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A function F (s) =
∑∞

n=1 an exp{sλn} with 0 ≤ λn ↑ +∞ is called the Hadamard compositi-
on of the genus m ≥ 1 of functions Fj(s) =

∑∞
n=1 an,j exp{sλn} if an = P (an,1, ..., an,p), where

P (x1, ..., xp) =
∑

k1+···+kp=m

ck1...kp
xk1
1 ·...·xkp

p is a homogeneous polynomial of degree m ≥ 1. Let

M(σ, F ) = sup{|F (σ + it)| : t ∈ R} and functions α, β be positive continuous and increasing
to +∞ on [x0,+∞). To characterize the growth of the function M(σ, F ), we use generalized

order ϱα,β [F ] = lim
σ→+∞

α(ln M(σ, F ))

β(σ)
, generalized type Tα,β [F ] = lim

σ→+∞

ln M(σ, F )

α−1(ϱα,β [F ]β(σ))
and membership in the convergence class defined by the condition∫ ∞

σ0

ln M(σ, F )

σα−1(ϱα,β [F ]β(σ))
dσ < +∞.

Assuming the functions α, β and α−1(cβ(ln x)) are slowly increasing for each c ∈ (0,+∞)
and ln n = O(λn) as n → ∞, it is proved, for example, that if the functions Fj have the same
generalized order ϱα,β [Fj ] = ϱ ∈ (0,+∞) and the types Tα,β [Fj ] = Tj ∈ [0,+∞), cm0...0 = c ̸=
0, |an,1| > 0 and |an,j | = o(|an,1|) as n → ∞ for 2 ≤ j ≤ p, and F is the Hadamard composition
of genus m ≥ 1 of the functions Fj then ϱα,β [F ] = ϱ and

Tα,β [F ] ≤
∑

k1+···+kp=m

(k1T1 + ...+ kpTp).

It is proved also that F belongs to the generalized convergence class if and only if all functions
Fj belong to the same convergence class.

1. Introduction. Let

fj(z) =
∞∑
n=0

an,jz
n, 1 ≤ j ≤ p,

be entire transcedental functions. As in [1], we say that the function f(z) =
∑∞

n=0 anz
n

is similar to the Hadamard composition of the functions fj if an = w(an,1, ..., an,p) for all
n, where w : Cp → C is some function. Clearly, if p = 2 and w(an,1, an,2) = an,1an,2 then
f = (f1∗f2) is [2] the Hadamard composition (product) of the functions f1 and f2. Properties
of this composition obtained by J. Hadamard find the applications [3, 4] in the theory of the
analytic continuation of the functions represented by power series.

E. G. Calys [5] investigated the functions similar to Hadamard compositions of with
|w(x, y)| =

√
|xy| and proved in particular the following theorem.
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Theorem A ([5]). Let entire functions fj, j = 1, 2, have the same order ϱ[fj] =
= ϱ ∈ (0,+∞) and types σ[fj] = σj. Suppose that an,1 ̸= 0 and |an,2| ≥ |an,1|/l(1/|an,1|) for
all n ≥ n0, where l is slowly varying function. If |an| = (1 + o(1))

√
|an,1||an,2| as n → ∞,

then the function f has order ϱ[f ] = ϱ and type σ[f ] ≤ √
σ1σ2.

In the paper [6] the results of E. G. Calys are generalized on the case of entire Dirichlet
series of finite generalized orders, moreover instead of two entire functions m ≥ 2 entire
Dirichlet series were considered.

Let Λ = (λn) be an increasing to +∞ sequence of nonnegative number, S(Λ, A) be a
class of Diriclet series

F (s) =
∞∑
n=1

an exp{sλn}, s = σ + it, (1)

with a given sequence (λn) of exponents and an abscissa of absolutely convergence
σa[F ] = A ∈ (−∞, +∞), and let M(σ, F ) = sup{|F (σ + it)| : t ∈ R} for σ ∈ (−∞, A).

As in [7], by L we denote the class of positive continuous functions α on (−∞, +∞) such
that α(x) = α(x0) for x ≤ x0 and 0 < α(x) ↑ +∞ as x0 ≤ x ↑ +∞. We say that α ∈ L0

if α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞. Finally, α ∈ Lsi, if α ∈ L and
α(cx) = (1 + o(1))α(x) as x → +∞ for each c ∈ (0, +∞), i. e. α is a slowly increasing
function. Clearly, Lsi ⊂ L0.

If α ∈ L, β ∈ L and F ∈ S(Λ,+∞), that is series (1) is entire, then the value

ϱα,β[F ] = lim
σ→+∞

α(ln M(σ, F ))

β(σ)

is called the generalized order of F . If ϱα,β[F ] ∈ (0, +∞) the generalized type is defined as

Tα,β[F ] = lim
σ→+∞

ln M(σ, F )

α−1(ϱα,β[F ]β(σ))
.

The following theorem is true.

Theorem B ([6]). Let the functions α ∈ Lsi and β ∈ L0 be continuously differentiable,
d ln α−1(ϱβ(x))

d ln x
→ ϱ and α(x) = (1+o(1)) ln x as x → +∞. Suppose that ln n = o(λn) (n → ∞)

and Dirichlet series Fj ∈ S(Λ,+∞) of form

Fj(s) =
∞∑
n=1

an,j exp{sλn}, 1 ≤ j ≤ p, (2)

have the same generalized order ϱα,β[Fj] = ϱ ∈ (0,+∞) and types Tα,β[Fj] ∈ (0,+∞). If
an,1 ̸= 0 for all n ≥ n0 and ωj > 0 with

∑p
j=1 ωj = 1,

α−1

(
ϱβ

(
1

ϱ
+

1

λn

ln
1

|an|

))
= (1 + o(1))

p∏
j=1

α−1

(
ϱβ

(
1

ϱ
+

1

λn

ln
1

|an,j|

))ωj

, n → ∞,

and
β

(
1

λn

ln
1

|an,j|

)
≤ (1 + o(1))β

(
1

λn

ln
1

|an,1|

)
, n → ∞,

for all 2 ≤ j ≤ p, then Dirichlet series (1) has the generalized order ϱα,β[F ] = ϱ and the type

Tα,β[F ] ≤
p∏

j=1

Tα,β[Fj]
ωj .
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If Tα,β[F ] = 0 then for the characteristic of the growth of entire Dirichlet series (1) we
define a generalized convergence class by the condition

∞∫
σ0

ln M(σ, F )

σα−1(ϱβ(σ))
dσ < +∞, ϱ = ϱα,β[F ]. (3)

Theorem C ([1]). Let α ∈ L and β ∈ L be positive continuously differentiable functions
such that d ln α−1(ϱβ(σ))

dσ
= O(1) as σ → ∞ for each ϱ ∈ (0, +∞). Suppose that ln n = O(λn)

and |an| ≍
∏p

j=1 |an,j|ωj as n → ∞ for some ωj > 0 such that
∑p

j=1 ωj = 1. If all functions (2)
belong to the generalized convergence class then function (1) also belongs to this class. If,
in addition, |an,1| > 0 for all n ≥ 0 and |an,j| ≍ |an,1| as n → ∞ for all j = 2, . . . , p, then
the belonging of function (1) to generalized convergence class implies the belonging of all
functions (2) to this class.

Here we consider the case when w is a homogeneous polynomial.

2. Definition and convergence of Hadamard composition of the genus m. Recall
that a polynomial is called homogeneous if all monomials with nonzero coefficients have
the identical degree. A polynomial P (x1, ..., xp) is homogeneous of degree m if and only if
P (tx1, ..., txp) = tmP (x1, ..., xp) for all t from the field above which a polynomial is defined.
Dirichlet series (1) is called the Hadamard composition of genus m of Dirichlet series (2) if
an = P (an,1, ..., an,p), where

P (x1, ..., xp) =
∑

k1+···+kp=m

ck1...kpx
k1
1 · ... · xkp

p .

is a homogeneous polynomial of degree m ≥ 1. We remark that the usual Hadamard composi-
tion is a special case of the Hadamard composition of the genus m = 2.

Therefore, if the function F is the Hadamard composition of genus m ≥ 1 of the functions
Fj then

|an| ≤
∑

k1+···+kp=m

|ck1...kp ||an,1|k1 · ... · |an,p|kp . (4)

Denote

τ = lim
n→∞

ln n

λn

, α[F ] = lim
n→∞

1

λn

ln
1

|an|
.

Then [8, 9] σa[F ] ≤ α[F ] ≤ σa[F ]+τ . Hence it follows that if τ < +∞ and either σa[F ] = +∞
or α[F ] = +∞, then σa[F ] = α[F ].

Therefore, if τ < +∞ and all Fj ∈ S(Λ,+∞), i. e. α[Fj] = +∞, then for every a > 0 we
have |an,j| ≤ exp{−aλn} for every a > 0 all j and all n ≥ n0(a). Therefore, (4) implies

|an| ≤ C exp{−amλn}, C =
∑

k1+···+kp=m

|ck1...kp |,

whence
α[F ] = lim

n→∞

1

λn

ln
1

|an|
≥ am,

i.e. in view of the arbitrariness of a we get α[F ] = +∞, that is F ∈ S(Λ,+∞).
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3. Growth of entire Hadamard compositions of the genus m. Since the polynomial
P (x1, ..., xp) is homogeneous of the degree m ≥ 1, we have

ane
msλn =

∑
k1+···+kp=m

ck1...kp(an,1e
sλn)k1 · ... · (an,pesλn)kp . (5)

Let µ(σ, F ) = max{|an| exp{σλn} : n ≥ 0} be the maximal term of series (1). Since (5)
implies

|an|emσλn ≤
∑

k1+···+kp=m

|ck1...kp |(|an,1|eσλn)k1 · ... · (|an,p|eσλn)kp ,

we have
µ(mσ,F ) ≤

∑
k1+···+kp=m

|ck1...kp|µ(σ, F1)
k1 · ... · µ(σ, Fp)

kp ,

whence for all σ large enough we get

ln µ(mσ,F ) ≤
∑

k1+···+kp=m

ln (|ck1...kp |µ(σ, F1)
k1 · ... · µ(σ, Fp)

kp) + ln (m+ 1) =

=
∑

k1+···+kp=m

(ln (|ck1...kp|+ k1 ln µ(σ, F1) + ...+ kp ln µ(σ, Fp)) + ln (m+ 1) =

=
∑

k1+···+kp=m

(k1 ln µ(σ, F1) + ...+ kp ln µ(σ, Fp)) + C1, (6)

where C1 =
∑

k1+···+kp=m ln+ |ck1...kp |+ ln (m+ 1). In what follows, we will use the following
lemma (see, for example, [8, p. 22] and [9, p. 184]).

Lemma 1. If ln n = O(λn) as n → ∞ then µ(σ, F ) ≤ M(σ, F ) ≤ µ(σ+O(1), F ) as σ → +∞,
and if ln n = o(λn) as n → ∞ then µ(σ, F ) ≤ M(σ, F ) ≤ µ(σ + o(1), F ) as σ → +∞.

Hence it follows that if α ∈ L and either ln n = O(λn) as n → ∞ and β(ln x) ∈ Lsi or
ln n = o(λn) as n → ∞ and β(ln x) ∈ L0 then

lim
σ→+∞

α(ln µ(σ, F ))

β(σ)
= lim

σ→+∞

α(ln M(σ, F ))

β(σ)
.

Suppose that the functions Fj have the same generalized order ϱα,β[Fj] = ϱ ∈ (0,+∞).
Then for every ϱ1 > ϱ and all σ ≥ σ0 we have ln µ(σ, Fj) ≤ α−1(ϱ1β(σ)) for 1 ≤ j ≤ p and,
thus, (6) implies

ln µ(mσ,F ) ≤
∑

k1+···+kp=m

((k1 + ...+ kp)α
−1(ϱ1β(σ)) + C1 = C2α

−1(ϱ1β(σ)) + C1.

If α ∈ Lsi hence we obtain

ϱαβ[F ] = lim
σ→+∞

α(ln µ(mσ,F ))

β(mσ)
≤ lim

σ→+∞

α(C2α
−1(ϱ1β(σ)) + C1)

β(σ)
= ϱ1.

Thus, in view of the arbitrariness of ϱ1 the following statement is true.

Proposition 1. Let α ∈ Lsi and either ln n = O(λn) as n → ∞ and β(ln x) ∈ Lsi or
ln n = o(λn) as n → ∞ and β(ln x) ∈ L0. Suppose that all functions Fj have the same
generalized order ϱα,β[Fj] = ϱ ∈ (0,+∞) and the function F is Hadamard composition of
the genus m ≥ 1 of the functions Fj. Then ϱα,β[F ] ≤ ϱ.
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Suppose that the coefficient |cm0...0| = c ̸= 0, |an,1| > 0 and |an,j| = o(|an,1|) as n → ∞
for 2 ≤ j ≤ p. Put

Σ′
n =

∑
k1+···+kp=m, k1 ̸=m

ck1...kp(an,1)
k1 · ... · (an,p)kp =

=
∑

k1+···+kp=m

ck1...kp(an,1)
k1 · ... · (an,p)kp − cm0...0(an,1)

m.

Since for each monomial of the polynomial Σ′
n the sum of the exponents is equal to m, we

have
|an,1|k1 · ... · |an,p|kp

|an,1|m
=

|an,2|k2 · ... · |an,p|kp
|an,1|m−k1

→ 0, n → ∞

and, thus, Σ′
n = o(|an,1|m) as n → ∞. Therefore,
|an| ≥ c|an,1|m − |Σ′

n| = c|an,1|m − o(|amn,1|) ≥ c|an,1|m/2, n ≥ n∗
0,

and, thus, ln |an|+mλnσ ≥ m ln |an,1|+mλnσ+ ln (c/2) for n ≥ n∗
0. Since |an,j| ≤ |an,1| for

all n ≥ n∗∗
0 and 2 ≤ j ≤ p, hence it follows that

ln µ(σ, Fj) ≤ ln µ(σ, F1) ≤
1

m
ln µ(mσ,F ) +K ≤ ln µ(mσ,F ) +K, K = const. (7)

Therefore, if α(ln x) ∈ Lsi and β ∈ Lsi then ϱα,β[Fj] ≤ ϱα,β[F ] for all 1 ≤ j ≤ p.
Thus, the following statement is true.

Proposition 2. Let α(ln x) ∈ Lsi and β ∈ Lsi. If the function F is the Hadamard composi-
tion of the genus m ≥ 1 of the functions Fj, |cm0...0| = c ̸= 0, |an,1| > 0 and |an,j| = o(|an,1|)
as n → ∞ for 2 ≤ j ≤ p then ϱα,β[Fj] ≤ ϱα,β[F ] for all 1 ≤ j ≤ p.

Using Propositions 1 and 2 now prove the following theorem.

Theorem 1. Let α ∈ Lsi, β ∈ Lsi and either ln n = O(λn) as n → ∞ and α−1(cβ(ln x)) ∈
Lsi or ln n = o(λn) as n → ∞ and α−1(cβ(ln x)) ∈ L0 for each c ∈ (0,+∞). Suppose that
the functions Fj ∈ S(Λ,+∞) have the same generalized order ϱα,β[Fj] = ϱ ∈ (0,+∞) and
the types Tα,β[Fj] = Tj ∈ [0,+∞), |cm0...0| = c ̸= 0, |an,1| > 0 and |an,j| = o(|an,1|) as n → ∞
for 2 ≤ j ≤ p. If the function F is the Hadamard composition of the genus m ≥ 1 of the
functions Fj then ϱα,β[F ] = ϱ and Tα,β[F ] ≤

∑
k1+···+kp=m

(k1T1 + ...+ kpTp).

Proof. Since the functions Fj ∈ S(Λ,+∞) have the same generalized order ϱα,β[Fj] = ϱ, by
Propositions 1 and 2, ϱα,β[F ] = ϱ. If ln n = O(λn) as n → ∞ and α−1(cβ(ln x)) ∈ Lsi for
each c ∈ (0,+∞) then by Lemma 1

lim
σ→+∞

ln µ(σ, F )

α−1(ϱβ(σ))
≤ Tα,β[F ] ≤ lim

σ→+∞

ln µ(σ +O(1), F )

α−1(ϱβ(σ))
≤

≤ lim
σ→+∞

ln µ(σ, F )

α−1(ϱβ(σ))
lim

σ→+∞

α−1(ϱβ(σ +O(1)))

α−1(ϱβ(σ))
= lim

σ→+∞

ln µ(σ, F )

α−1(ϱβ(σ))
,

i.e. lim
σ→+∞

ln µ(σ, F )

α−1(ϱβ(σ))
= Tα,β[F ]. According to Lemma 1, this equality is also valid if

ln n = o(λn) as n → ∞ and α−1(cβ(ln x)) ∈ L0 for each c ∈ (0,+∞).
Therefore, lim

σ→+∞
ln µ(σ,Fj)

α−1(ϱβ(σ))
= Tj and ln µ(σ, Fj) ≤ (Tj +ε)α−1(ϱβ(σ)) for every ε > 0 and

all σ ≥ σ0(ε). Hence and from (6) we obtain
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ln µ(mσ,F ) ≤
∑

k1+···+kp=m

{k1(T1 + ε) + ...+ kp(Tp + ε)}α−1(ϱβ(σ)) + const

and, thus,

Tα,β[F ] = lim
σ→+∞

ln µ(mσ,F )

α−1(ϱβ(mσ))
≤ lim

σ→+∞

ln µ(mσ,F )

α−1(ϱβ(σ))
≤

∑
k1+···+kp=m

{k1(T1 + ε) + ...+ kp(Tp + ε)}.

In view of the arbitrariness of ε Theorem 1 is proved.

If we choose α(x) = ln+ x and β(x) = x+ then we obtain the definition of (the most
commonly used characteristics of the growth of entire Dirichlet series) the R-order [10]
ϱR[F ] = lim

σ→+∞
ln ln M(σ,F )

σ
and the R-type [11] TR[F ] = lim

σ→+∞
e−ϱR[F ]σ ln M(σ, F ). The functi-

ons α(x) = ln+ x and β(x) = x+ satisfy the condition α−1(cβ(ln x)) ∈ L0 for each c ∈
(0,+∞), but β ̸∈ Lsi. The condition β ∈ Lsi is used in the proof of Proposition 2 to obtain
from (7) the inequality ϱα,β[Fj] ≤ ϱα,β[F ]. Clearly, this condition is not needed if m = 1,
that is an = c1an,1 + · · ·+ cpan,p. Thus, the following statement is true.

Proposition 4. Let ln n = o(λn) as n → ∞, the functions Fj ∈ S(Λ,+∞) have the same
R-order ϱR[Fj] = ϱ ∈ (0,+∞) and the R-types TR[Fj] = Tj ∈ [0,+∞), |c1| > 0 and
|an,j| = o(|an,1|) as n → ∞ for 2 ≤ j ≤ p. If the function F is Hadamard composition of the
genus m = 1 of the functions Fj then ϱR[F ] = ϱ and TR[F ] ≤ T1 + ...+ Tp.

4. Convergence classes of entire Hadamard compositions of the genus m. Let
F ∈ S(Λ,+∞), ln n = O(λn) as n → ∞ and α−1(cβ(x)) ∈ L0 for each c ∈ (0,+∞). In
[12] it is proved that if h ∈ L0 then lim

x→+∞
h(Kx)/h(x) = B(K) < +∞ for K = const > 0.

Therefore, in view of Lemma 1 we have

∞∫
σ0

ln µ(σ, F )

σα−1(ϱβ(σ))
dσ ≤

∞∫
σ0

ln M(σ, F )

σα−1(ϱβ(σ))
dσ ≤

∞∫
σ0

ln µ(σ + C,F )

σα−1(ϱβ(σ))
dσ =

=

∞∫
σ0

ln µ(σ + C,F )

(σ + C)α−1(ϱβ(σ + C))

(σ + C)α−1(ϱβ(σ + C))

σα−1(ϱβ(σ))
dσ ≤ B

∞∫
σ0

ln µ(σ, F )

σα−1(ϱβ(σ))
dσ,

where B = const > 0, i.e. F belongs to the generalized convergence class if and only if
∞∫

σ0

ln µ(σ, F )

σα−1(ϱβ(σ))
dσ < +∞.

Therefore, if the function F is the Hadamard composition of the genus m ≥ 1 of the functions
Fj and all functions Fj belong to the generalized convergence class then in view of (6)

∞∫
σ0

ln µ(σ, F )

σα−1(ϱβ(σ))
dσ ≤

∞∫
σ0

ln µ(mσ,F )

σα−1(ϱβ(σ))
dσ ≤

≤
∑

k1+···+kp=m

k1

∞∫
σ0

ln µ(σ, F )

σα−1(ϱβ(σ))
dσ + ...+ kp

∞∫
σ0

ln µ(σ, F )

σα−1(ϱβ(σ))
dσ

+ const < +∞,

i.e. F belongs to the same convergence class.
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On the other hand, if cm0...0 = c ̸= 0, |an,1| > 0 and |an,j| = o(|an,1|) as n → ∞ for
2 ≤ j ≤ p then, as above, |an| ≥ |c||an,1|m/2 for n ≥ n0, i. e. ln |an|+mσλn ≥ m(ln |an,1|+
σλn) + ln (c/2) for n ≥ n0. Hence it follows that ln µ(σ, F1) ≤ ln µ(mσ,F )/m + const for
σ ≥ σ0. Therefore, if α−1(cβ(x)) ∈ L0 for each c ∈ (0,+∞) then

∞∫
σ0

ln µ(σ, Fj)

σα−1(ϱβ(σ))
dσ ≤

∞∫
σ0

ln µ(σ, F1)

σα−1(ϱβ(σ))
dσ ≤

≤ 1

m

∞∫
σ0

ln µ(mσ,F )

mσα−1(ϱβ(mσ))

σα−1(ϱβ(mσ))

σα−1(ϱβ(σ))
dmσ +B1 ≤ B2

∞∫
σ0

ln µ(σ, F )

σα−1(ϱβ(σ))
dσ +B1,

where Bj = const. Therefore, if F belongs to the generalized convergence class then all Fj

belong to the same convergence class and, thus, the following theorem is true.

Theorem 2. Let α ∈ L, β ∈ L and α−1(cβ(x)) ∈ L0 for each c ∈ (0,+∞). Suppose that
ln n = O(λn) as n → ∞ and the function F is the Hadamard composition of genus m ≥ 1
of the functions Fj ∈ S(Λ,+∞). If all functions Fj belong to the generalized convergence
class then F belongs to the same convergence class. If, in addition, cm0...0 = c ̸= 0, |an,1| > 0
and |an,j| = o(|an,1|) as n → ∞ for 2 ≤ j ≤ p then the belonging of F to the generalized
convergence class implies the belonging of all Fj to the same convergence class.

As in [13], let Ω be a class of positive unbounded functions Φ on (−∞, +∞) such that the
derivative Φ′ is positive continuously differentiable and increasing to +∞ on (−∞, +∞). For
Φ ∈ Ω let φ be the inverse function to Φ′ and Ψ(σ) = σ − Φ(σ)

Φ′(σ)
be the function associated

with Φ in the sense of Newton. Then [13] the function Ψ is continuously differentiable
and increasing to +∞ on (−∞, +∞) and the function φ is continuously differentiable and
increasing to +∞ on (x0, +∞). For entire Dirichlet series the convergence Φ-class is defined
in [14, p. 49] by the condition

∞∫
σ0

Φ′(σ) ln M(σ, F )

Φ2(σ)
dσ < +∞.

It is known [14, p. 57] that if Φ ∈ Ω, the function Φ′(σ)/Φ(σ) is non-decreasing on [σ0, +∞),
Φ(σ)Φ′′(σ)/Φ′(σ)2 ≤ H < +∞ and

∞∫
t0

ln n(t)

tΦ(Ψ(φ(t)))
dt < +∞, n(t) =

∑
λn≤t

1 (8)

then F belongs to the convergence Φ-class if and only if
∞∫

σ0

Φ′(σ) ln µ(σ, F )

Φ2(σ)
dσ < +∞.

Therefore, if the function F is the Hadamard composition of genus m ≥ 1 of the functions
Fj and all functions Fj belong to the convergence Φ-class then in view of (6)

∞∫
σ0

Φ′(σ) ln µ(σ, F )

Φ2(σ)
dσ ≤

∞∫
σ0

Φ′(σ) ln µ(mσ,F )

Φ2(σ)
dσ ≤
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≤
∑

k1+···+kp=m

k1

∞∫
σ0

Φ′(σ) ln µ(σ, F1)

Φ2(σ)
dσ + ...+ kp

∞∫
σ0

Φ′(σ) ln µ(σ, Fp)

Φ2(σ)
dσ

+ const < +∞,

i.e. F belongs to the same convergence class.
On the other hand, if cm0...0 = c ̸= 0, |an,1| > 0 and |an,j| = o(|an,1|) as n → ∞

for 2 ≤ j ≤ p then, as above, we have ln µ(σ, F1) ≤ ln µ(mσ,F )/m + const for σ ≥ σ0.
Therefore, assuming m = 1, we obtain

∞∫
σ0

Φ′(σ) ln µ(σ, F1)

Φ2(σ)
dσ ≤

∞∫
σ0

Φ′(σ) ln µ(σ, F1)

Φ2(σ)
dσ ≤

∞∫
σ0

Φ′(σ) ln µ(σ, F )

Φ2(σ)
dσ + const,

and the following theorem is true.

Theorem 3. Let Φ ∈ Ω, the function Φ′(σ)/Φ(σ) be non-decreasing on [σ0, +∞),
Φ(σ)Φ′′(σ)/Φ′(σ)2 ≤ H < +∞ and (8) holds. Suppose that the function F is the Hadamard
composition of the genus m ≥ 1 of the functions Fj ∈ S(Λ,+∞). If all functions Fj belong
to the convergence Φ-class then F belongs to the same convergence class. If, in addition,
m = 1, cm0...0 = c ̸= 0, |an,1| > 0 and |an,j| = o(|an,1|) as n → ∞ for 2 ≤ j ≤ p then
the belonging of F to the convergence Φ-class implies the belonging of all Fj to the same
convergence class.

Studying the properties of entire functions f(z) =
∑∞

n=0 anz
n of the order ϱ ∈ (0,+∞)

G. Valiron [15, p 18] introduced the convergence class as
∞∫
1

ln Mf (r)

rϱ+1
dr < +∞,

where Mf (r) = max{|f(z)| : |z| = r}. In the papers [16, 17] Valiron’s result is generalized to
the case of entire Dirichlet series of R-order ϱR ∈ (0,+∞) by introducing the convergence
class as

∫∞
σ0

ln M(σ,F )
exp{ϱRσ} dσ < +∞. From Theorem 3 we get the following statement.

Corollary 1. Let the function F be the Hadamard composition of the genus m = 1 of the
functions Fj ∈ S(Λ,+∞), cm0...0 = c ̸= 0, |an,1| > 0, |an,j| = o(|an,1|) as n → ∞ for 2 ≤ j ≤ p

and
∫∞
t0

ln n(t)
t2

dt < +∞. In order that F belongs to the convergence class it is necessary and
sufficient that all Fj belong to the convergence class.

Indeed, we choose Φ(σ) = eϱRσ. Then Φ satisfies the assumptions of Theorem 3,

Φ′(σ) = ϱRe
ϱRσ, Ψ(σ) = σ − 1

ϱR
, φ(t) =

1

ϱR
ln

t

ϱR
, tΦ(Ψ(φ(t))) =

t2

eϱR

and, thus, conditions (8) and
∫∞
t0

ln n(t)
t2

dt < +∞ are equivalent. Therefore, Theorem 3 implies
Corollary 1.

The logarithmic order of a series of Dirichlet is defined as the quantity

ϱl[F ] = lim
σ→+∞

ln ln M(σ, F )

ln σ
.

It is clear that ϱl[F ] ≥ 1. If ϱl ∈ (1,+∞) then we say, as in [14, p. 20], that F belongs to the
logarithmic convergence class if

∫∞
σ0

ln M(σ,F )

σϱl+1 dσ < +∞. The function Φ(σ) = σϱl for σ ≥ σ0

does not satisfy the hipotheses of Theorem 3. But [14, p. 20-21], if ln n = O(λ
ϱl/(ϱl−1)
n ) as

n → ∞ then F belongs to the logarithmic convergence class if and only if
∫∞
σ0

ln µ(σ,F )

σϱl+1 dσ <
+∞. Therefore, repeating the proof of Theorem 3, we arrive at the following assertion.
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Proposition 5. Let the function F be the Hadamard composition of genus m ≥ 1 of the
functions Fj ∈ S(Λ,+∞), cm0...0 = c ̸= 0, |an,1| > 0, |an,j| = o(|an,1|) as n → ∞ for 2 ≤ j ≤ p

and ln n = O(λ
ϱl/(ϱl−1)
n ) as n → ∞. In order that F belongs to the logarithmic convergence

class it is necessary and sufficient that all Fj belong to the logarithmic convergence class.
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