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Let the function f (z) = z+
∑∞

k=2 akz
k ∈ A be locally univalent for z ∈ D := {z ∈ C : |z| <

1} and 0 ≤ α < 1. Then, f ∈ M(α) if and only if

Re
( (

1− z2
) f(z)

z

)
> α, z ∈ D.

Due to their geometrical characteristics, this class has a significant impact on the theory of
geometric functions. In the article we obtain sharp bounds for the second Hankel determinant

|H2 (2) (f)| =
∣∣a2a4 − a23

∣∣
and some Toeplitz determinants

|T3 (1) (f)| =
∣∣1− 2a22 + 2a22a3 − a23

∣∣ , |T3 (2) (f)| =
∣∣a32 − 2a2a

2
3 + 2a23a4 − a2a

2
4

∣∣
of a subclass of analytic functions M(α) in the open unit disk D.

1. Introduction and definitions. Let H be the class of analytic functions in the unit disk
D := {z ∈ C : |z| < 1}, and let A be the subclass normalized by f (0) = f ′ (0)− 1 = 0, that
is, the functions of the form

f (z) = z +
∞∑
k=2

akz
k, z ∈ D, (1)

a0 = 0, a1 = 1. Let S be the subclass of A that consists of univalent (one-to-one) functions.
A function f ∈ A is said to be starlike (with respect to the origin) if f(D) is starlike with
respect to the origin, and convex if f(D) is convex. Let S∗(α) and C(α) denote, respectively,
the classes of starlike and convex functions of order α (0 ≤ α < 1) in S. It is well known that
a function f ∈ A belongs to S∗(α) if and only if,

Re

(
zf ′ (z)

f(z)

)
> α (z ∈ D),

and that f ∈ C(α) if and only if,

Re
(
1 +

zf ′′ (z)

f ′(z)

)
> α, z ∈ D.
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Note that S∗(0) =: S∗and C(0) =: C.
Let f ∈ A and be locally univalent for z ∈ D, and 0 ≤ α < 1. Then, f ∈ M(α) if and

only if

Re
( (

1− z2
) f(z)

z

)
> α, z ∈ D. (2)

Due to their geometrical characteristics, this class has a significant impact on the theory of
geometric functions. A function f ∈M(α) maps univalently D onto a domain f (D) convex in
the direction of the imaginary axis, i.e., for w1, w2 ∈ f (D) such that Re(w1) = Re(w2) the line
segment [w1, w2] lies in f (D), with the additional property that there exist two points w1, w2

on the boundary of f (D) for which {w1 + it : t > 0} ⊂ C\f (D) and {w2 − it : t > 0} ⊂
C\f (D) (see, e.g., [7, p.199]).

In this study, we find the sharp bound for the second Hankel determinant as well as the
sharp bounds for a number of the Toeplitz determinants defined below, whose constituent
coefficients are functions in M(α).

We begin by outlining the meanings of the Hankel and Toeplitz determinants for f ∈ A.
Let f ∈ A be of form (1). The qth Hankel determinant is defined by

Hq (r) (f) =

∣∣∣∣∣∣∣∣∣
ar ar+1 . . . ar+q−1

ar+1 ar+2 . . . ar+q
...

...
...

...
ar+q−1 ar+q . . . ar+2q−2

∣∣∣∣∣∣∣∣∣
for q ≥ 1 and r ≥ 0. In particular, H2 (2) (f) = a2a4 − a23.

Hankel matrices naturally occur in a variety of applications in science, engineering, and
other related fields such as signal processing, image processing, and control theory. The
reader is referred to [8, 9] and the references therein for a study of Hankel matrices and
polynomials.

Finding sharp bounds for the Hankel determinants of functions in A has been the subject
of numerous papers in recent years. Many results about the second Hankel determinant
H2 (2) (f) = a2a4 − a23 when f ∈ S and its subclasses are known, and in [2, 3, 4, 12], a
summary of some of the more significant findings can be found.

Let f ∈ A be given by (1). Then, the qth Toeplitz determinant is defined by

Tq (r) (f) =

∣∣∣∣∣∣∣∣∣
ar ar+1 . . . ar+q−1

ar+1 ar . . . ar+q−2
...

...
...

...
ar+q−1 ar+q−2 . . . ar

∣∣∣∣∣∣∣∣∣
for q ≥ 1 and r ≥ 0. In particular, T3 (1) (f) = 1− 2a22 + 2a22a3 − a23 and

T3 (2) (f) = a32 − 2a2a
2
3 + 2a23a4 − a2a

2
4.

Toeplitz matrices and their determinants play an important role in several branches of
mathematics and have many applications [13]. For information on applications of Toeplitz
matrices to several areas of pure and applied mathematics, we refer to the survey article by
Ye and Lim ([14]). However, research on Toeplitz determinants was only recently published
in [?, 2].
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The following results will be used for functions p ∈ P , the class of functions with positive
real part in D given by

p (z) = 1 +
∞∑
k=1

dkz
k. (3)

Because the coefficients a2, a3, and a4 will be our main focus, we also need Lemma 4, which
can easily be deduced from (1), (2) and (3).

Lemma 1 ([5]). Let p ∈ P be given by (3), then |dk| ≤ 2, when k ≥ 2. Also

∣∣∣d2 − υ

2
d21

∣∣∣ ≤ max {2, 2 |υ − 1|} =

{
2, 0 ≤ υ ≤ 2;

2 |υ − 1| , elsewhere.
(4)

Lemma 2 ([6]). If p ∈ P is given by (3), then

|dr − υdkdr−k| ≤ 2max {1, |2υ − 1|}

for υ ∈ C and 1 ≤ k ≤ r.

Lemma 3 ([11]). Assume that p ∈ P , with coefficients given by (3), and d1 ≥ 0. Then, for
some complex valued ζ with |ζ| ≤ 1 and some complex-valued y with |y| ≤ 1

2d2 = d21 + y
(
4− d21

)
, 4d3 = d31 + 2

(
4− d21

)
d1y − d1

(
4− d21

)
y2 + 2

(
4− d21

) (
1− |y|2

)
ζ.

Lemma 4. Assume that f ∈ M(α), and is given by (1). Then

a2 = (1− α) d1, (5)
a3 = (1− α) d2 + 1, (6)

a4 = (1− α) (d3 + d1), (7)
a5 = (1− α) (d2 + d4) + 1, (8)

where d1, d2, and d3, d4 are given by (3).

Proof. By (2) there exists p ∈ P of the form (3) such that

(
1− z2

) f(z)
z

= p (z) (1− α) + α (z ∈ D) . (9)

Substituting the series (1) and (3) into (9) by equating the coefficients we obtain (5)–
(8).

2. The second Hankel determinant H2(2)(f). For the second Hankel determinant of
f ∈ M(α), we will present the sharp bound.

Theorem 1. If f ∈ M(α), 0 ≤ α < 1, then

|H2 (2) (f)| ≤
4 (1− α) (64− 37α) + 27

27
.

This inequality is sharp.
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Proof. Firstly, note that from (2) we can write(
1− z2

) f(z)
z

= p (z) (1− α) + α (z ∈ D) . (10)

Thus, from Lemma 4 we have

a2a4 − a23 = (1− α)2d21 + (1− α)21d1d3 − 2 (1− α) d2 − (1− α)2d22 − 1. (11)

It should be noted that both the class M(α) and the functional H2(2)(f) are rotationally
invariant, we now use Lemma 3 to express the coefficients d3 and d2 in terms of d1, and write
u := d1 to get with 0 ≤ u ≤ 2

a2a4 − a23 = −α (1− α)u2 − (1− α)2

4
u2

(
4− u2

)
y2 − (1− α)2

4

(
4− u2

)2
y2−

− (1− α)
(
4− u2

)
y +

(1− α)2

2
u
(
4− u2

) (
1− |y|2

)
ζ − 1.

We now take the modulus to obtain

|H2 (2) (f)| ≤ α (1− α)u2 + (1− α)
(
4− u2

)
|y|+

+
(1− α)2

2

(
4− u2

)
(u+ 2) |y|2 + (1− α)2

2

(
4− u2

)
u+ 1 = φ (u, |y|) .

For u = 2, we have |H2 (2) (f)| = 4α (1− α) + 1 ≤ 4 (1− α) (2− α) + 1.
Since 0 ≤ u < 2, the function [0, 1] ∋ |y| → φ(u, |y|) is easily seen to be increasing, so

|H2 (2) (f)| ≤ φ (u, |y|) ≤ φ (u, 1) =

= (1− α)
[
− (1− α)u3 − 2 (1− α)u2 + 4 (1− α)u+ 8− 4α

]
+ 1.

Hence, the function [0, 2] ∋ u → φ(u, 1) has critical points at u = −2 and u = 2
3
= u0 with

values 4α (1− α) + 1, and 4(1−α)(64−37α)
27

+ 1, respectively, and since

4α (1− α) + 1 ≤ 4 (1− α) (64− 37α)

27
+ 1

when 0 ≤ α < 1.
So, the proof of theorem is completed.
To see that the inequality is sharp, take a function

p (z) =
1− z2

1− t0z + z2
, z ∈ D,

for which d1 =
2
3
, d2 = −14

9
and d3 =

26
27
.

Choosing α = 1
2
, we arrive at the following sharp inequality.

Corollary 1. If f ∈ M(1
2
), then

|H2 (2) (f)| ≤
118

27
∼= 4, 3703.

This inequality is sharp.



136 M. BUYANKARA, M. ÇAĞLAR

3. Toeplitz determinants. We will give the sharp bounds for various Toeplitz determinants
of f ∈ M(α).

Theorem 2. If f ∈ M(α), 0 ≤ α < 1, then

|T3(1)(f)| ≤ 2
(
15− 8α3 + 30α2 − 36α

)
.

Proof. We first note that

|T3(1)(f)| =
∣∣1− 2a22 + 2a22a3 − a23

∣∣ ≤ 1 + 2|a2|2 + |a3|
∣∣a3 − 2a22

∣∣ ≤
≤ 1 + 8(1− α)2 + (3− 2α)

∣∣a3 − 2a22
∣∣ (12)

where we have used Lemmas 1 and 4.
As a result, it is necessary to estimate |a3 − 2a22|.
Note first that

a3 − 2a22 = (1− α)
(
d2 − 2 (1− α) d21

)
+ 1.

Thus, taking υ = 4 (1− α) , we derived from Lemma 1 that∣∣a3 − 2a22
∣∣ ≤ 2 (1− α) (3− 4α) + 1,

and so, from (12), we obtain

|T3 (1) (f)| ≤ 2
(
15− 8α3 + 30α2 − 36α

)
.

Choosing α = 1
2
, we arrive at the following sharp inequality.

Corollary 2. If f ∈ M(1
2
), 0 ≤ α < 1 , then

|T3(1)(f)| ≤ 7.

Theorem 3. If f ∈ M(α), 0 ≤ α < 1, then

|T3(2)(f)| ≤ 6 (1− α)
(
12α2 − 32α + 22

)
.

Proof. We first note that

|T3 (2) (f)| =
∣∣(a2 − a4)(a2

2 + a2a4 − 2a3
2)
∣∣ ,

and since |a2 − a4| ≤ |a2|+ |a4|, we have

|a2 − a4| ≤ 6(1− α).

Thus, it remains to estimate |a22 + a2a4 − 2a23|.
Using Lemma 4, we obtain

a22 + a2a4 − 2a23 = 2(1− α)2d21 + (1− α)21d1d3 − 2(1− α)2d22 − 4 (1− α) d2 − 2.

Taking the modulus, we obtain∣∣a22 + a2a4 − 2a23
∣∣ ≤ 12(1− α)2 + 2 + 4 (1− α)

∣∣∣∣d2 − (1− α)

2
d21

∣∣∣∣ .
Since Lemma 1 gives

∣∣d2 − (1−α)
2

d21
∣∣ ≤ 2, we obtain

∣∣a22 + a2a4 − 2a23
∣∣ ≤ 12α2 − 32α+ 22,

and so
|T3(2)(f)| ≤ 6 (1− α)

(
12α2 − 32α + 22

)
as required.
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Choosing α = 1
2
, we arrive at the following sharp inequality.

Corollary 3. If f ∈ M(1
2
), then

|T3(2)(f)| ≤ 27.

Acknowledgement. The authors are greatly indebted to the referee for his/her valuable
suggestions, which have immensely improved the paper.

REFERENCES

1. M.A. Firoz, D.K. Thomas, V. Allu, Toeplitz determinants whose elements are the coefficients of analytic
and univalent functions, Bull. Aust. Math. Soc., 97 (2018), 253–264.

2. V. Allu, A. Lecko, D.K. Thomas, Hankel, Toeplitz, and Hermitian-Toeplitz determinants for certain
close-to-convex functions, Mediterr. J. Math., 19 (2022), 22.

3. K.O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequality Theory
Appl., 6 (2010), 1–7.

4. D. Bansal, S. Maharana, J.K. Prajpat, Third order Hankel determinant for certain univalent functions,
J. Korean Math. Soc., 52 (2015), 1139–1148.

5. P.L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften 259, New York,
Berlin, Heidelberg, Tokyo, Springer-Verlag, 1983.

6. I. Efraimidis, A generalization of Livingston’s coefficient inequalities for functions with positive real part,
J. Math. Anal. Appl., 435 (2016), 369–379.

7. A.W. Goodman, Univalent functions, Mariner, Tampa, 1983.
8. P. Henrici, Applied and computational complex analysis, Wiley: New York, NY, USA, V.1, 1974.
9. A.S. Householder, The numerical treatment of a single nonlinear equation, McGraw Hill: New York, NY,

USA, 1970.
10. A. Janteng, S. Halim, M. Darus, Hankel determinants for starlike and convex functions, Int. J. Math.

Anal., 1 (2007), 619–625.
11. R.J. Libera, E.J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivatives in P ,

Proc. Amer. Math. Soc., 87 (1983), 251–257.
12. D.K. Thomas, N. Tuneski, V. Allu, Univalent functions: a primer, De Gruyter Studies in Mathematics,

69, De Gruyter, Berlin, Boston, 2018.
13. O. Toeplitz, Zur Transformation der Scharen bilinearer Formen von unendlichvielen Veranderlichen,

Mathematischphysikalische, Klasse, Nachr. der Kgl. Gessellschaft der Wissenschaften zu Göttingen,
(1907), 110–115.

14. K. Ye, L.H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput. Math., 16 (2016),
577–598.

Vocational School of Social Sciences, Bingöl University
Bingöl, Türkiye
mucahit.buyankara41@erzurum.edu.tr; mbuyankara@bingol.edu.tr

Department of Mathematics, Faculty of Science
Erzurum Technical University
Erzurum, Türkiye
murat.caglar@erzurum.edu.tr; mcaglar25@gmail.com

Received 09.05.2023
Revised 24.10.2023


