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In the paper we consider a random analytic function of the form

—+oo
fzw) = an(wl)fn(wg)anz”.

n=0
Here (g,) is a sequence of independent Steinhaus random variables, (§,) is a sequence of
independent standard complex Gaussian random variables, and a sequence of numbers a,, € C
such that ag # 0, liIJIrl Ylan] = 1, sup{lan|: n € N} = 400. We investigate asymptotic

n—-+oo
estimates of the probability po(r) = In~ P{w: f(z,w) has no zeros inside rD} as r 1 1 outsi-
de some set E of finite logarithmic measure. Denote N(r) := #{n: |a,|r™ > 1}, s(r) =
2 E;ro% In*(|an|r™), o == lim % The article, in particular, proves the following statements:
11

1—r
1) if @ > 4 then

()~ s(r)
1 In N(r) ’
r¢E

< i 00 0D In(po(r) — s(r)) _ 1
1 In s(r) 1 In s(r) 2
r¢E r¢E
Here F is a set of finite logarithmic measure. The obtained asymptotic estimates are in a
certain sense best possible. Also we give an answer to an open question from [23, p. 119] for

such random functions.

2) if @ = +o0 then

1. Introduction. One of the problems in theory of random functions is investigation of value
distribution of these functions and also asymptotic properties of probability of absence zeros
in a disc (“hole probability”). These problems were considered in papers of J. E. Littlewood,
A. C. Offord (|1-6]), M. Sodin, B. Tsirelson (|7-9]), Yu. Peres, B. Virag (|10]), P. V. Filevych,
M. P. Mahola ([11-13]), M. Sodin ([14-16]), F. Nazarov, M. Sodin, A. Volberg ([17, 18]),
M. Krishnapur ([19]), A. Nishry (]20-23]), J. Buckley, A. Nishry, R. Peled, M. Sodin (]|24]),
A. Kiro, A. Nishry ([25]), J. Buckley, A. Nishry ([26]), A. O. Kuryliak, O. B. Skaskiv ([27,28]),
H. Li, J. Wang, X. Yao, Z. Ye (|29]).

So, in [9] there was considered a random entire function of the form

U(z,w) = kzzofk(w)ﬁ, (1)
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where {{(w)} are independent complex valued random variables with a density function

2

1
Pe(2) = ;e"d ,2€C, keZ,.

From now, we denote such a distribution by N¢(0,1).
Let us denote by ny(r, w) the number of zeros of the function ¢(z,w) in rD = {z: |z| < r}.
Then ([9]) for any 6 € (0,1/4] and all » > 1 one has

n(r,w)
P{w: ‘ T 1’2 (5}§ exp(—c(8)rt),
where the constant ¢(d) depends only on 0.

In [9,20] also investigated the probability of the absence zeros of the function ¢(z,w),

Py(r) = P{w: ¢(z,w) # 0 inside rD}.

For the function of the form (1) it is possible to fix the disc of radius r and investigate
the asymptotic behavior of P{w: ny(r,w) > m} as m — 4o00. So in [19] there was proved
that for any r > 0 we get

1
In P{w: ny(r,w) > m} = —§m2 Inm(1+o(1)), m — +oo.

Very large deviations of zeros of function (1) also was considered in [18].
There was considered [22,23] a more general Gaussian entire functions of the form

“+oo
w) = Z Er(w)anz",
n=0

where ag # 0, n € Z,, lim /@, = 0. If ¢ > 0, then there exists ([22,23]) a set of finite

HJroo

logarithmic measure E C ( ) ([, & < 400) such that for all 7 € (1,400)\E we obtain

s(r) — sY2FE(r) < po(r) < s(r) + sY2HE(r = QZln a,r"). (2)

It is proved that the exceptional set in this statement is necessary. There was constructed
a Gaussian entire function and a set E of infinite Lebesgue’s measure such that po(r) >
s(r) —cy/s(r),r € E. Also there was formulated the following question. Is the error term in
inequality (2) optimal for a reqular sequence of the coefficients {a,}?

The authors [28] found an answer to this question. We proved

. In(po(r) = 5(r))  w— In(po(r) — s(r))
0< lim , lim <
r:)g—%oo In 8(7“) r;;é—&boo In S(T’)
. In(po(r) —s(r)) _
Y O

r¢E

l\DIr—t

where E is a set of finite logarithmic measure. There was constructed a Gaussian entire
function f(z,w) for which

L In((r) = s(r) 1

rhe Ins(r) 2
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and a Gaussian entire function g(z,w) such that

o () = 5(r)

T In s(r)

= 0.

In [19], there was considered a function of the form

+o0 L 1/2
= Zgn(w)< :) 2", p>0,
n=0

which is almost surely analytic function in the unit disc.
In [10], [24] there was considered a random analytic function of the form

w):Zék(w)\/L(LJrl)..l%!(LJrk—1)Zk7 L0, 3)

where & (w) € Nc(0,1), k € Z,.

Remark that if L = 1 then fi(z,w) = Y75 &(w)2". For this function we find the
following result ([10]). Denote by En and Dn the mean value and variance of a random
variable 7, respectively. The mean value and variance of random variable ny, (r,w) (number
of zeros of function f;(z,w) inside rD) are equal

r? r? 72+ o(1)

E(ny, (r,w)) = 1_,2 D(ny, (r,w)) = 1_ 4 po(r) = 11—, " T1
For fr(z,w) the following estimates can be found in [24]: for 0 < L < 1
1-L-o(1) 1 1 1-L+o(l) 1 1
1 < < 1 1
T (= oy s s gy T
and for L > 1 ( 2 1 o(1)
L—12+0(1) 1 ., 1
= 1 1).
Po(7) 4 i, T
Remark that for f;(z,w) in the case when L > 1 we have
In N
o = lim - ET) =
11 IHE

The aim of this paper is to obtain analogs of these relations for a “wide” class of random
analytic functions.
This problem was already considered in [27] for some class of functions of the form

+oo
w) = Z En(w)anz",
n=0

where a, > 0, lim {/a, =1, {a,} are log-concave and

n—-+4o0o

17}%111 (1—r) lnln(Zan )— . (4)
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Then for all € > 0 there exists a set E(e, f) = E; C (0, 1) such that

— 1
1 1

-

meas(FE; N [r,1)) =0

and for all r € (0,1)\E; we get po(r) = s(r) + o(s(r)). In particular,

s(r) — s10(r) I3+ 5(r) < po(r) < s(r) + /s(r) I s(r),  s(r) =2 Z In* (a,r™).

2. Notations. In this paper, we consider random analytic functions of the form
+00
fzw) = f(z,w,w2) = > en(wi)énlwn)an2™. (5)
n=0

Here ¢, (w;) = @) (6,) is a sequence of the independent random variables uniformly
distributed on [—7,7), (§(w2)) € Nc(0,1) and a, € C, n € Z; such that

ap #0, lim {/|a,| =1, sup{la,|: n € N} = +oo0.

n—-+o0o

Denote the class of such random analytic functions by A.
In this paper we study asymptotic behavior of

po(r) =In" P{w: ns(r,w) =0}

as r T 1 for random analytic functions of the form (5).
We denote

N(r) = {n: In(la|[r") > 0}, expy{a} =€, N(r)=#N(r),
Ni(r) ={n: In(lan|r}) > 0}, N(r) = #N(r), N(r) = #M(r),

1 Rl
rm=1-1-r)expy——5——2 s(r)=2 In(|a,|r™) =2 In"(Ja,|r"),
p{ In N(r)} ng;m ;
pr(r) = max{|a,|r": n € Zy}, vi(r) =max{n: ps(r) = |a,|r"},
+o0
My(r) = max{|f(2)|: 2| < v}, SFr) =) lanlr™.

3. Auxiliary lemmas.

Lemma 1 ([12]). Let ro € [0;1), u(r) be a non-decreasing unbounded function on [ro; 1),
xo = u(rg). Also, the function ¢(u) is a positive continuous increasing to +00 on [xq; +00)
function defined on [uy; +00) such that

“+o0o

/%<+oo.

uo

Then for all r > rq outside the set E of finite logarithmic measure ([, {2~ < +00) we have

u(l —(1—-r) exp{—m}>< eu(r).
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Remark that if f € A, then ligl N(r) = 400 and we can choose in Lemma 1 u(r) = N(r)

and ¢(z) = 2%, * — +00. So, we have the following statement.

Lemma 2. Let f € A. There exists a set E C (0,1) of finite logarithmic measure such that
for all r € [0; 1)\ E we have
Ni(r) < eN(r).

Lemma 3. Let f € A. There exists a set E C [0;1) of finite logarithmic measure such that
for all r € [0; 1)\ E we have

N(r

\/ r)Ins(r

Proof. Remark that outside a set of the countable number of points we have

1—7‘

n MOt N2(r)
/ — - > > — _ .
s(r)=2 E . 2 E n > 2 E n=(N(r)—1)N(r) > 1 r11
neN(r) neN(r) n=0

Define

B={refn: s> 11

This set has a finite logarithmic measure, i.e.

/dr</ /dt /dt<+oo
1—7r lns tin%t '

E E s(E) 2

Therefore, for all r € [0;1)\ E' we obtain

2
r) < 24/8(r) < Vi

]

Lemma 4 (|28]). Let (1,(w)) be a sequence of independent non-negative identically distri-
buted random variables, such that En, < +oo and E( -) < 400, n € Zy. Then

P{w: (AN*(w))(Vn > N*(w)) [1

n

< p(w) < n} }: 1.
4. Upper and lower bounds for py(r).
Theorem 1. Let f € A and

|
a = lim nN(’r)

i Ing=

> 4.

There exists a set E C [0;1) of finite logarithmic measure such that for all r € [0; 1)\ E we

have
po(r) < s(r)+ (1+e)N(r)InN(r) + CoN(r), (6)

where Cy = 3+ 9/|ao|.
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Proof of theorem 1. Let a« =4+ 5e, € > 0. Then

1
N(r)>m, r 1. (7)

By definition of N;(r) and r we get

S (A
= {n:|an|r" > ¢"(r)}, q(r) = PR eXp{_m} < 1.

Let us consider the event B = ﬂ;il A;, where

Ay [6o(wn)] > % NG,
Ayt |en(wn)] < W for all n € A (r)\ {0},
Az & (wr)] \/_ for all n € Np(r)\(N(r) U{0}),

Ay |€a(wi)] <V for all n g Ni(r) U {0},
Remark that

J et e~ st
=1 1(17,) (Q(T) + l/qw(T)Q\l/de)< T (q(r) + 1/ q“(r)dx>:
B hi%m <qm * 131 q(z;?) ‘:m): m% <Q(T) N 1522«))2
- lnt(%) (q(r) + 1§<%>< 1n21T1T) < - ;(T))Q’ rl. (8)

If B occurs, then using lemma 2 and inequalities (7), (8) we obtain for r ¢ E

leo(w1)&o(wa)ao| — (w1)én(w2)anr"|> 34/ N(r)—
|an|r ’an|r
- — v q'(r) >
ng;(r) |an|7”" N(T‘) ne/\/lz N(r) \/ ng/\/lz(r;u{o}
Ny ( 1
> 3y/N(r) = V/N(r) - \/—< ") (1—q(r))? >

Z3\/N(r)_e\/N(7,)_< - (1= )exp{ m} >22
( j)

1—r) <1 — exp{_ln2]1\f(r)
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> (3—e) /—N(T’) — I N(r) i —17“)2 = In® N(r) ((3 —e) ln5]]\:7((i)) — f _17«)2)2
5 1 1
> In N(r)<(1 sl o 7n)2>> 0, ril.

Thus, we proved that the first term dominants the sum of all the other terms inside rD,
ie.
+00

Z en(w1)&n(wa)anr™|.

n=1

|o(w1)&o(wa)ao| >

(9)

If B occurs then the function f(z,w) almost surely has no zeros inside rID. Now we find
the lower bound for the probability of the event B.

9N (r)
P(A;) :exp{— ENE };
P> ] g |2T1%N 5 = e =) = N N ) - Ny 2},
neN(r) "
P(A) > . Nl(r) > exp{ N (1) (2N() } > exp{ —eN () (in N(r) + n2)}.
neNi(r)
P(Ay) = P{w: (Vn € Ni(r) U{0})[n(w)] < Vn} >
+oo
>1- Y e"zl—zenzl—%>§, r 1.
ng@N (r)U{0} n—1 €

It follows from B C {w: n(r,w) = 0} that

po(r) =In" P{w: n(r,w) =0} <Iln~ P(B) = Zln_ P(A,) <

N
< hlg + 9| (‘Z) +s(r) + N(r)InN(r)+ N(r)In2 +eN(r)In N(r) + eln2 - N(r) <
Qo
IN(r)
< s(r) + aol? +(14+e)N(r)InN(r)+3N(r) =s(r)+ (1 +e)N(r)In N(r) + CoN(r).
0
[
There was considered in [13| a random analytic function of the form
o0 A
g(z,w) = Zew"(“’l)anz”, (10)
n=0

where ag # 0, sup{|a,|: n € N} = 400 and independent random variables 6,,(w;) are uni-
formly distributed on [—, 7). For such functions there were proved the following statements.

Theorem 2 (|11]). Let g(z,w;) be a random analytic function of the form (10). Then for
r > ro and all w; we obtain

1
Ny(r,wy) < % + In M, (r),
e
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where
1 2m +oo
Ny(r,wy) = Py /ln lg(re’®, wy)|da — In |ag|, M, (r) = ZO |a,|r™.
0 =

Theorem 3 ([13|). There exists an absolute constant C' > 0 such that for a function g(z,w)
of the form (10) we P;-almost surely have

InM,(r) < Ny(r,wi) + Cln Ny(r,wr), rolwr) <7 < +o0. (11)

Let P = P, x P, be a direct product of the probability measures P; and P, defined on
(Q x Q9,47 X As). Here A; x Aj is the minimal o-algebra, which contains all A; x A,
such that A; € A; and Ay € Ay. Let &,(w;) = €21 (4,,) is a sequence of the independent
random variables uniformly distributed on [—m,7) on (Q1, A1, P1), & (w2) € Ne(0,1) on
(Qa, Az, Py), where (1, Ay, P1), (22, A2, P») are two probability spaces.

Corollary 1. Let ((,(w2)) be a sequence of independent identically distributed random
variables such that for any n € Z, the density function of the distribution of the random
variable n = (, has the form p,(2) = h(|z|) and E|n| < +o0, E(ﬁ) < +400. There exist an
absolute constant C' > 0 and a set B € A: P(B) = 1 such that for the functions

“+oo
flz,w) = Zen(wl)(’n(wg)anz”, ap # 0, sup{a,: n € N} = +oo, Ff Vlan| =1,
n—-+0o0
n=0

and for allw € B and all r € [ro(w); +00) we get

2w

1 )
gy In|f(re",w)|do —In|ageg(wr)Co(wa)| > My (r,wa) — (C' + 1) Inln M4 (r, w2),
7r
0

+oo
where My (r,we) = D |an|[Cu(ws)[r™.
n=1

Remark that if the density function of ¢, (w; ) has the following form p, (2) = ¢(|z]),n € N,
then arg (,,(wy) are uniformly distributed on [—7, 7). Indeed, from the equality

iy +00 +oo
1=P{w: G(w) €Ct= [ de | rh(r)dr=2r [ rh(r)dr,
Joe [ =]
for any o, 8 € [, m): a < (it follows
B +00 5
P{w;: argCu(wy) € (o, )y = [ dp [ rh(r)dr = — @
o fron-:

Since the random variables &,(w;) satisfy the conditions of Corollary 1 (here pg, (z) =
h(|z|) = %e"Z'Q, z € C, k € Z,), we have the following statement for the functions of the
form (5).
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Corollary 2. There exist an absolute constant C' > 0 and a set B: P(B) = 1 such that for
the functions of the form (5) and for all w € B and all r € [ry(w); +00) we obtain

2T
217T In|f(re”,w)|dd — In|apeo(wr)&o(wa)| >

0
> In9My(r,we) — (C+ 1) InIn My (r, wo).

Proof of corollary 2. It follows from Theorem 2 that In Ny(r,w;) < 1+ Inln9,(r) and by
Theorem 3 we wq-almost surely have

Ny(r,wy) > In9M,(r) — Cln Ny(r,wy) > In9My(r) — (C + 1) Inln M, (r),
for 7o(w1) < r < 4+o00. Therefore,
Pi{w: (3ro(w1))(Vr > ro(w1)) [Nyg(r,wr) > InMy(r) — (C'+ 1) Inln M, ()]} = 1.
Let us consider a random function f(z,w;,ws) of the form (5). Define

Ap = {(w1,w2): (Fro(wr,ws))(Vr > ro(wr, w2))
[Np(r,wi, we) > InMp(r,we) — (C' + 1) InIn My (r, wo)]},

where
+oo +oo
M (r,wz) =D [en(wn)P[Galwo) Plan*r™™ = [Galws) Plan |*r*".
n=0 n=0

Let us consider the events
F={wn: (v € N) [Gulwn) £ 0]}, H = {wn: Tm3/JaallGalwn)] = 1.
Then by Lemma 4 for 1, = |(,| one has P,(H) = 1. Since E(Cin) < 400, the probability of
the event F'
1> Py(F) > 1= Pr{ws: Gu(wn) =0} = 1.

n=0

Denote G = F'N H. So, P,(G) = 1. Then for fixed w) € G

Pi(Ap(wg)):=Pi{wr: (Fro(w,wy))(Vr > ro(wr,w5))
[Ng(r,wp,wd) > I (r,wy) — (C + 1) InIn My (r,wd)]} = 1.

It remains to use Fubini’s Theorem

p(Af):/</ dPl(w1>dP2 w2) /</ aPy( wl))dg(w):

Q2 Ap(w2) Af(w2)

- /dP2(w2) — PG) = 1.

G
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Theorem 4. Let f € A. Then there Pj-almost surely exists ro(w) > 0 such that for all
r € (ro(w); 1) we get

po(r) > s(r) + N(r)In N(r) — 4N (r).
Proof of Theorem 4. By Jensen’s formula we almost surely get

2w

0= / M) gy lﬂ In |f(re”, w)|d0 — In |ageo(wi)éo(w2)];
0

t 2
0

2

In |ageo(w)éo(ws)| = % /ln | f(re® w)|db.

0
Therefore,

21

P{w: n(r,w) =0} < P{w: In |ageg(wr)éo(wa)| = %/1H|f(rei97w)|d0},

0

2m
1 )
A= {w: %/ln|f(rew,w)|d02

0

For r > ry(w) we define

> InMs(r,we) — (C+ 1) Inln My (r,ws) + In ]aoso(wl)&)(wg)]},

G1(r) = {w: In|ageo(wr)&o(w2)| > Iny(ws)},

Go(r) = {w: %/ln|f(rei9,w)|d9 < ln'y(wg)},

0

where r¢(w) is chosen from Corollary 1 and y(ws) > 1. By this corollary we obtain that
P(A) = 1.
Then for r > ro(w)

2

(1) Galr) = {u 1/1n|f( IO > 7 (s) > I fagzo(eor)éolen)]

0
2

Gi(r) (Galr) © {ws 5 [ lfre”w)ldd £ nfanzo(wn)ta(wn)]

NGl = GG > {w: % /m 7 (re )| d0 = n agzo(w: )eo(u) .

0

Hence, for r > ro(w)

P{w: n(r,w) =0} < P(Gy UGs) < P(Gy) + P(Gg), 1 — +0o0. (12)
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Put v(wy) = Cf - |ag| - [€o(w2)|, C1 > 1. Then we may calculate the probability of the
event G4

P(Gh) = P{w: In|agep(wi)éo(we)| > InCy + In |a050(w1)§0(w2)|}: P{w: InCy < O}z 0
and estimate the probability of the event Gy as r > rq(w)
P(Gy) = P(GoNA) + P(GaNA) < P(GyNA)+P(A) = P(GoN A) =

= P{w: InMy(r,we) — (C'+ 1) InIn M4 (r, wo)+

2
1

+1In |apeg(wr)&o(w)| < Py /ln|f(reie,w)]d9 < lnfy(r,w)}:

0

= P{w: InMs(r,ws) — (C'+ 1) Inln M4 (r, we) + In |ageo(wr)&o(w2)| <
<InC, +1In |a0€0(w1)£0(w2)]}:
= P{w: InMp(r,we) — (C+ 1) InIn M (7, wq) < lnC’l}S
< P{w: In 9y (r, we) < 21nC’1}: P{w: M y(r,we) < C? b=

< P{w: 3 Jenws) Pl < 0;*}, rl. (13)
neN(r)

The distribution function of the random variable |, (ws)]

Fie,(x) = 1 —exp{—2}, Fie,2(v) = Fie,|(Vx) = 1 — exp{~z},
Fleulanferon(®) = Feu2 (557 ) = 1 = exp{ -~ }

|an|2r2n |(In|27’2n

for x € Ry and n € N: a,, # 0. Then for the random vector

77((")2) = (|§1(w2)|a17“j1, SRR |§.7k (w2)|ajk7njk)v Jk € N<T)7

the density function is the following

R G G
pn(l') = & neN(r) v
0, z g RYY

So, for r > ro(w) we obtain

Y ln@)Planlr < O = Plw: n(ws) € W)} =

neN( r)
= o / / H exp 5 Qn}dxl...de(r) <
ne/\/ |a”| " " neN \a [*r
< exp(—s(r)) - measN(,,)W(r), (14)
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where
W(r) = {x erRY": > a, < cf}.
neN(r)

For C' > 0 by elementary calculation we get

n - Cn
measn{x € RY: Zx, < C’}: o

i=1
From this equality and Stirling’s formula

n\" 0
P= 2 <_> ' {__n}a n 717 )
n |~ ) expy— oo 0, €1[0,1], neN

it follows that the volume of the set B(r)

ln<measN(r)W(r)>§ —% In(27) — %ln N(r) = N(r)InN(r) + +

12N(r)
+N(r) +4N(r)InCy < =N(r)(InN(r) =1 —4InCh).

Let us choose C) = 2. From (14) we obtain py(r) > s(r) + N(r)In N(r) — 4N(r), for
r > 1o(Ww). O

From Lemma 3 and Theorems 1 and 4 it follows such a statement.

Theorem 5. Let ¢ > 0 and f € A such that

a:h_mlnN(T)

1 In p—

> 4. (15)

Then there P-almost surely exist a nonrandom set E of finite logarithmic measure and
ro(w) > 0 such that for all r € (ro(w), 1) \ E we obtain

(1=e)N(r)InN(r) < po(r) —s(r) < (1 +e+¢e)N(r)In N(r), (16)

in particular,

n(po(r) = s(r)) —M(po(r) —s(r)) . 1

0<1li 17
- :ﬁl In s(r) ol In s(r) ~2—at (17)
r¢E T¢E
wnd In(po(r) — s(r)
. In(po(r) — s(r
1 =1.
P In N (r)

r¢E

Proof. Tt follows from Theorems 1 and 4 inequality (16). Also, from (16) we deduce for
re€ (row) 1)\ E

InN(r)+Inln N(r) — 1 < In(po(r) —s(r)) _ InN(r)+Inln N(r)+ 2

In N(r) - In N(r) = In N (r) ’
i 2P0 () —s(r)) _
rt1 In N (r) '

r¢E
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By Lemma 3, we obtain for arbitrary 6 > 0 as r 1 1

1 1
145 2 2 _ _
s 0(r) > s(r)In”s(r) > N°(r)(1 —r), Ins(r)> o <21nN(7") In T 7">’
—n(polr) — s(r)) _ — In(po(r) — 5(r)) W N(r) _
= In s(r) 1l In N(r) In s(r)
r¢E r¢E
—InN In N 1
20 T n N (r) — = (1+6)Tm =
1 In S(T) 1 2In N( ) lan 1 9 In
2 r¢E " r¢E In N(r)
1 1 1
o l-r -
1:?11 NG 2 (1im 1lnN$r)>
r¢E ML Ter
r¢E
Since ¢ is arbitrary then
Tim In(po(r) — s(r)) < 1 '
= In s(r) 2—a!
r¢E
From N(r) > 1 and s(r) > 1, r 1 1, it follows that
h_mln(po(r) —s(r)) ~ lim In(po(r) — s(r)) InN(r) _ i_mln N(r) >
e In s(r) 1 In N(r) Ins(r) 41 Ins(r)
r¢E ¢l r¢E

5. Examples on the sharpness of inequalities (17).

Theorem 6. There exist random analytic function f € A: a = 400, a set E of finite
logarithmic measure such that

In(po(r) —s(r)) 1

li = —.
o In s(r) 2
r¢E
Proof. Denote
+oo +oo
= Zanz”, h(z,w) = an(w)anz", (18)
n=0 n=0
where a,, = exp{lnln w5} 1 € Zy. Then
+00 n+5 1
M, (s — -},
n(r) = nZO Zep Inln(n +5) "
Let us consider the function g(x) = ﬁ —xInt, z>0. Then
Inln(z +5) — 1
g/(x) _ n(m+5) n: =

In® In(z + 5) r



42 A. O. KURYLIAK, O. B. SKASKIV

1 1 1
SR — - “ln- =0
nln(z + 5)( In(z +5) Inln(z + 5)) nr

Let Zmax(r) be a point of maximum of the function g(z). Then 11%111 Tmax (1) = +00 and

for r T 1 we get

<21 ! (r) > { ! } 5
N, Tymax(T) > expyd —— ¢—5,
In In(Zpax(r) + 5) r’ P2 2In

1
vp(r) > epr{m}—L’) > eXp2{

}, rl (19)

Therefore,

exp{g(eman)} 2 m(r) 2 exp{ g (exp, 2111 1}-5) )2

1
> exp{exp2{2lill } (2 ln% —1In %) }: exp{epr{ }ln }> exp3{; 1 i 7"}’

Ins(r) > Inln py(r) > eXp{31 —r}

S e

In
1

and (1
In N 1 exp{ 5
o = lim BN 5y nlr) o g, EPYTT (20)

r g T g T Ingg

By Lemma 3 there exists a set E C [0;1) of finite logarithmic measure such that for all
r € [0;1)\E we have

\/ r)Ins(r) < v/s(r)In?s(r). (21)

1—r

From

In pp(r) = In pun(ro) = / valt)dt

0

< vp(r)(Inr — Inrg),

it follows that for any r > ry > r( there exists a constant ¢ > 0 such that

vn(r) > In pa, (1) — In pup (o) > Clnuh(r)‘
Inr —Inrg —1Inrg

Remark that the sequence a, = exp{m} n € Z,, is log-concave. Then for any r €
[0;1): N(r) > vu(r). So,

s(r) < (N(F) + D) In in(r) < 2(N(r) + 1)~ In L(r) <

< %m Ti(N(r) LN < AN?(r), 7 1 1. (22)

From (20) it follows that the function h(z,w) satisfies the conditions of Theorem 5 (o =
o0). Taking into account (21) and (22) we deduce for r € [0; 1)\ E

2¢/s(r) < N(r) < v/s(r)In®s(r)
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() =) _ () = s() N _ 1
Trgj In s(r) Q}g In N(r) Ins(r) 2

]

Theorem 7. There exist random analytic function f € A: o = +00, a set E of zero density,
that is (here meas is Lebesgue’s measure on the line)

DE = lim meas(EN|r,1)) =0,
r—+1-0]1 —7r
such that |
i B@o(r) = s(r)) _
11 In s(r)

r¢E

Proof. Let us consider random analytic functions

+o0
h(z) = Zanz", g(z) = Z anz",
n=0 neN*

where a, = exp{%}, N* ={n:n = [e*] + 1 for some k € Z,}. Here [¢F] means the
integer part of the real number e*. We denote

Nu(r) ={n € Zy: In(|a,|r™) > 0}\{0}, N,(r) = {n € N*: In(|a,|r") > 0},

r) =2 Z In(|a,|r™), s4(r) =2 Z In(|a,|r™).

neNy,(r) neNg(r)

Remark that the sequence a, = exp{ lnh’l‘tim} n € Z,, is log-concave and N, (r) =

{0,..., Nj(r) — 1}. Then by the definition of Ny(r) we get N,(r) < 2In Np(r), r 1 1. Since
h(z) satlsﬁes condition (4), then ([27]) there exists a set E of zero density such that for
r € [0;1)\E we have

N,(r) < 2In Ny (r) < 2In(In pup, (r) In®(In s (7)) < 41nn g (7).
On the other hand

1 1 1 cln py(r
Ny(r) > élnNh(r) > §1HVh 5 < “ure ) —Inln py(r) >

> gen{sr 2 o3 }r“

In N 1 -
o = lim — (T)Z—li_m =t
11 IHE 47»T1 IHE

Therefore,

=400, r1T1
Remark that
min{n € N*:n > v (r)} <lev,(r)] +1 < (e+ 1) Iny,(r).

Fix » > 0. Let us consider the function

t+5 1

y(t) = In(a(t)r’) = mIn(t+5) tln -
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The graph of the function y(¢) passes through the points (27;0) and (v4(r),In py(r)).
It follows from log-concavity of the function y(t) that the point (v (r),In us(r)) belongs
to the triangle with the vertices (v,(r),Inpy(r)), ((e + 1)vy(r),Inp,(r)) and ((e + 1)y, (r),
(e +1)Inpy(r)). Then

1
In g (r) < (e + 1) Injiy(r) < 4Inpig(r), s,(r) > 21In py(r) > %&) r.
For the function g(z) and r € [0; 1)\ E we get
0 < lim In(po(r) — s(r)) — lim In N,y(r) < lim In(41Inln py(r)) _o
rt1 In s(r) ML Insg(r) T ort o n(ineet)

r¢E r¢E r¢E

Remark that for f € A and r > ry > r; there exist C; > 0 such that

r

Inps(r) —Inpu(r) = / @ <vi(r)(lnr —Inmr),
V() > Inpep(r) — Inp(ry) > Cilnps(r)
Inr —Inr —1Inr

If we additionally suppose that a sequence (a,,) is log-concave then

Cylnpug(r)

N(r) > ve(r) > “or

, rT L

Therefore, if a sequence (a,) is log-concave then condition (15) in Theorem 5 can be replaced
by
lim Inln o p(r)
1 In 17

> 4.

The last fact leads us to the following conjecture.

Conjecture 1. If a sequence (a,) is log-concave then condition (15) in Theorem 5 can be
replaced by the condition
Inl
lim 2B

o Ing

Conjecture 2. Condition (15) in Theorem 5 can by replaced by the condition « > 1.
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