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A function F(s) = Y7 | a, exp{s\,} with 0 < \,, 1 400 is called the Hadamard compositi-
on of the genus m > 1 of functions Fj(s) = >0, an jexp{si,} if an, = P(an1, ..., anp), where
P(z1,...,2p) = > ckl___kpx]fl ~x§” is a homogeneous polynomial of degree m > 1. Let

k1t A hp=m
M(o,F) = sup{|F(c + it)| : t € R} and functions «, 8 be positive continuous and increasing
to 400 on [xg,+00). To characterize the growth of the function M (o, F'), we use generalized
— aln M(0,F)) ) — In M(c,F)
order pog/F] = lim ——————%, generalized type T, g|F] = lim
o1l = =) )= 1 (o alFIB))
and membership in the convergence class defined by the condition

/OO In M(o,F)
oo 00 (0a,8[F]B(0))

Assuming the functions o, 8 and a~!(cB(In x)) are slowly increasing for each ¢ € (0, +00)
and In n = O(\,) as n — o0, it is proved, for example, that if the functions F; have the same
generalized order g, g[F;] = 0 € (0,+00) and the types T, g[F}] = T; € [0,4+00), ¢mo..0 = ¢ #
0, |an,1| > 0 and |an ;| = o(|an,1]) asn — oo for 2 < j < p, and F is the Hadamard composition
of genus m > 1 of the functions F}; then g, g[F] = ¢ and

T, [F] < Z (k1T1 + ...+ kap),
kit tkp=m
It is proved also that F' belongs to the generalized convergence class if and only if all functions

F}; belong to the same convergence class.

do < +00.

1. Introduction. Let

fi(z) =) anz", 1<j<p,
n=0

be entire transcedental functions. As in [1], we say that the function f(z) = > 7 a,2"
is similar to the Hadamard composition of the functions f; if a, = w(an, ..., ayyp) for all
n, where w: C? — C is some function. Clearly, if p = 2 and w(a,1, an2) = an1a,2 then
f = (fixfo) is [2] the Hadamard composition (product) of the functions f; and f>. Properties
of this composition obtained by J. Hadamard find the applications [3, 4] in the theory of the
analytic continuation of the functions represented by power series.

E. G. Calys [5] investigated the functions similar to Hadamard compositions of with
|w(z,y)| = \/|ry| and proved in particular the following theorem.
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Theorem A ([5]). Let entire functions f;, j = 1,2, have the same order o[f;] =
= p € (0,400) and types o[f;] = 0;. Suppose that a, 1 # 0 and |a, 2| > |a,1]/1(1/]an1|) for
all n > ng, where [ is slowly varying function. If |a,| = (1 + o(1))\/|an1]|anz| as n — oo,
then the function f has order o[f] = 0 and type o|f] < \/o103.

In the paper [6] the results of E. G. Calys are generalized on the case of entire Dirichlet
series of finite generalized orders, moreover instead of two entire functions m > 2 entire
Dirichlet series were considered.

Let A = (\,) be an increasing to +00 sequence of nonnegative number, S(A, A) be a

class of Diriclet series
[oe)

F(s) = Zan exp{s\,}, s=o+it, (1)

n=1

with a given sequence ()\,) of exponents and an abscissa of absolutely convergence
o.[F] = A € (—o0, +00), and let M (o, F) = sup{|F(c +it)|: t € R} for o € (—00, A).

As in [7], by L we denote the class of positive continuous functions o on (—oo, +00) such
that a(z) = a(zg) for z < zg and 0 < a(z) T +o0 as xg < z 1 +oo. We say that o € L°
if « € L and a((1 +o(1))x) = (14 o(1))a(x) as x — +oo. Finally, o € Ly, if « € L and
alcz) = (1 +o(1))a(z) as x — +oo for each ¢ € (0, +00), i. e. a is a slowly increasing
function. Clearly, L, C L°.

Ifael,peLand F e S(A,+00), that is series (1) is entire, then the value

— af(ln M(o, F))

Qa,,B[F] - 0'1—1>I—Eoo ﬁ(o‘)

is called the generalized order of F. If g, s[F| € (0, +00) the generalized type is defined as

_ 0 In M(o, F)
Tavﬁ[F] - O'L+OO Oz_l(Qa,ﬁ[F]5<o->> ‘

The following theorem is true.

Theorem B (|6]). Let the functions o € Ly and [ € L° be continuously differentiable,

W — pand a(z) = (140(1))In z asx — +o00. Suppose that In n = o(\,) (n — o)

and Dirichlet series F; € S(A,+00) of form

o0

Fi(s) =Y anjexp{sh.}, 1<j<p, 2)

n=1

have the same generalized order o, 5(F;] = 0 € (0,+00) and types T, 3[F;] € (0,+00). If
an1 # 0 for all n > ny and w; > 0 with Z§:1 wj =1,

- 1 1 1 Lo 1 1 1 “i
(o2 (G g)) = et (8 (Gram ) oo

j=1

and

5(1111 ! )§(1+o<1))ﬁ(i1n ! ) n — 00,

>\n |an,j| /\n |an,1|

for all 2 < j < p, then Dirichlet series (1) has the generalized order g, g[F| = o and the type

ToslF) < [[ Tus 1.

J=1
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If T, g[F] = 0 then for the characteristic of the growth of entire Dirichlet series (1) we
define a generalized convergence class by the condition

[e.9]

/ In M(o, F)

mdg < +00, 0 = Qa,ﬂ[F]. (3)

o0

Theorem C ([1]). Let « € L and § € L be positive continuously differentiable functions
such that W = O(1) as 0 — oo for each p € (0, +00). Suppose that In n = O(\,)
and |a,| < [}, |an ;|7 asn — oo for some w; > 0 such that 37, w; = 1. If all functions (2)
belong to the generalized convergence class then function (1) also belongs to this class. If,
in addition, |a,| > 0 for all n > 0 and |a, ;| < |a,1]| as n — oo for all j = 2,...,p, then
the belonging of function (1) to generalized convergence class implies the belonging of all
functions (2) to this class.

Here we consider the case when w is a homogeneous polynomial.

2. Definition and convergence of Hadamard composition of the genus m. Recall
that a polynomial is called homogeneous if all monomials with nonzero coefficients have
the identical degree. A polynomial P(xy,...,z,) is homogeneous of degree m if and only if
P(txy,...,tx,) = t"P(z1, ...,x,) for all ¢ from the field above which a polynomial is defined.
Dirichlet series (1) is called the Hadamard composition of genus m of Dirichlet series (2) if
an = P(aya, ..., Gpnp), where

— k1 k
P(xy,...,xp) = E T A
Ky +--tkp=m

is a homogeneous polynomial of degree m > 1. We remark that the usual Hadamard composi-
tion is a special case of the Hadamard composition of the genus m = 2.

Therefore, if the function F'is the Hadamard composition of genus m > 1 of the functions
F}; then

aal < N lemyllana - fanl. (4)
kit kp=m
Denote
1 1 1
7= lim nn’ a[F] = lim —In —.
n—oo n n—oo )\n |an|

Then [8, 9] 0,[F] < a[F| < 0,[F|+7. Hence it follows that if 7 < +00 and either o,[F] = +00
or a|[F| = 400, then 0,[F] = a[F].

Therefore, if 7 < 400 and all Fj € S(A, +00), i. e. a[Fj] = +00, then for every a > 0 we
have |a,, ;| < exp{—a\,} for every a > 0 all j and all n > ng(a). Therefore, (4) implies

la,| < Cexp{—am,}, C= Z |Chy..ep |

kit +hp=m

whence

i.e. in view of the arbitrariness of a we get a[F] = +o0, that is F' € S(A, +00).
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3. Growth of entire Hadamard compositions of the genus m. Since the polynomial
P(zy,...,x,) is homogeneous of the degree m > 1, we have

ane™t = Z Chy. iy (A1)  (ay pe™ ). (5)

E1+-tkp=m

Let u(o, F) = max{|a,|exp{ocA,}: n > 0} be the maximal term of series (1). Since (5)
implies
janle™™ <Y e (lanale™) - (langle™ ),
et -+ kep=mn

we have

wmo, FY < S Jens o, B - (o, By,
ki+-+kp=m

whence for all o large enough we get

np(mo, F) < Y W (len, ulo, PP - (o, F)') +In (m 4+ 1) =
k14-+kp=m

= Z (In (|ery ok, | + ki In p(o, Fy) + o4 kpln p(o, ) +In(m+ 1) =
k4t hp=m

= Z (kyIn p(o, Fy) + ... + kyln p(o, F,)) + Ch, (6)

K1+ +hp=m

where O] = Zk1+-~-+kp:m In* |Chy ..k, | + 10 (m + 1). In what follows, we will use the following
lemma (see, for example, [8, p. 22] and |9, p. 184]).

Lemma 1. Ifln n = O(\,) asn — oo then u(o, F) < M(o, F) < u(c+0(1), F) as 0 — +o0,
and if In n = o(\,) as n — oo then u(o, F') < M(o,F) < u(oc 4+ o(1), F) as 0 — +0o0.

Hence it follows that if @ € L and either In n = O(\,) as n — oo and S(In x) € L; or
In n = o0(\,) as n — oo and B(In x) € L° then

T Ui F) o olln Mo, F))

o—+00 6(0’) o—+00 B(U)
Suppose that the functions F; have the same generalized order o, 3[F;] = 0 € (0, +00).
Then for every g; > g and all o > oy we have In (o, ;) < a™'(018(0)) for 1 < j < p and,

thus, (6) implies
In p(mo, F) < Z (k1 + ... + kp)a 018(0)) + Cy = Coa™(018(0)) + Ch.

ki+--+kp=m
If o € L, hence we obtain
1
ous[F] = Tm a(ln p(mo, F)) < Tm a(Coa=t018(0)) + Ch) o
o—+00 ﬁ(mo’) T—+00 ﬁ((j)

Thus, in view of the arbitrariness of p; the following statement is true.

Proposition 1. Let a € Lg; and either Inn = O()\,) as n — oo and B(In z) € Ly or
Inn = o(\,) as n — oo and B(In z) € L°. Suppose that all functions F; have the same
generalized order g, g[F;] = 0 € (0,+00) and the function F' is Hadamard composition of
the genus m > 1 of the functions F;. Then g, 3[F] < p.
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Suppose that the coefficient |cp0.0] = ¢ # 0, |an1| > 0 and |a, ;| = o(|an1|) as n — oo
for 2 < j <p. Put

¥, = Z Ckl...kp(anyl)kl Ce () =

ki+-+kp=m,k1#m

= Yty (@) (00)" — oolan)™

kit +hp=m

Since for each monomial of the polynomial ¥/ the sum of the exponents is equal to m, we

have
@™ - o Jang " Janal® - .- angl™

= - —0, n—o0
[ |@p, |

and, thus, X!, = o(|a,1|™) as n — oco. Therefore,

|an| = clana|™ = |5,] = clana[™ = ollayy) = clana|"/2, 1 = ng,
and, thus, In |a,| +mA,0 > mln |a, 1| +mA,0 +1n(¢/2) for n > n§. Since |a, ;| < |ay,,| for
all n > n§* and 2 < j < p, hence it follows that

1
In pu(o, F;) <In p(o, F1) < —In p(mo, F) + K <In p(mo, F)+ K, K =const. (7)
m

Therefore, if a(In ) € Ly and § € Ly; then g, g[Fj] < pap[F] for all 1 < j <p.
Thus, the following statement is true.

Proposition 2. Let a(ln x) € Ly and B € L. If the function F' is the Hadamard composi-
tion of the genus m > 1 of the functions Fj, |¢pmo o] = ¢ # 0, |an1| > 0 and |a, ;| = o(|an1])
asn — oo for 2 < j < p then 0, 5[F;] < 0ap[F] for all 1 < j <p.

Using Propositions 1 and 2 now prove the following theorem.

Theorem 1. Let o € Ly, 3 € Ly; and either In n = O()\,) asn — oo and o~ !(cB(In 1)) €
Ly orlnn = o(\,) asn — oo and a~!(cB(In z)) € L° for each ¢ € (0,+00). Suppose that
the functions F; € S(A,+o00) have the same generalized order o, 3[F;] = 0 € (0,400) and
the types T, g[Fj| = T; € [0,400), |¢mo..0| = ¢ # 0, |an1]| > 0 and |a, ;| = o(|an1]) asn — oo
for 2 < j < p. If the function F' is the Hadamard composition of the genus m > 1 of the

functions F; then g, g[F] = o and T, g[F]| < > (ki + . HK)T).
ey -+ kep=m

Proof. Since the functions F; € S(A,+00) have the same generalized order g, g[F;] = o, by
Propositions 1 and 2, g, g[F] = 0. If In n = O(\,) as n — oo and a~!(c¢B(In x)) € Ly for
each ¢ € (0,400) then by Lemma 1

= In (e +O(1), F)
o—to0 a1 (pB(0)) — ootoo aml(oB(0))

c m WpoF) e ai(0B(e+0(1)) e Inp(o, F)
oo al(gB(o) s a7l (eBlo)) et (eB(0))

. — In pu(o, F) . . L L
ie. lim ———~ = T,3|F]. According to Lemma 1, this equality is also valid if
AP o (op(ay) — el : Y
In n = o0()\,) asn — oo and o *(c¢B(In z)) € L for each ¢ € (0, +00).
Therefore, lim 2225 — 70 and In p(o, F;) < (T; +¢)a~(0B(c)) for every £ > 0 and
oA Ty j j
all o > 0¢(e). Hence and from (6) we obtain

T AL RPN 2 P
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In p(mo, F) < Z {ky(Ty + &) + ... +kp(T, +¢)}a " (0B(c)) + const

kit Akp=m
and, thus,
— In p(mo, F) — In p(mo, F)
ToglFl= lim ———= < — =< ki(Ty+¢e)+ ...+ k,(T,+¢)}.
75[ ] oo ozfl(gﬁ(ma)) o300 afl(gﬁoj)) k1+.§p:m{ 1( 1 ) p( P )}
In view of the arbitrariness of ¢ Theorem 1 is proved. O

If we choose a(x) = In™ z and 3(z) = z* then we obtain the definition of (the most
commonly used characteristics of the growth of entire Dirichlet series) the R-order [10]
or[F] = lim w and the R-type [11] Tg[F] = @ e~erlfloIn M (o, F). The functi-

T—+00

o—+00
ons a(z) = In" z and B(xr) = a7t satisfy the condition a=!(cB(In x)) € L° for each ¢ €
(0,+00), but 5 ¢ L. The condition 8 € Ly; is used in the proof of Proposition 2 to obtain
from (7) the inequality 0, s[Fj] < 0a,5[F]. Clearly, this condition is not needed if m = 1,
that is a,, = cian1 + - - + ¢pa,,p. Thus, the following statement is true.

Proposition 4. Let In n = o()\,) as n — oo, the functions F; € S(A,+o00) have the same
R-order pg[F;] = 0 € (0,+00) and the R-types Tgr[F;] = T; € [0,400), |c1] > 0 and
lan ;| = o(|ana]|) as n — oo for 2 < j < p. If the function F is Hadamard composition of the
genus m = 1 of the functions F; then op[F| = o and Tp[F| <T + ...+ T),.

4. Convergence classes of entire Hadamard compositions of the genus m. Let

F e S(A, +00), Inn = O(\,) as n — oo and a~'(cf(z)) € L° for each ¢ € (0,+00). In

[12] it is proved that if A € LY then lir+n h(Kz)/h(z) = B(K) < 400 for K = const > 0.
T—>+00

Therefore, in view of Lemma 1 we have

[e.o] oo oo

In p(o, F) ” In M(o, F) ” In p(o+ C, F) >
| st < | st = | ety

g0 g0 g0

o0

B In p(o +C, F) (0 +C)a(B(c+ C)) . [ In w(o, F)
B / (0 +C)a~(eB(o + C)) oa!(0B(0)) 17 = B/ oa~(eb(0))

g0 g0

do,

where B = const > 0, i.e. F' belongs to the generalized convergence class if and only if

r In p(o, F) . ~
U[ s 1(gi()) 17 < OO

Therefore, if the function F'is the Hadamard composition of the genus m > 1 of the functions
F; and all functions F; belong to the generalized convergence class then in view of (6)

[ee] o

In p(o, F) . In p(mo, F) -
[ saieon™ = | sty <

[ In (o, F) 7 In (o, F)
< k /—da+...+k ——————do | 4+ const < +o0,
o \B ) et » | G (oB(0)

i.e. ' belongs to the same convergence class.
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On the other hand, if ¢0.0 = ¢ # 0, |a,1| > 0 and |a, ;| = o(Jan1|) as n — oo for
2 < j < p then, as above, |a,| > |c||an1|™/2 for n > ng, i. e. In |a,| +moX, > m(In |a,1] +
o) + In(¢/2) for n > ng. Hence it follows that In u(o, Fy) < In u(mo, F')/m + const for
o > og. Therefore, if a™(cf(z)) € L for each ¢ € (0, +00) then

oo o0

In u(o, F;) In (o, F1) .
0/004‘1(95(0))610S/”a_l(@ﬂ(a))d =

1 r In u(mo, F) oa ' (gB(mo)) o r
~m maa—l(gﬁ(ma)) Ua—l(gﬁ(a)) d +Bis Bz/

g0 g0

In u(o, F)
oo~ (0f(0))

dU+Bl,

where B; = const. Therefore, if F' belongs to the generalized convergence class then all Fj
belong to the same convergence class and, thus, the following theorem is true.

Theorem 2. Let o € L, 8 € L and a~*(cB(x)) € L° for each ¢ € (0,+0c0). Suppose that
In n = O(\,) as n — oo and the function F' is the Hadamard composition of genus m > 1
of the functions F; € S(A,+o0). If all functions F; belong to the generalized convergence
class then F' belongs to the same convergence class. If, in addition, ¢,,0.0 = ¢ # 0, |ap1]| >0
and |a, ;| = o(|a,1]) as n — oo for 2 < j < p then the belonging of F' to the generalized
convergence class implies the belonging of all F; to the same convergence class.

Asin [13], let ©2 be a class of positive unbounded functions ® on (—oo, +00) such that the
derivative @' is positive continuously differentiable and increasing to +o00 on (—oo, +00). For
® € Q let ¢ be the inverse function to " and V(o) = o — g,((‘;
with @ in the sense of Newton. Then [13] the function U is continuously differentiable
and increasing to +o0o on (—oo, +00) and the function ¢ is continuously differentiable and
increasing to +oo on (xg, +00). For entire Dirichlet series the convergence ®-class is defined

in [14, p. 49] by the condition

) be the function associated

o0

/ ¥ (o) In M(o, F)

d .
@2(0) o < +00

oo
It is known [14, p. 57] that if ® € Q, the function ®'(¢)/P(0) is non-decreasing on [0y, +00),
P(0)®"(0)/®'(0)? < H < +00 and

[ n) o
|ty <t 0= 2! ®)

to

then F' belongs to the convergence ®-class if and only if

/ o' (o) In (o, F)

(o) do < +o0.

oo
Therefore, if the function F' is the Hadamard composition of genus m > 1 of the functions
F; and all functions F}; belong to the convergence ®-class then in view of (6)

o0 [e.9]

(o) In p(o, F) ®' (o) In p(mo, F)
| =y e < [ Sy e s

g0 g0
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oo(I)/(O‘) In M(O’7 Fl) 00(1)/(0_) In H(U,F)
S . +§ » kl/ (1)2(0_) do + ...+ kp/ @2(0) p do + const < —i—oo)

oo g0
i.e. F' belongs to the same convergence class.

On the other hand, if ¢,0.0 = ¢ # 0, |ap1| > 0 and |a, ;| = o(lan1]) as n — oo
for 2 < j < p then, as above, we have In u(o, F}) < In p(mo, F')/m + const for ¢ > oy.
Therefore, assuming m = 1, we obtain

[ ®(0)In p(o, F) [ (o) In p(o, F) [ ®(0)In p(o, F)
[y < [ SR e < [ZERE

o0 g0 o0

and the following theorem is true.

do + const,

Theorem 3. Let & € (, the function ®'(0)/®(c) be non-decreasing on [0y, +00),
P(0)®"(0)/®'(0)? < H < +00 and (8) holds. Suppose that the function F' is the Hadamard
composition of the genus m > 1 of the functions F; € S(A, +00). If all functions F; belong
to the convergence ®-class then F' belongs to the same convergence class. If, in addition,
m =1, ¢uo.0 = ¢ # 0, |an1| > 0 and |a, ;| = o|lan:|) as n — oo for 2 < j < p then
the belonging of F' to the convergence ®-class implies the belonging of all F; to the same
convergence class.

Studying the properties of entire functions f(z) = Y 2 a,2" of the order p € (0, +0c0)
G. Valiron [15, p 18] introduced the convergence class as

/—ln Mf(r)dr < 400

ro+l
1

where M (r) = max{|f(2)|: |z| = r}. In the papers [16, 17] Valiron’s result is generalized to

the case of entire Dirichlet series of R-order gog € (0,+00) by introducing the convergence
00 In M(o,F)

exp{ora}
Corollary 1. Let the function F' be the Hadamard composition of the genus m = 1 of the
functions F; € S(A, +00), ¢mo..0 = ¢ # 0, |an1| > 0, |anj| = o(|an1|) asn — oo for2 < j <p
and ftzo lntﬁdt < +00. In order that F' belongs to the convergence class it is necessary and
sufficient that all F; belong to the convergence class.

class as f )do < +00. From Theorem 3 we get the following statement.

Indeed, we choose ®(0) = e27?. Then & satisfies the assumptions of Theorem 3,
¥(0) = onet™", W) =0~ L o) =L L ta(we) = L
9R 9  OR €0Rr

and, thus, conditions (8) and f > ln ) 4t < 400 are equivalent. Therefore, Theorem 3 implies
Corollary 1.
The logarithmic order of a series of Dirichlet is defined as the quantity

— Inln M(o, F )
alFl = ol—l>rfoo In o
It is clear that g;[F] > 1. If ¢, € (1, 400) then we say, as in |14, p. 20|, that F" belongs to the
logarithmic convergence class if f In ]{lle) do < 4o00. The function ®(o) = 0% for o > oy
does not satisfy the hipotheses of Theorem 3. But [14, p. 20-21], if In n = O(A2/ @™V as
n — oo then F belongs to the logarithmic convergence class if and only if f > ln"Tda <

+00. Therefore, repeating the proof of Theorem 3, we arrive at the following ‘assertion.
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Proposition 5. Let the function F' be the Hadamard composition of genus m > 1 of the
functions F; € S(A, +00), ¢mo..0 = ¢ # 0, |an1| > 0, |anj| = o(|an1|) asn — oo for2 < j <p
and In n = O(Aﬁl/(gl_l)) as n — oo. In order that F' belongs to the logarithmic convergence
class it is necessary and sufficient that all F;; belong to the logarithmic convergence class.
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