u, x, y) = Pn−1,1(u, x, y) + F2([u, y]) and

qk(u, x, y) = Pn−k,k(u, x, y) for all k ∈ {2, ..., n}. Invoking Lemma 3 we get qk(u, x, y) = 0 for
all k ∈ {0, ..., n}. In particular qn(u, x, y) = 0, then

[F1(u), v]
n = 0 for all u, v ∈ A. (12)

In view of equation (12), Fact 8 gives [F1(u), v] ∈ Z(A) for all u, v ∈ A. Substituting v by
vF1(u), we obtain

[F1(u), v]F1(u) ∈ Z(A) for all u, v ∈ A. (13)
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Using ([7, Remark 4]), we get either [F1(u), v] = 0 or F1(u) ∈ Z(A) for any u, v ∈ A, that
is F1(u) ∈ Z(A) for all u ∈ A. The latter relation along with Fact 2 implies F1 = 0, similar
approach transforms equation (10) to F2([u, v]) = 0 for all u, v ∈ A. Invoking Lemma 2 we
get F2 = 0.

Theorem 4. Let A be a noncommutative prime Banach algebra, CA be its extended
centroid, O1, O2 be nonvoid open subsets on A and F1, F2 be continuous generalized deri-
vations of A. If F1(x

r) ◦ ys + xr ◦ F2(y
s) = 0 for all (x, y) ∈ O1 ×O2 where r, s are non-zero

integers depending on the pair of elements x and y, then one of the following holds:

1. there exists λ ∈ CA such that F1(x) = λx and F2(x) = −λx for any x ∈ A;

2. A is embedded in a 2× 2 matrix ring over a field.

Proof. Let us fix x ∈ O1 and set Kr,s = {y ∈ A | F1(x
r)◦ys+xr ◦F2(y

s) ̸= 0}. We claim that
each Kr,s is open in A or equivalently its complement Kc

r,s is closed. For this, we consider
a sequence (yk)k≥1 ⊂ Kc

r,s converging to y and prove that y ∈ Kc
r,s. As (yk)k≥1 ⊂ Kc

r,s then
F1(x

r) ◦ ysk + xr ◦ F2(y
s
k) = 0 for all k ≥ 1. Hence

lim
k→∞

F1(x
r) ◦ ysk + xr ◦ F2(y

s
k) = F1(x

r) ◦
(
lim
k→∞

yk

)s
+ xr ◦ F2

((
lim
k→∞

yk

)s)
=

= F1(x
r) ◦ ys + xr ◦ F2(y

s) = 0.

Therefore, y ∈ Kc
r,s, thus Kr,s is open. Suppose now that all the Kr,s are dense in A then

the intersection of the Kr,s is also dense by Baire category theorem, a contradiction with the
fact that O2 ̸= ∅. Hence, there exist some positive integers p, q depending on x, such that
Kp,q is not dense. Accordingly, there exists a nonvoid open subset O3 in Kc

p,q. Therefore,

F1(x
p) ◦ yq + xp ◦ F2(y

q) = 0 for all y ∈ O3. (14)

Let us consider z ∈ O3 and v ∈ A, z + tv ∈ O3 for all sufficiently small real t. Replacing y
by z + tv in (14), we obtain

F1(x
p) ◦ (z + tv)q + xp ◦ F2((z + tv)q) = 0. (15)

Let Pi,j(x, u) denote the sum of all monic monomials with i occurrences of x and j occurrences
of u. As (z + tv)q = Pq,0(z, u) + Pq−1,1(z, u)t + .... + P1,q−1(z, u)t

q−1 + P0,q(z, u)t
q, it follows

from equation (15) that

F1(x
p) ◦

(
q∑

i=0

Pq−i,i(z, v)t
i

)
+ xp ◦ F2

(
q∑

i=0

Pq−i,i(z, v)t
i

)
= 0. (16)

It follows from (16) that

Q(t) =

q∑
i=0

(
F1(x

p) ◦ (Pq−i,i(z, v)) + xp ◦ F2(Pq−i,i(z, v))
)
ti = 0.

Thus
Q(t) =

∑q
i=0 ai(v, x, z)t

i = 0 with ai(v, x, z) = F1(x
p) ◦

(
Pq−i,i(z, v)

)
+ xp ◦ F2

(
Pq−i,i(z, v)

)
.

Using Lemma 3, we get ai(v, x, z) = 0 for all i ∈ {0, ..., q}. In particular aq(v, x, z) = 0, that
is F1(x

p) ◦ vq + xp ◦F2(v
q) = 0. In conclusion, we have proved that for a given x ∈ O1, there

exist some positive integers p and q depending on x, such that F1(x
p)◦vq+xp◦F2(v

q) = 0 for
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all v ∈ A. Let us fix v ∈ A. Using a similar approach, we arrive at F1(u
p)◦ vq +up ◦F2(v

q) =
0 for all u, v ∈ A. Now let us consider H1 and H2 the additive subgroups generated by
{ap | a ∈ A} and {aq | a ∈ A} respectively, it follows that

F1(x) ◦ y + x ◦ F2(y) = 0 for all (x, y) ∈ H1 ×H2. (17)

Equation (17) along with [10] yield that either ap ∈ Z(A) for all a ∈ A or H1 contains a
non-central Lie ideal J1. If ap ∈ Z(A) for all a ∈ A, in particular [ap, bp] = 0 for all a, b ∈ A.
It follows that A is commutative from ([20], Theorem 2.3). It is a contradiction.

Now suppose that H1 contains a non-central Lie ideal J1, similarly H2 contains also
another non-central Lie ideal J2. Let Ik = {x ∈ A | [x,A] ⊂ Jk} with k = 1, 2. It follows
from ([14, Lemma 1.4]) that I1, I2 are both subrings and Lie ideals of A. Therefore, equation
(17) becomes

F1(x) ◦ y + x ◦ F2(y) = 0 for all (x, y) ∈ [I1,A]× [I2,A]. (18)

As [I1,A] and [I2,A] are dense submodules of [A,A] then by ([16, Theorem 2]), [A,A] satisfy
the same identity as [I1,A] and [I2,A], thus equation (18) becomes F1(x) ◦ y+ x ◦F2(y) = 0
for all x, y ∈ [A,A]. Since [A,A] is a non-central Lie ideal, applying Theorem 1 we get the
required result.

Using the same above arguments, with suitable modification, application of Theorem 2
yields the following result.

Theorem 5. Let A be a noncommutative prime Banach algebra, CA be its extended
centroid, O1, O2 be nonvoid open subsets on A and F1, F2 be continuous generalized deri-
vations of A. If [F1(x

r), ys] +F2([x
r, ys]) = 0 for all (x, y) ∈ O1×O2, where r, s are non-zero

integers depending on the pair of elements x and y, then one of the following holds: 1. there
exists λ ∈ CA such that F1(x) = λx and F2(x) = −λx for any x ∈ A; 2. A is embedded
in a 2× 2 matrix ring over a field.

The following examples show that the primeness hypothesis in Theorems 1 and 2 is not
superfluous.

Example 1. The ring R = M2(Z/6Z) × Z/6Z with operations of coordinatewise addi-
tion and multiplication is a non prime ring of characteristic 6. Consider FM((A, a)) =
3(MA+AM, 0) with M ∈ [M2(Z/6Z),M2(Z/6Z)] with associated derivation dM defined by
dM((A, a)) = 3(AM−MA, 0). For L = [M2(Z/6Z),M2(Z/6Z)]×Z/6Z a Lie ideal of R, F1 =
FM and F2 = 0, we have F1((A, a)) ◦ (B, b) = 6(MAB + AMB, 0) = 0 ∀ (A, a), (B, b) ∈ L.
Nevertheless, none of the assertions of Theorem 1 are satisfied.

Example 2. Let us consider the ring R = M2(R) × R with operations of coordinatewise
addition and multiplication. It is obvious that R is a non prime ring. Consider the generalized
derivation GN((A, a)) = (NA+AN, 0) with N ∈ [M2(R),M2(R)] with associated derivation
gN defined by gN((A, a)) = (AN−NA, 0). We set L = [M2(R),M2(R)]×R. This is a Lie ideal
of R along with G1 = GN and G2 = 0. Simple computations show that [G1((A, a)), (B, b)] +
G2

(
[(A, a), (B, b)]

)
= 0 ∀(A, a), (B, b) ∈ L. However, none of the assertions of Theorem 2 is

satisfied.
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