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The paper shows the existence of a previously unknown relationship between the theory

of monoids and category theory. A non-standard mathematical method based on terms from
non-standard (not always existing) sequences is proposed. In the article in particular are proved
the following statement: Every category is a complete model of some monoid with an associ-
ative zero. Conversely, any such monoid completely models some category. Category theory is
logically equivalent to the theory of monoids with an associative zero. Both are non-essential
extensions of each other. (Theorem 1)

The concepts of category theory proved to be sufficiently productive in modern mathemati-
cs. The simplest category is the monoid. And its concept is the first thing that belongs si-
multaneously to both worlds, both algebraic and categorical. And the latter, in turn, is a very
successful fusion of algebra, geometry, topology, logic, set theory, you can’t list everything.
Moreover, monoid homomorphisms are functors between the corresponding categories. In
this paper, we consider another interesting property of monoids and categories.

A sequence of variables in its termal, logical sense is a certain subset of the Cartesian
degree of an individual area for which a certain predicate can be performed. Empirically
(linguistically), this is a linear notation generated in a certain alphabet — which is what it is
in the theory of Markov algorithms. A sequence can be defined algebraically without resorting
to other construction. It is striking that this product is in a certain free monoid, the unit of
which is an empty symbol. One of the implementations of this approach is modern language
constructs. But this definition is too narrow, leaving no room for other interesting varieties of
what might be called a sequence. Let us try to proceed from the main “working” properties of
sequences. One of the properties that make them such a versatile tool of thinking. Sequences
are what we call words. However, the meaningful word does not always exist.

Definition 1. Let there be a monoid M with unit E and set Q , for which:

∀a (a ̸= E) ∀b (b ̸= E) ∀c (c ̸= E) : (abc ∈ Q)⇒ [(ab ∈ Q) ∨ (bc ∈ Q)], (1)

∀x ∀y : (x ∈ Q)⇒ [(xy ∈ Q) ∧ (yx ∈ Q)]. (2)

Any element from (M-Q) that is not equal to one, we will call a chain (in this case,
some chains can be equal, or consist of only one element “chain link”). The set Q is called
the big zero. If Q is one-element, then we call it associative zero and denote it as 0 . Note:
in quantifier expressions like: ∀a (a ̸= E), we mean the statement: “for all a not equal to E ”.

2020 Mathematics Subject Classification: 03H05, 18A05.
Keywords: monoid; term; category; isomorphic functor; non-standard theory.
doi:10.30970/ms.63.1.14-20

© V. M. Zhuravlov, 2025



NON-STANDARD SEQUENCES 15

Let me explain the meaning (the second of the conditions simply says that Q is a two-
sided ideal). It is intuitively clear that if in a sequence of three elements one of the pairs
does not form a chain, then the whole consecutive triplet will not be a chain either (well,
the “hooks” are different and do not hook). Moreover, if an element is not a chain, then any
of its possible “linking” with another element will also not be a chain. The result of a binary
operation is unique for any pair of elements. An associative binary operation is unique for
any sequence of elements (including single ones). A sequence (in its traditional sense) is
formally characterized by uniqueness and associativity; there is one more, the main of its
properties: any sequence exists if and only if any of its subsequences (any of its “continuous
pieces”) exist. It is easy to see that for our definition of a chain, all properties of sequences
are satisfied by induction: the existence of a finite sequence is equivalent to the existence
of all binary sequences included in it (according to Markov). But ... a simple feature — so
defined (chain) sequences do not always exist. But the existence of a certain finite chain
implies the existence of all its subchains (in the order of writing). And if we abstract from
the fourth fundamental property of sequences, from the existence of a sequence of any chains
of symbols, then we get our definition of a chain.

So, belonging to Q means “not being a sequence”. A chain is a non-standard definition
of a sequence. Q is a collection of “non-strings”, non-existent sequences. And what is the big
zero Q in the monoid? This is a two-sided associative (as one would like to call it) ideal (see
the first property in Definition 1). Which is an approximation to some prime ideal P (in the
latter:

(∀x)(∀y) : (xy ∈ P )⇔ [(x ∈ P ) ∨ (y ∈ P )],

where the right implication is the definition of a completely divisible set). Since the first
property in Definition 1 is a certain weakening of the simplicity condition (divisibility of the
product of triples of factors).

The following lemma is true.

Lemma 1. Every prime ideal is associative. The reverse is not true. The definition of an
associative ideal is consistent.

Proof. By the definition of the simplicity of an ideal,
(∀a)(∀b)(∀c) : [(ab ∈ P ) ∨ (bc ∈ P )]⇐⇒ (abc ∈ P ).

Let us give an example of an associative, but not a simple, ideal. Consider a monoid in
which there are no commuting products without the participation of unity or the power
of the element. And let this monoid have a set of generators. Then all elements that are
multiples of some generatrix constitute a simple ideal, not necessarily an associative one.
However, elements that are multiples of the product of two generators will constitute an
associative, but not a simple, ideal (the product of this very pair of generators is indivisible
within this set). However, we will see other examples later.

When the monoid is factorized by the identity relation for its associative ideal: (Q=0)
(we mean the identification of all elements of the ideal), we get a monoid M with an associ-
ative zero (abc = 0) ⇒ [(ab = 0) ∨ (bc = 0)], x0 = 0x = 0, onto which M is mapped
epimorphically, but the entire structure of non-zero elements remains unchanged. At the
same time, the identification: (Q = E) will lead to the triviality of the entire monoid: (M
= E). More precisely, the following co-cartezian square (it is commutative and the pair of
arrows in the upper right corner is an amalgam of the pair of arrows from the lower left):
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Here:
E is the null object of the category of monoids (isomorphic to the unity of all monoids);
({E} ∪Q) is the monoid consisting of the ideal Q and the identity E ;
({E} ∪ 0) is a monoid consisting of 0 and 1 (similarly);
the relations (E=Q), (E=0) and (Q=0) represent the corresponding epimorphisms;
in and in are the monomorphisms induced by these relations.

Now that we have a little understanding of the position of associative ideals in monoid
theory, let us move on to studying the relationship they have to category theory.

The categorical composition of arrows does not always exist, but is always associative.
Earlier we talked about the fundamental properties of sequences:
• unambiguity (i.e., associativity of the operation of joining sequences); the existence

of those, and only those sequences that have all their subsequences (the possibility of
arbitrary contraction on the left and right);

• the presence of an empty sequence (the result of assigning to which does not change
anything). In a monoid, the role of an empty sequence is played by a unit. Single arrows
(objects) are in the category.

• the existence of an element is equivalent to the existence of its sequence with unit
length.

In the monoid M , we consider as existing any element that does not belong to the given
associative ideal. Then a model of a certain existence of sequences is obtained — all three
properties are satisfied: the only difference is that not all sequences exist. Indeed, let us set
the predicate: ex(x) ≡ (x /∈ Q). Then, according to Definition 1 we get

[ex(ab) ∧ ex(bc)]⇔ ex(abc)
the predicate ex for any existing string is satisfied if and only if it is satisfied for all its
binary substrings, which is proved by induction; there are chains of unit length, because the
ideal does not include all the elements of the monoid; moreover, E should be identified with
the empty string.

Therefore, an ex-predicate defined on a free monoid has all the properties of a partial exi-
stence quantifier for sequences. And in a free monoid, products are one-to-one with sequences
of elements. At the same time, all relations between elements of any monoid correspond one-
to-one to relations between category arrows.

Theorem 1. Every category is a complete model of some monoid with an associative zero.
Conversely, any such monoid completely models some category. Category theory is logi-
cally equivalent to the theory of monoids with an associative zero. Both are non-essential
extensions of each other.
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Prof. From a category to a monoid. We identify the objects of the category with their identity
arrows: A ←→ 1A; this is a bijective correspondence, which is an inessential modification
of category theory: thus, a theory equivalent to the original one arises — the differences are
only in the original systems of definitions.

Let xy be the product of arrows in a category. We introduce the constant 0 and define
a well-defined law of arrow composition everywhere: x · y ≡ xy, if ∃z : z = xy; otherwise
we assume: x · y ≡ 0. We assume that: ∀x : x · 0 ≡ 0 · x ≡ 0. As a result, we again obtain
an inessential extension of category theory — all non-zero elements correspond one-to-one
with the arrows of the original category, and the law of composition coincides with the
original law wherever the product of arrows exists.

This situation will not change if we introduce “our own, individual” 0 for each pair of
arrows with a product that does not exist in the category. That is, if we define a constant 0x,y
as follows

(∀x)(∀y) (¬∃z : z = xy) =⇒ (∃t) (t = x · y = 0x,y) ∧ (∀s) (s · 0x,y = 0x,y · s = 0x,y).

Then the constant 0 defined earlier applies to the case when the collection of constants 0x,y
contains only a single element

(∀x)(∀y) (∃t : t = 0x,y) =⇒ (0x,y = 0).

The difference between these cases does not affect the course of further reasoning (when
applying the theorem in practice, one or the other case can be used).The difference between
these cases does not affect the course of further reasoning (when applying the theorem in
practice, one or the other case can be used).

We also introduce a constant E (which corresponds to the identity functor of the category):
∀x : x ·E = E ·x = x — the introduction of this constant also does not lead to an inessential
extension of the theory.

The composition law “·” is everywhere defined and associative. And E is the unit of
this law. Thus, the original category is immersed in a monoid, the theory of which is an
inessential extension of the theory of the original category. The set {0x,y} is an associative
ideal of this monoid (in the case of a single constant 0, this ideal is the zero element defined
by us earlier).

From a monoid to a category. Consider a pair (M,Q) consisting of a monoid and its
associative ideal. On the set of elements (M–Q) we define the operation “◦” of partial
composition:

x · y /∈ Q =⇒ x ◦ y ≡ x · y, x · y ∈ Q =⇒ x ◦ y ≡ ¬∃t : x · y = t,

where “·” is the law of composition of the monoid M. Since Q is an associative ideal, the
composition “◦” is associative wherever it exists. Moreover, its very existence is also “associ-
ative”:

(∃t : (x ◦ y = t) ∧ ∃t : (y ◦ z = t))⇐⇒ ∃!t : (x ◦ y ◦ z = t)

Now consider the set (M-Q-E) (M without the associative ideal Q and the monoid unit
E and write down the axiom of existence of the unit for the law “◦”:

∃ε∀x : ((∃t : ε ◦ x = t) =⇒ (ε ◦ x = x)) ∧ ((∃t : x ◦ ε = t) =⇒ (x ◦ ε = x));

ε differs from the usual monoid unit in that this axiom does not imply the equality of all
units.

But this axiom should be clarified. The law “◦” differs from the monoid law “·” in that
this composition does not always exist, and we clearly define the domain of its existence. The
composition “◦” is local in the sense that its domain of existence is determined by a specific
pair of multiplied elements. Therefore, ε-units must have the same locality with respect to
multiplication. Therefore, if we want the axiom of the existence of a unit to have a “maximal”
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domain of truth, we must find the “maximal domain of existence” of ε-units — they must
exist locally everywhere, for each x. Finally, we arrive at the following axiom of existence of
small units:
∀x∃ε : (x ◦ ε = x) ∧ ∀y : [(∃t : ε ◦ y = t)⇒ (ε ◦ y = y)] ∧ [(∃t : y ◦ ε = t)⇒ (y ◦ ε = y)]
∀x∃ε : (ε ◦ x = x) ∧ ∀y : [(∃t : ε ◦ y = t)⇒ (ε ◦ y = y)] ∧ [(∃t : y ◦ ε = t)⇒ (y ◦ ε = y)]

It should be noted that for the original monoid M this axiom is an inessential extension of
its theory. The axiom states that there exist some constants ε with some limit properties.

So, similarly to how we did it in the first part of the proof (for the category), we obtain
the following construction. Obviously, {ε} ∈ (M − Q − {E}) defines a set of arrows of the
category with the composition “◦”. {ε} is the set of its unit arrows; the elements of {ε}
corresponding to each element x ∈ (M −Q), (from the right or from the left) correspond to
the objects of the category (i.e. — cod x or dom x); Q is a set of pairs of arrows for which
there is no composition (all of Q can be identified with 0, — the zero element, as we have
already said); E corresponds to the identity functor of the category.

Next follows a somewhat more detailed study of the procedures and properties used in
the proof of Theorem 1.

Objects of an arbitrary category are identified with single arrows. And then we will look
at the category as a set of arrows with a partially defined composition. Let us make the
composition completely defined by adding a certain object 0 to the category, to which we
will equate all non-existent compositions of arrows. We will also introduce the unit functor
of the category into our construction as E , the identity of the monoid. Since categorical
composition is associative where it exists, we indeed include our category isomorphically in
a minimal monoid with a large zero. Or, if you like, into the semigroup of such a monoid.

And vice versa, non-trivial (not E and not 0 ) elements of any monoid with an associative
zero can be identified with arrows of a certain category by declaring zero products non-
existent. And by associating E with its identity functor. This will also lead to an isomorphic
immersion of the monoid into the minimal category.

As for logical equivalence, such artifacts as E and category objects (unlike its arrows) do
not carry new information and are only insignificant extensions of the corresponding theories
(and in category theory, 0 will not be a significant extension). We will describe the process
in more details.

Let us pay attention to the fact that the existence of a composition of arrows (or elements
of a monoid), being partial, is localized with respect to factors. And localization is performed
at a more fundamental level – on sequences of elements. Let us start with the operation,
which we call the localization of the identity of the monoid with respect to the associative
ideal Q.

Definition 2. An element e of our monoid is called small, or local units, if:
L(e) ≡ ∀x : [(ex /∈ Q)⇒ (ex = x)] ∧ [(xe /∈ Q)⇒ (xe = x)]

Let us add an (insignificant!) couple of axioms:
∀x(x /∈ Q)∃e : L(e) ∧ (ex /∈ Q), ∀x(x /∈ Q)∃e : L(e) ∧ (xe /∈ Q)

(in exactly the same way we will designate and call (e and L(e)) unit arrows in the category,
i.e. its objects (after all, they have the same properties); allowing “liberty of speech”, we will
also use the notation: “e ∈ L”, meaning belonging to a collection of local units; now and in
the future, by the word: “collection” we will mean a set or a class — in the problems we are
studying, this is not important now).
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This is how above we connected the objects (single arrows) of the category and the
elements of the monoid. Actually, the unit of the monoid becomes a set of small units when
it “transforms” into a category. And the set of objects of the category becomes the unit of
the monoid in the reverse process. If we identify the elements with the operations that they
perform (due to multiplication) on other elements, then the “big” unit E takes the element
x from M into itself when acting from the left and right. When mapped onto some small
unit (i.e., onto a single arrow, object K ), it will translate into itself a certain arrow (acting
from the left or right). This arrow will reappear at x . We get a commutative diagram.

In what follows, by M 1 we mean the monoid M extended by the collection of its small
units, i.e., M1 = M ∪ L.

By K1 we mean the category K supplemented by two objects: o is the erasing functor
of our K into the empty category, and I is the identity functor of K (its “big unit”). Those,
is K1 ≡ (I ∪K ∪ o), together with two “outer” arrows, the “actions” of this pair of operators
on K .

More precisely, there is a homomorphic relation R between an arbitrary category and
some monoid with an associative ideal. In other words, it is the same as with the usual
homomorphism, but without the condition of functional uniqueness:
R ⊆ (M1×K1), ∀a(a ∈M)∃x(x ∈ K1) : R(a, x), [R(a, x) ∧R(b, x)]⇒ R(ab, xy).

Now let us define the properties:
R(E, I) ∧ ∃!x(x ∈ K1) : R(E, x), R(Q, o) ∧ ∃!x(x ∈ K1) : R(Q, x)

— the unit of the monoid always corresponds to the “large unit” of the category; the associ-
ative ideal is always completely transformed into the element o.
∀a(a ∈ (M1− E,Q))∃!x(x ∈ K) : R(a, x), ∀x(x ∈ K)∃!a(a ∈ (M1− E,Q)) : R(a, x)

— an extended monoid without unity and zero ideal, is in one-to-one correspondence with
category arrows;

∀e(e ∈M1) : L(e)⇒ L(R(L(e))), ∀e(e ∈ K) : L(e)⇒ L(R(L(e))),
— small units of the monoid and the category, in turn, also one-to-one correspond to each
other. The structure of relation R is as follows:

where two-sided arrows denote isomorphisms, arrows with transparent “tips” denote inclusi-
ons in the direct sum (combinations of collections), arrows with a branched base are epi-
morphic mappings into a single element.
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And these correspondences preserve the operation of composition where they exist.
Moreover, if we also introduce a set of non-existent categorical compositions into consi-
deration, we get something isomorphic to the zero ideal. Based on this ideal, it is possible
to create certain structures that, in a certain sense, are additional to categorical ones. The
category theory itself can be immersed in the category of monoids.

The proof is over.
This is the actual identification of categories with some type of monoids. And not always

obvious immersion of the theory of monoids in the theory of categories. I think that such
a representation can be more productive than the trivial identification of a monoid with a
category of one object.
Statement. Any mathematical theory can be constructed in a logic in which terms are
localized with respect to individuals. The existence of sequences and the results of operations
on them, in this case, is modeled non-standard.

This proposition (quite obvious after considering the example of monoids and categories)
most likely pertains to the meta-logical domain. It requires concrete implementations in other
theories, not just in relation to monoids and categories. However, such implementations are
possible as a result of further, independent research.

We have seen that the very existence of any sequence of elements can be localized with
respect to each of its elements. And this leads to a transformation of any mathematical
theory that uses terms, to a change in functions, operations, and even relations. The radical
nature of such changes is clearly seen in the example of monoids and categories.
The category is a locally thermal monoid. Locally thermal theories are non-standard
theories, with non-standard sequences and non-standard existence. Which is very similar
to non-standard according to Robinson. All this uses certain modifications of ultrafilters
and compactness theorems at various metatheoretical levels. And it allows you to somehow
simulate contradictions and approach the solution of paradoxes.

The article “Predicates and terms from non-standard sequences”, with a somewhat similar
theme, was published by the author on “arXiv“.

REFERENCES

1. R. Goldblatt, Topoi. The categorial analysis of logic, North-Holland Publ. Comp., Amsterdam, New York,
Oxford, 1979.

2. Haskell B. Curry, Foundations of Manthematical logic, McGraw-Hill Book Company inc., 1984.

3. H. Rasiowa, R. Sikorski, The Mathematics of Metamathematics, Panstwowe Wydawnictwo Naukowe
Warszawa, 1963.

4. A. Robinson, Introduction to model theory and to the metamathematics of algebra, North-Holland Publ.
comp., 1963.

pointerpaint7@gmail.com

Received 17.05.2023

Revised 16.09.2024

https://arxiv.org/pdf/2312.00831

