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This paper deals with the following question: whether a ring of matrices or classes of matrices

over an adequate ring or elementary divisor ring inherits the property of adequacy?
The property to being adequate in matrix rings over adequate and commutative elementary

divisor rings is studied. Let us denote by A and E an adequate and elementary divisor domains,
respectively. Also A2 and E2 denote a rings of 2 × 2 matrices over them. We prove that full
nonsingular matrices from A2 are adequate in A2 and full singular matrices from E2 are adequate
in the set of full matrices in E2.

In memory of our teacher and friend Professor Bohdan Zabavsky

1. Introduction. The notion of an adequate ring was originally defined by Helmer [5].
A ring R is adequate if R is a commutative Bezout domain and for every a ̸= 0, and b in R
we can write a = cd, with (c, b) = 1 and with (di, b) ̸= 1 for every nonunit divisor di of d.
This concept appeared as a formalization of properties of the entire analytic functions ring.

By definition, every adequate ring is a Prufer domain. So every principal ideal domain
is an adequate ring. Example of an adequate ring which is not a principal ideal domain is
furnished by the set of entire functions with coefficients in a field [4]. Gillman and Henriksen
have shown that a von Neumann regular ring is adequate [4]. Also, it is clear to see that a
local ring is adequate.

The adequate rings with zero-divisors in Jacobson radical were studied by Kaplansky [7].
Henriksen [6] appears to be the first person to have given an example to show that being
adequate is a stronger property than that of being an elementary divisor ring. In proving
this, Henriksen observed that in an adequate domain each nonzero prime ideal is contained
in the unique maximal ideal [6]. It is a natural question to ask whether or not the converse
holds and this question is explicitly raised in [8]. The negative answer to this question is
given in [1]. Furthermore, it is shown that there exists an elementary divisor ring which is
not adequate but which does have the property that each nonzero prime ideal is contained
in the unique maximal ideal. In [15], it was proved that that a commutative Bezout domain
in which each nonzero prime ideal is contained in the unique maximal ideal is an elementary
divisor ring. In [16], Bezout rings in which each regular element is adequate were studied.
The following results have been obtained.

Theorem 1. Let R be a Bezout ring of stable range 2. A regular element a ∈ R (element
without zero divisors) is an adequate element if and only if R/aR is a semiregular ring.

2020 Mathematics Subject Classification: 13F15, 15A21, 15B33.
Keywords: adequate ring; adequate element; Bezout ring; elementary divisor ring; stable range of ring.
doi:10.30970/ms.59.2.115-122

© A. I. Gatalevych, V. P. Shchedryk, 2023



116 A. I. GATALEVYCH, V. P. SHCHEDRYK

The definition of the ring stable range will be given below.

Theorem 2. Let R be a semihereditary Bezout ring in which every regular element is
adequate. Then R is an elementary divisor ring.

Zabavskii introduced a new class of elementary divisor rings that contains adequate rings
and rings constructed by Henriksen and called the rings belonging to this class generalized
adequate rings [14]. Gatalevych [3] was the first, who studied noncommutative adequate rings
and their generalizations. He has proved that the generalized right adequate duo Bezout
domain is an elementary divisor domain.

The stable range of a ring is one of the important invariants of the algebraic K-theory.

Definition 1. Stable range of a ring R (in notation st.r.(R)) is the smallest positive integer
n such that whenever

a1R + a2R + . . .+ an+1R = R

then there are b1, . . . , bn ∈ R such that

(a1 + b1an+1)R + · · ·+ (an + bnan+1)R = R.

If such n does not exist, then the stable range of R is infinity.

We say that ring R has stable range 1.5 if for each a, b ∈ R and 0 ̸= c ∈ R satisfying
aR + bR + cR = R there exists r ∈ R with

(a+ br)R + cR = R.

This notion was introduced by the second author in [11] and studied in [2, 10, 12]. By
Property 1.18, [10, p. 21], adequate rings have stable range 1.5.

Vaserstein [13] established a relationship between the stable range of a ring and the stable
range of the matrices rings over it.

Theorem 3. For any ring R and any n ≥ 1

st.r.(Mn(R)) = 1−
[
− st.r.(R)−1

n

]
.

where ∗ denotes the least integer greater than or equal to a real number x.

According to this formula if the stable range of the ring R is equal to 1 or 2, then the
stable range of the matrix ring Mn(R) has the same stable range. It turns out that this
regularity holds for a rings of stable range 1.5. Using Theorem 2.20, [10], p. 90 we get.

Theorem 4. A second order matrices ring over an adequate ring have stable range 1.5.

Theorem 5. Let R be an adequate Bezout ring and J(R) ̸= 0 then st.r.(R) = 1.

Proof. Let bR+ cR = R and a ∈ J(R) \ {0}. Then, obviously, aR+ bR+ cR = R. As in the
proof of Theorem 1, we can show that

aR + (b+ cr)R = R

for some element r ∈ R. Since a ∈ J(R), we have (b+ cr)R = R, so st.r.(R) = 1.
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Obviously, we have

Corollary 1. If R is a Bezout ring and there is an adequate element a in J(R)\{0} then
st.r.(R) = 1.

A special role among the second-order matrices over an elementary divisor rings is played
by full matrices, i.e., matrices whose elements are relatively prime. Thus, according to the
result of Kaplansky, R is elementary divisor ring if and only if all full 2× 2 matrices over R
have the property of canonical diagonal reduction [7].

In the 2× 2 matrix ring over an adequate ring Zabavskii and Petrychkovych [9] selected
a class of matrices of stable range 1.

In this article we investigate the adequate properties of some classes and matrices over
adequate and elementary divisor rings.

Arrangement. To prevent confusion and to reduce of notation, denote by A and E an
adequate and elementary divisor domains, respectively. Also A2 and E2 denote a rings of
2 × 2 matrices over them. I is the identity matrix, and GL2(R) denote the group of 2 × 2
invertible matrices of a ring R.

2. Auxiliary results. If A = BC, then B is called a left divisor of A and A is called a right
multiple of B. If A = DA1 and B = DB1, then D is called a left common divisor of A and B.
In addition, if D is a right multiple of each left common divisor of A and B, then D is called
the left greatest common divisor of A and B (in notation (A,B)l).

(a, b) and [a, b] denote greatest common divisor and least common multiple of a and b.
Let A,B be matrices from E2. There are matrices PA, QA, PB, QB in GL2(E) such that

PAAQA = diag(α1, α2) := SA, α1|α2,

PBBQB = diag(β1, β2) := SB, β1|β2,

where SA, SB are Smith normal forms (S.n.f.) of A,B, respectively. Diagonal elements of
S.n.f. are called invariant factors. It follows that these matrices can be written as

A = P−1
A SAQ

−1
A , B = P−1

B SBQ
−1
B .

Theorem 6 ([10], Theorem 2.15). Let PBP
−1
A = ∥sij∥. The Smith normal form of (A, B)l

is the matrix
diag ((α1, β1), (α2, β2, [α1, β1]s21)) .

Corollary 2. In order that (A, B)l = I, i.e., AE2 +BE2 = E2 it is necessary and sufficient
that

(α2, β2, [α1, β1]s21) = 1.

Let βi|αi, i = 1, 2. Denote by L(diag(α1, α2), diag(β1, β2)) the set of all invertible matrices
of the form ∥∥∥∥ l11 l12

β2

(α1,β2)
l21 l22

∥∥∥∥ .
Theorem 7 ([10], Theorem 4.3). The matrix B is the left divisor of A i.e., A = BC if and
only if βi|αi, i = 1, 2, and PBP

−1
A ∈ L(SA, SB).
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Theorem 8 ([10], Theorem 4.4). The set of all left divisors of A having Smith normal form
SB is

(L(SA, SB)PB)
−1SB GL2(E).

Theorem 9 ([10], Theorem 2.19). Assume that A,B are full matrices in A2, moreover
AA2 +BA2 = A2. Then there exists a matrix P ∈ A2 such that AP +B = Q, where Q is an
invertible matrix from A2.

3. Main results.
3.1. Adequacy in the set of full nonsingular matrices over adequate domains.

Definition 2. The element b of the ring R is called left adequate to an element a ∈ R if
there exist such elements s, t ∈ R that b = s · t, where tR + aR = R, and for an arbitrary
nonunit element s′ ∈ R such that sR ⊂ s′R ̸= R the condition s′R + aR ̸= R is satisfies.

Note that, by the definition the g.c.d. of full matrices entries is equal to 1. It follows that
every full matrix in E2 has S.n.f. of the form diag(1, ∗).

Theorem 10. Full nonsingular matrices from A2 are adequate in A2.

Proof. Let B be the full nonsingular matrix from A2. An adequate ring is an elementary
divisor ring. So B can be written in the form B = P−1

B diag(1, β2)Q
−1
B , where β2 ̸= 0.

Suppose that
A = P−1

A diag(α1, α2)Q
−1
A , α1|α2,

is an arbitrary matrix from A2 such that AA2 + BA2 ̸= A2. Since (A,B)l is the left di-
visor of B, therefore its invariant factors are divisors of corresponding invariant factors
of B (see Theorem 7). It follows that the first invariant factor of (A,B)l is equal to 1.
Consequently, according to Theorem 6, the Smith normal form of (A,B)l have the form
Ω = diag(1, ω2), where ω2 := (α2, β2, α1s21), s21 is an element of matrix PBP

−1
A := ∥sij∥ .

Decompose β2 into product: β2 = ψ2ν2, where

(ν2, ω2) = (ν2, α2, β2, α1s21) = ((ν2, β2), α2, α1s21) = (ν2, α2, α1s21) = 1 (1)

and for each nontrivial ψ′
2|ψ2 we have

(ψ′
2, ω2) = (ψ′

2, α2, β2, α1s21) = ((ψ′
2, β2), α2, α1s21) = (ψ′

2, α2, α1s21) ̸= 1. (2)

Set

PT :=

∥∥∥∥ 0 1
1 0

∥∥∥∥PA.

The matrix B can be written as B = ST , where

S := P−1
B diag(1, ψ2)PT , T := P−1

T diag(1, ν2)Q
−1
B .

By Theorem 6, we get (A, T )l ∼ diag(1, λ2), where λ2 := (ν2, α2, α1m21), m21 is an element
of the matrix PTP

−1
A := ∥mij∥, the symbol ” ∼ ” denotes the equivalence. Since

PTP
−1
A =

(∥∥∥∥ 0 1
1 0

∥∥∥∥PA

)
P−1
A =

∥∥∥∥ 0 1
1 0

∥∥∥∥ ,
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we have m21 = 1. By virtue of equality (1) we conclude that

λ2 = (ν2, α2, α1) = 1 ⇒ (A, T )l = I.

It means that AA2 + TA2 = A2.
Let us describe all left nontrivial divisors of the matrix S. Potential S.n.f. of such divisors

have the form M = diag(1, µ2), where µ2|ψ2. According to Theorem 8, the set of all left
divisors of the matrix S having the Smith form M has the form (L(Ψ,M)PB)

−1MGL2(A),
where Ψ := diag(1, ψ2). The set L(Ψ,M) consists of all invertible matrices of the form

M =

∥∥∥∥ l11 l12
µ2l21 l22

∥∥∥∥ .
Let N := (LPB)

−1MV, where L ∈ L(Ψ,M), V ∈ GL2(A). Consider the matrix

(LPB)P
−1
A = L(PBP

−1
A ) =

∥∥∥∥ l11 l12
µ2l21 l22

∥∥∥∥∥∥∥∥ s11 s12
s21 s22

∥∥∥∥ =

∥∥∥∥ ∗ ∗
µ2l21s21 + s21l22 ∗

∥∥∥∥ =

=

∥∥∥∥ ∗ ∗
(µ2, s21)p21 ∗

∥∥∥∥ , p21 := µ2

(µ2, s21)
l21s21 +

s21
(µ2, s21)

l22.

Then
(A,N)l ∼ diag(1, σ2),

where

σ2 := (µ2, α2, α1(µ2, s21)p21) = (µ2, α2, α1µ2p21, α1s21p21) = (µ2, α2, α1s21p21).

The element µ2 is a nontrivial divisor of ψ2. Therefore by condition (2), (µ2, α2, α1s21) ̸= 1.
Since

(µ2, α2, α1s21)|(µ2, α2, α1s21p21) = σ2

we get σ2 ̸= 1. It means that AA2 +NA2 ̸= A2.

3.2. Singular full matrices over an elementary divisor domains.

Theorem 11. Full singular matrices from E2 are adequate in the set of full matrices in E2.

Proof. Let B be full singular matrix from E2. Therefore B can be written in the form
B = P−1

B diag(1, 0)Q−1
B . Suppose that

A = P−1
A diag(1, α2)Q

−1
A , α1|α2

is an arbitrary full matrix in E2 such that AE2 +BE2 ̸= E2.
The invariant factors of (A,B)l are divisors of corresponding invariant factors of B. So

the first invariant factor of (A,B)l is equal to 1. Using Theorem 6 we get that the Smith
normal form of (A,B)l is equal to Ψ = diag(1, ψ2), where ψ2 := (α2, s21), PBP

−1
A := ∥sij∥ .

Case 1. Assume that

ψ2 := (α2, s21) = 0 ⇒ α2 = s21 = 0.

It means that

A = P−1
A diag(1, 0)Q−1

A , PBP
−1
A =

∥∥∥∥ e1 s12
0 e2

∥∥∥∥ , e1, e2 ∈ U(E).



120 A. I. GATALEVYCH, V. P. SHCHEDRYK

Noting that
(PBP

−1
A ) diag(1, 0) = diag(1, 0) diag(e1, e2)

it is easy to check that
A = B

(
QB diag(e1, e2) Q

−1
A

)
.

Consequently, the matrices A,B are right associates. It follows that B is left adequate to A.
So B is right adequate in the set of full matrices in E2.

Case 2. Let ψ2 be nonunit element of E2 \ {0}. Set

PT :=

∥∥∥∥ 0 1
1 0

∥∥∥∥PA.

Then the matrix B can be written as B = ST , where

S := P−1
B

∥∥∥∥ 1 0
0 ψ2

∥∥∥∥PT , T := P−1
T

∥∥∥∥ 1 0
0 0

∥∥∥∥Q−1
B .

Consider the matrix (A, T )l. As above we have

(A, T )l ∼ diag(1, λ2), λ2 = (α2, m21),

where m21 is an element of the matrix PTP
−1
A := ∥mij∥ . Since

PTP
−1
A =

∥∥∥∥ 0 1
1 0

∥∥∥∥ ,
we get m21 = 1. So λ2 = 1. Consequently, AE2 + TE2 = E2.

Consider all left nontrivial divisors of the matrix S. Potential Smith forms of such divisors
have the form diag(1, µ2) := M, where µ2 is a non-trivial divisor of ψ2. According to
Theorem 8 the set of all left divisors of the matrix S having the Smith form M has the form

(L(Ψ,M)PB)
−1M GL2(E),

where L(Ψ,M) consists of all invertible matrices of the form

M =

∥∥∥∥ l11 l12
µ2l21 l22

∥∥∥∥ .
Suppose that N = (LPB)

−1MV, where L ∈ L(Ψ,M), V ∈ GL2(E) be an arbitrary matrix
in this set. Repeating the considerations made in the proof of Theorem 5, we obtain AE2 +
NE2 ̸= E2.

Definition 3. Element b of the set N is called right weak adequate if for an arbitrary element
a ∈ N there exist such elements s, t ∈ N that b = s·t, where tN+aN = N, and sN+aN ̸= N.

Theorem 12. Full singular matrices are weak adequate in E2.

Proof. Let A := P−1
A diag(α1, α2)Q

−1
A and B := P−1

B diag(1, 0)Q−1
B are matrices in E2. The

Case α1 = 1 is considered in Theorem 7.
Let α1 ̸= 1. Suppose that B = ST, where (A, T )l = I. Obviously that the matrices S, T

are full matrices

S = P−1
S diag(1, σ2)Q

−1
S , T = P−1

T diag(1, τ2)Q
−1
T .
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Since detB = detS detT , we have
σ2τ2 = 0. (3)

As above I = (A, T )l = diag(1, (τ2, α2, α1p21)), where p21 is element of PT = ∥pij∥. It
follows that (

τ2, α1

(
α2

α1

, p21

))
= 1 ⇒ τ2 ̸= 0.

Using equality (3) we get σ2 = 0. Hence the matrix S has the form

S = P−1
S diag(1, 0)Q−1

S

and can be writen as S = S1S2, where S1 := P−1
S diag(1, α2 + 1), S2 := diag(1, 0)Q−1

S . Since
(detS1, detA) = (α2 + 1, eα1α2) = 1, where e is invertible element of elementary divisor
domain, we conclude that (A, S1)l = I.

3.3. Weak adequacy of zero matrix to the set of full matrices.

Theorem 13. Zero matrix is weak adequate to the set of full matrices in E2.

Proof. Let A := P−1
A diag(1, α2)Q

−1
A is matrix in E2. Zero matrix can be written as 0 = ST,

where
S := P−1

A

∥∥∥∥ 1 0
0 0

∥∥∥∥(∥∥∥∥ 0 1
1 0

∥∥∥∥PA

)
, T :=

(
P−1
A

∥∥∥∥ 0 1
1 0

∥∥∥∥)∥∥∥∥ 0 0
0 1

∥∥∥∥ .
Obviously that PT =

∥∥∥∥ 0 1
1 0

∥∥∥∥PA. So PTP
−1
A =

∥∥∥∥ 0 1
1 0

∥∥∥∥ . By Theorem 6 we get

(A, T )l ∼
∥∥∥∥ 1 0
0 (α2, 1)

∥∥∥∥ = I.

Concequently, AE2 + TE2 = E2.
Since PS = PA, we have PSP

−1
A = I. So

(A, S)l ∼
∥∥∥∥ 1 0
0 α2

∥∥∥∥ ̸= I.

Therefore AE2 + SE2 ̸= E2.
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