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In the Hilbert space H := L2(R), we consider the impedance Sturm–Liouville operator
T : H → H generated by the differential expression −p d

dx
1
p2

d
dxp, where the function p : R → R+

is of bounded variation on R and infx∈R p(x) > 0. Existence of the transformation operator for
the operator T and its properties are studied.

In the paper, we suggest an efficient parametrization of the impedance function p in term
of a real-valued bounded measure µ ∈ M via pµ(x) := eµ([x,∞)), x ∈ R. For a measure µ ∈ M ,
we establish existence of the transformation operator for the Sturm–Liouville operator Tµ,
which is constructed with the function pµ. Continuous dependence of the operator Tµ on µ is
also proved. As a consequence, we deduce that the operator Tµ is unitarily equivalent to the
operator T0 := −d2/dx2.

1. Introduction. In the Hilbert spaceH := L2(R), we consider the Sturm–Liouville operator
T in the impedance form generated by the differential expression

t(f) := −
(
p
d

dx

1

p2
d

dx
p

)
f, (1)

where the function p belongs to the class P consisting of all functions p : R → R+ of bounded
variation on R such that infx∈R p(x) > 0.

We define the domain of the differential expression (1) as the set
dom t := {f ∈ L1,loc(R) | pf ∈ AC(R), p−2(pf)′ ∈ AC(R)}.

Here and hereafter, AC(R) is the linear space of all locally absolutely continuous functions
f : R → C. The differential expression (1) generates an operator

Tf := t(f)
that acts in H on the domain

domT := {f ∈ H | pf ∈ W 1
2 (R), p−2(pf)′ ∈ W 1

2 (R)}.
Here, W 1

2 (R) is the standard Sobolev space. For every p ∈ P, the operator T is self-adjoint
and non-negative in H. Indeed, let us denote by S0 and P self-adjoint operators acting in
the space H by the formulas

S0f := if ′, f ∈ domS0 := W 1
2 (R),
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Pf := pf, f ∈ domP := H.

For the operator P there exists an inverse continuous operator P−1. Thus the operator
S := P−1S0P

is similar to the operator S0. This implies that the operator S is a closed operator and the
equality S∗ = PS0P

−1 holds. It is easy to see that T = S∗S. In view of von Neumann’s
theorem (see [1, Sect. V.3.7]), the operator T = S∗S is a self-adjoint non-negative operator.

Our goal is to prove the existence of transformation operators for the operator T and
to study their properties. It is well known (see, e.g., [2]) that transformation operators
for Sturm–Liouville operators play an important role in solving inverse problems. For this
reason, the authors consider this paper as a step towards solving the inverse problem of
scattering theory (ISP) for the operator T . Let us point out two partial cases, where ISP
for the operator T is solved. In the first case, a function p ∈ P is absolutely continuous,
and this problem comes down to a well-studied ISP for a Dirac operator with an integrable
potential (see, e.g., [3]). In the second case, a function p ∈ P is piecewise-constant and its
points of discontinuity belong to the lattice Z, and ISP for this case is studied in detail in [4].

Note that the parametrization of the operators T using functions p ∈ P is inconvenient.
Firstly, each function from the subclass

P(p0) := {p ∈ P | ∃c > 0 ∀x ∈ R p(x− 0) = cp0(x− 0)} (p0 ∈ P)

generates the same operator T , secondly, the set P has a difficult structure. To circumvent
these drawbacks, we suggest the following approach.

We denote by M the real Banach space of all real-valued bounded measures on R. Clearly,
for an arbitrary measure µ ∈ M , the function

pµ(x) := eµ([x,∞)), x ∈ R,
belongs to the class P and is left-continuous. We also denote by Pµ, Sµ and Tµ the operators
P , S and T , which are constructed with the function pµ. It is easy to check that the class
of the operators T , generated by functions p ∈ P, coincides with the class {Tµ | µ ∈ M}.
Therefore, we can take a measure µ ∈ M as a parameter on which the operator T depends.
The advantage of this choice is that, in contrast to P, the space M is a Banach space,
moreover, it is a well-studied Banach space.

Denote by M 0 the subspace in M consisting of all measures µ ∈ M that are absolutely
continuous with respect to the Lebesgue measure m with the density u = dµ

dm
that belongs

to the space D of all real-valued functions from C∞(R) with compact support.
If µ ∈ M 0 and u = dµ

dm
, then Tµ can be presented in the potential form

Tµ = − d2

dx2
+ v, domTµ = W 2

2 (R),

where v = u′ + u2. Since v ∈ D , there exists the right transformation operator for the
operator Tµ (see, e.g., [2]), which we denote by Uµ. The operator Uµ acts continuously in all
spaces Lp(R) (1 ≤ p ≤ ∞) by the formula

(Uµf)(x) := f(x) +

∫ ∞

x

K(x, t)f(t) dt, x ∈ R. (2)

Unless otherwise noted, we will consider Uµ as an element of the Banach algebra B(H) of
all linear continuous operators in H.

The kernel K in (2) is a smooth function in Ω := {(x, t) ∈ R2 | x ≤ t}, which is defined
unambiguously by the fact that at all λ ∈ C+ the formula
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e(x, λ) = eiλx +

∫ ∞

x

K(x, t)eiλt dt, x ∈ R,

defines the right Jost solution of the equation −y′′ + vy = λ2y (see Section 4). It follows
from the results of [2] that for µ ∈ M 0 the operator Uµ is invertible in the algebra B(H)
and Tµ = UµT0U

−1
µ .

The main result of this paper reads as follows.

Theorem 1. The mapping M 0 ∋ µ 7→ Uµ ∈ B(H) has a unique extension to the mapping
M ∋ µ 7→ Uµ ∈ B(H),

which is sequentially continuous if M is equipped with the weak topology and B(H) is
equipped with the strong operator topology. Moreover, for every µ ∈ M the operator Uµ is
invertible in the algebra B(H) and Tµ = UµT0U−1

µ .

The following corollary obviously follows from Theorem 1 and Lemma 21.

Corollary 1. For an arbitrary µ ∈ M the operator Tµ is unitarily equivalent to the
operator T0.

Remark 1. To avoid possible confusion, we use different (but similar) notations for the
function µ 7→ Uµ and its extension µ 7→ Uµ.

This paper is organized as follows. In the next section, we introduce necessary definiti-
ons and prove auxiliary propositions. In Section 3, we study properties of transformation
operators Uµ in the smooth case. In Section 4, we prove Theorems 3 and 4 to describe
properties of transformation operators Uµ when µ ∈ M . In Section 5, we prove Theorem 1.
The proofs in this section are analogous to that in Sections 3 and 4, thus they are presented
in abbreviated form. Finally, Appendix A contains auxiliary lemmas that were used in the
proofs.

2. Preliminaries.
2.1. The spaces Lq and Lq,loc. We use the abbreviation Lq := Lq(R), 1 ≤ q ≤ ∞, for the
Banach spaces of Lebesgue measurable functions with the standard norms

∥f∥q :=
(∫

R
|f(x)|q dx

)1/q

, ∥f∥∞ := ess sup
x∈R

|f(x)|.

We distinguish the Hilbert space H := L2 among the spaces Lq (1 ≤ q ≤ ∞) and denote
by (· | ·)H the inner product in H. We also denote by Lq,loc the linear space of all functions
f : R → C locally belonging to Lq.

2.2. The Sobolev space W n
q . For any positive integer n and q ∈ [1,∞], we denote by W n

q

the Sobolev space, i.e.
W n

q := {f ∈ Cn−1(R) | f (n−1) ∈ AC(R), f, f ′, . . . f (n) ∈ Lq}.
The space W n

q will be endowed with the norm

∥f∥Wn
q
:=

n∑
j=0

∥f (j)∥q.

2.3. The spaces Cb(R) and D . We denote by Cb(R) the real Banach space of all continuous
bounded real functions on R with the norm ∥f∥∞. We also denote by D the linear space of
all real-valued infinitely differentiable functions φ : R → R with compact support.
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2.4. The space M . We denote by M the real Banach space of all real-valued bounded
Borel measures on R. We shall denote by |µ| the total variation of a measure µ ∈ M . The
space M is endowed with the following norm

∥µ∥ := |µ|(R), µ ∈ M .

We distinguish the following subspaces in M :

• the space M ac of all measures that are absolutely continuous with respect to the
Lebesgue measure;

• the space M 0 of all µ ∈ M ac with the density dµ
dm

belonging to D .

In the space M , besides the strong topology generated by the norm, we consider also the
weak topology. Let us recall some facts about weak convergence of measures.

A sequence (µn)
∞
n=1 in the space M converges weakly to µ ∈ M (the notation µn

w→ µ)
if for every f ∈ Cb(R) the equality

lim
n→∞

∫
R
f dµn =

∫
R
f dµ

holds.
A sequence (µn)

∞
n=1 in the space M is called uniformly dense if for an arbitrary ε > 0

there exists a bounded interval [a, b] such that |µn|(R \ [a, b]) < ε for all n ∈ N.
For every measure µ ∈ M , we denote by hµ the function

hµ(x) := µ([x,∞)), x ∈ R.
The following proposition follows from theorems 1.4.7 and 1.7.2 of [5].

Proposition 1. Let (µn)n∈N be a sequence in M and µn
w→ µ ∈ M . Then:

1) ∥µ∥ ≤ supn∈N ∥µn∥ <∞; 2) the sequence (µn)
∞
n=1 is uniformly dense;

3) on each interval [a, b] the sequence (hµn)n∈N converges in measure to hµ (with respect to
the Lebesgue measure);
4) from the sequence (hµn)n∈N one can choose a subsequence, which converges almost every-
where to hµ.

Let us recall (see [5]) that the convolution of measures µ, ν ∈ M is a measure µ ∗ ν
defined by the formula∫

R
f d(µ ∗ ν) :=

∫
R

∫
R
f(x+ y)µ(dx) ν(dy), f ∈ Cb(R).

It is well known that
∥µ ∗ ν∥ ≤ ∥µ∥∥ν∥, µ, ν ∈ M .

Let us fix a non-negative function θ ∈ D such that

supp θ ⊂ [−1, 0],

∫
R
θ(t) dt = 1.

Put
θn(x) := nθ(nx), x ∈ R, n ∈ N,

and denote by ωn the measure in M 0, for which dωn/dm = θn.

Let µ ∈ M . A sequence (νn)n∈N in M is called a θ-sequence for µ if νn := µn ∗ωn, where
the measures µn are defined by the formula

µn(A) := µ(A ∩ [−n, n]), A ∈ B(R).
Here, B(R) is the algebra of all Borel subsets of R.
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Lemma 1. Let µ ∈M,n ∈ N and (νk)k∈N be a θ-sequence for µ. Then:
1) the sequence (νk)k∈N belongs to M 0 and νk

w→ µ;
2) if suppµ ⊂ (−ρ, ρ) (ρ > 0), then supp νn ⊂ (−1/n− ρ, 1/n+ ρ);
3) ∥νn∥ ≤ ∥µ∥ and h|νn| ≤ h|µ|.

Proof. The proof of (1) and (2) is obvious.
Let us prove part (3). Since for every n ∈ N ∥ωn∥ = 1 and ∥µn∥ ≤ ∥µ∥, we get that

∥νn∥ = ∥µn ∗ ωn∥ ≤ ∥µn∥∥ωn∥ ≤ ∥µ∥, n ∈ N.
It follows from the definition of the measures νn that∣∣∣∣dνndm

(t)

∣∣∣∣ = ∣∣∣∣∫
R
θn(t− ξ) dµn(ξ)

∣∣∣∣ ≤ ∫
R
θn(t− ξ) d|µ|(ξ), t ∈ R.

Thus

h|νn|(x) = |νn|([x,∞)) ≤
∫
R

(∫ ∞

x

θn(t− ξ) dt

)
d|µ|(ξ), x ∈ R.

Using the last inequality, it is easy to obtain that

h|νn|(x) ≤
∫ ∞

x

d|µ|(ξ) = h|µ|(x), x ∈ R.

2.5. The algebra B(H). We denote by B(X) the algebra of all linear everywhere defined
continuous operators acting on a topological vector space X. If X is a Banach space, then
B(X) is a Banach algebra.

In this paper, we mainly make use of the algebra B(H). Let us agree that An
s→ A (or

A = s-lim
n→∞

An) means that a sequence (An)n∈N converges to an operator A in the strong
operator topology of the algebra B(H).

2.6. The operators Pµ. Let us recall that Pµ : H → H is a multiplication operator by the
function pµ(x) := ehµ(x), where hµ(x) = µ([x,∞)).

Lemma 2. Let (µn)n∈N be a sequence in M and µn
w→ µ ∈ M . Then Pµn

s→ Pµ.

Proof. Let the conditions of the lemma be satisfied. In view of Proposition 1,
∥hµ∥∞, ∥hµn∥∞ ≤ sup

k∈N
∥µk∥ = c <∞, n ∈ N,

and on an arbitrary interval [a, b] the sequence (hµn)n∈N converges in measure to hµ (with
respect to the Lebesgue measure). Thus ∥pµ∥∞, ∥pµn∥∞ ≤ c1 := ec, n ∈ N, and the sequence
(pµn)n∈N on [a, b] converges in measure to pµ. For an arbitrary function f ∈ H and n ∈ N,
we have

∥(Pµ − Pµn)f∥2 =
∫
R
|pµ(x)− pµn(x)|2|f(x)|2 dx

and |pµ(x) − pµn(x)|2|f(x)|2 ≤ 4c21|f(x)|2, x ∈ R. Thus, using the Lebesgue dominated
convergence theorem, we obtain that lim

n→∞
∥(Pµ − Pµn)f∥2 = 0.

Therefore, Pµn

s→ Pµ.

2.7. Chain of orthoprojectors Eξ. Denote by Eξ the orthogonal projector in H defined
by the formula

Eξf := χξf, ξ ∈ R,
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where χξ is the indicator function of the half-line (−∞, ξ]. The set E := {Eξ | ξ ∈ R} forms
a chain of orthoprojectors in the algebra B(H).

An operator A ∈ B(H) is called an upper-triangular (lower-triangular) operator with
respect to the chain E if (see [6])

E⊥
ξ AEξ = 0 (EξAE

⊥
ξ = 0), ξ ∈ R,

where E⊥
ξ := I − Eξ and I is the identity operator.

The set B+(H) (B−(H)) of all upper-triangular (lower-triangular) operators A ∈ B(H)
is a subalgebra closed in the strong operator topology.

We denote by H+ the linear subspace in L2,loc consisting of all functions f ∈ L2,loc such
that ∫ ∞

0

|f(x)|2 dx <∞.

It is clear that if f ∈ H+, then for all a ∈ R the integral
∫∞
a

|f(x)|2 dx is also convergent.
Let us introduce the topology in the space H+ generated by seminorms

ρn(f) :=
(∫ ∞

−n

|f(x)|2 dx
)1/2

, n ∈ N.

The topological vector space H+ is a Fréchet space, i.e., a complete locally convex metrizable
space (see [7]).

Remark 2. The space H is everywhere dense in H+. Indeed, every element f ∈ H+ is a
limit of the sequence of the following elements from H:

fk(x) =

{
f(x), if x ≥ −k;
0, if x < −k,

k ∈ N.

It is not difficult to verify that every A ∈ B+(H) can be uniquely extended to a continuous
operator in H+. Let us agree to identify the extended operator with the original one, i.e., for
every operator A ∈ B+(H) we will keep the same notation for its extension to an element of
B(H+).

For every λ ∈ C+, we denote by eλ the function
eλ(x) = eiλx, x ∈ R.

Obviously, eλ ∈ H+ for an arbitrary λ ∈ C+.

Lemma 3. The linear span E := lin{eλ | λ ∈ C+} is everywhere dense in H+.

Proof. First, we prove that E is everywhere dense in every space L2(−n,∞) (n ∈ N). Assume
this statement to be false. Then there exist n ∈ N and a nonzero function f ∈ L2(−n,∞)
such that ∫ ∞

−n

eiλxf(x) dx = 0, λ ∈ C+.

It follows that for a fixed number ε > 0,
∫∞
−n
eiξxe−εxf(x) dx = 0, ξ ∈ R. Using properties

of the Fourier transform, we obtain that e−εxf(x) = 0 for almost all x ∈ (−n,∞), hence
f = 0. We have come across a contradiction. Hence E is everywhere dense in every space
L2(−n,∞) (n ∈ N).

Let f ∈ H+. It follows from the above established that there exists a sequence (φn)n∈N
in E such that ρn(f − φn) ≤ n−1, n ∈ N. Obviously, the sequence (φn)n∈N converges to f in
the topology of the space H+.
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3. Transformation operators. The smooth case. In this section we derive explicit
formulas for transformation operators in the case of µ ∈ M 0. Our approach differs from the
classical one (see [2]).

For u ∈ D and n ∈ N, we denote by Ku,n the linear operator acting in the space L1,loc

by the formula

(Ku,nf)(x) := (−1)n
∫
Πn(x)

u(t1) · . . . · u(tn)f(2ξn(t) + (−1)nx) dt1 · . . . · dtn, x ∈ R, (3)

where ξn(t) :=
∑n

k=1(−1)k+1tk, Πn(x) = {(t1, . . . , tn) ∈ Rn : x ≤ tn ≤ · · · ≤ t1}.
It is easy to see that Ku,nf ∈ C(R) for arbitrary functions f ∈ L1,loc, that is the operator

Ku,n maps the space L1,loc into the space C(R).
Denote by ∆ρ the interval [−ρ, ρ].

Lemma 4. Let u ∈ D , n ∈ N and f ∈ L1,loc. Then:
(1) if suppu ⊂ (−∞, η], then suppKu,nf ⊂ (−∞, η];
(2) if supp f ⊂ (−∞, η], then suppKu,nf ⊂ (−∞, η];
(3) if suppu ⊂ ∆ρ and supp f ⊂ ∆ρ, then suppKu,nf ⊂ ∆5ρ;
(4) if suppu ⊂ ∆ρ and supp f ⊂ R \∆5ρ, then suppKu,nf ⊂ R \∆ρ.

Proof. Part (1) is obvious. To prove part (2), we note that 2ξn(t) + (−1)nx ≥ x, t ∈ Πn(x).
Thus, in view of the formula (3), we obtain that (Ku,nf)(x) = 0 for x > η if supp f ⊂ (−∞, η].

Let the conditions of part (3) be satisfied. It follows from the formula (3) that
suppKu,nf ⊂ {x ∈ R | ∃t ∈ ∆n

ρ : (2ξn(t) + (−1)nx) ∈ ∆ρ}.
It is easy to see that |2ξn(t)| ≤ 4ρ if t ∈ ∆n

ρ . Since |x| ≤ |2ξn(t)| + |2ξn(t) + (−1)nx|, we
conclude that suppKu,nf ⊂ ∆5ρ.

Finally, let the conditions of part (4) be satisfied. Similar arguments as in part (3) give
suppKu,nf ⊂ {x ∈ R | ∃t ∈ ∆n

ρ : (2ξn(t) + (−1)nx) /∈ ∆5ρ}.
Since for x ∈ ∆ρ and t ∈ ∆n

ρ the estimate |2ξn(t) + (−1)nx| ≤ |2ξn(t)| + |x| ≤ 5ρ holds, we
get that suppKu,nf ⊂ R \∆ρ.

Lemma 5. For u ∈ D , n ∈ N and p ∈ [1,∞] the operator Ku,n belongs to the algebra B(Lp)
and

∥Ku,n∥B(Lp) ≤
1

(n)!
∥u∥n1 . (4)

Proof. In view of the interpolation theorem (see, e.g., [9]), it suffices to prove the estimate (4)
for p = 1 and p = ∞. In these cases, for all f ∈ Lp

∥Ku,nf∥p ≤ ∥f∥p
∫
tn≤···≤t1

|u(t1)| · · · |u(tn)| dt =
1

(n)!
∥u∥n1∥f∥p.

Set

Ku :=
∞∑
n=1

Ku,n, u ∈ D . (5)

Lemma 6. Let p ∈ [1,∞]. For u ∈ D the operator Ku belongs to the algebra B(Lp) and
∥I +Ku∥B(Lp) ≤ exp{∥u∥1}.

Moreover, if u1, u2 ∈ D and r := ∥u1∥1 + ∥u2∥1, then

∥Ku1 −Ku2∥B(Lp) ≤ er∥u1 − u2∥1. (6)
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Proof. The first part of the lemma clearly follows from Lemma 5. It remains to prove the
estimate (6). In view of the interpolation theorem, is suffices to prove it for p = 1 and p = ∞.
It is easy to see that in these cases

∥Ku1,n −Ku2,n∥B(Lp) ≤
∫
tn≤...≤t1

∣∣∣ n∏
j=1

u1(tj)−
n∏

j=1

u2(tj)
∣∣∣ dt. (7)

Put u(x) := max{|u1(x)|, |u2(x)|}. Using the identity
n∏

j=1

u1(tj)−
n∏

j=1

u2(tj) =
n∑

k=1

[(∏
j<k

u1(tj)
)
(u1(tk)− u2(tk))

(∏
s>k

u2(ts)
)]
,

we obtain that ∫
tn≤...≤t1

∣∣∣ n∏
j=1

u1(tj)−
n∏

j=1

u2(tj)
∣∣∣ dt ≤

≤
∫ ∞

−∞
|u1(ξ)− u2(ξ)| dξ

∫
tn−1≤...≤t1

u(t1) · . . . · u(tn−1) dt1 · . . . · dtn−1 ≤

≤ ∥u1 − u2∥1
∥u∥n−1

1

(n− 1)!
≤ ∥u1 − u2∥1

rn−1

(n− 1)!
.

Thus, taking into account (7) and (5), we derive the estimate (6).

Lemma 7. Let u ∈ D and f ∈ L∞. Then the function Kuf is continuous and

|(Kuf)(x)| ≤ e∥u∥1∥f∥∞
∫ ∞

x

|u(y)| dy, x ∈ R.

Proof. It follows from the formula (3) that for an arbitrary n ∈ N the function Ku,nf is
continuous and

|(Ku,nf)(x)| ≤ ∥f∥∞
∫
Πn(x)

|u(t1)| · · · |u(tn)| dt ≤

≤ ∥f∥∞
(n)!

(∫ ∞

x

|u(y)| dy
)n

≤ ∥f∥∞∥u∥n−1
1

(n− 1)!

∫ ∞

x

|u(y)| dy, x ∈ R.

Then, in view of (5), we obtain the result of Lemma 7.

Lemma 8. Let u ∈ D and f ∈ W 1
2 . Then the function g := (I +Ku)f belongs to W 1

2 and
g′ − ug = (I +K−u)f

′.

Proof. First, we consider the case of f ∈ DC := D + iD . In this case, for an arbitrary n ∈ N
the function Ku,nf is continuously differentiable. By part (3) of Lemma 4, it is a compactly
supported function. Straightforward calculations give that

(Ku,nf)
′ = (−1)nKu,nf

′ + uKu,n−1f (Ku,0 := I). (8)

It follows from the estimate (4) that the series
∑∞

n=1((−1)nKu,nf
′ + uKu,n−1f) converges

in the space H. Thus the series
∑∞

n=0(Ku,nf)
′ converges in the space H, hence the series∑∞

n=0Ku,nf converges in the space W 1
2 , and

∑∞
n=0Ku,nf = f +Kuf = g. It follows from the

equalities (8) that

g′ =
∞∑
n=0

(Ku,nf)
′ = f ′ +

∞∑
n=1

((−1)nKu,nf
′ + uKu,n−1f) =

∞∑
n=0

K−u,nf
′ + u

∞∑
n=1

Ku,n−1f =
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= (I +K−u)f
′ + ug,

that is g′ − ug = (I +K−u)f
′.

Now we claim that f ∈ W 1
2 . Since the set DC is everywhere dense in W 1

2 , there exists a
sequence (fn)

∞
n=1 in DC, which converges to f in the space W 1

2 . The proved above implies
that for every n ∈ N the function gn := (I +Ku)fn belongs to W 1

2 and
g′n = u(I +Ku)fn + (I +K−u)f

′
n.

It follows from the continuity of the operators Ku and K−u that:
(a) the sequence (gn)n∈N converges to g = (I +Ku)f in the space H;
(b) the sequence (g′n)n∈N converges to ug + (I +K−u)f

′ in the space H.
This yields the conclusion that the sequence (gn)n∈N converges to g in the space W 1

2 and
g′ − ug = (I +K−u)f

′.

For an arbitrary µ ∈ M 0, we put by the definition

Uµ := I +Ku

(
u =

dµ

dm

)
.

Remark 3. If µ ∈ M 0, u = dµ/dm, then

Sµφ = i(φ′ − uφ), Tµf = −
(
d

dx
+ u

)(
d

dx
− u

)
f, (9)

where φ ∈ domSµ = W 1
2 , f ∈ domTµ = W 2

2 .
Moreover, it follows from part (2) of Lemma 4 that Uµ belongs to B+(H).

By Lemmas 4 and 6, we obtain the following result.

Corollary 2. Let µ, µ̃ ∈ M 0. Then

∥Uµ∥B(H) ≤ exp{∥µ∥}, ∥Uµ − Uµ̃∥B(H) ≤ exp(∥µ∥+ ∥µ̃∥)∥µ− µ̃∥. (10)

In view of Lemma 6, by using Remark 3, we arrive at the following corollary.

Corollary 3. Let µ ∈ M 0. Then Uµ ∈ B+(H), moreover:
1) if f ∈ domS0, then Uµf belongs to domSµ and SµUµf = U−µS0f ;
2) if f ∈ domT0, then Uµf belongs to domTµ and TµUµf = UµT0f .

Denote by Gn the orthogonal projector in H given by the formula
Gn := En − E−n, n ∈ N,

and let G⊥
n := I −Gn. Recall that the projector Et was introduced in Subsection 2.7.

By the statements (3) and (4) of Lemma 4, we obtain the following corollary.

Corollary 4. Let µ ∈ M 0, ρ > 0 and suppµ ⊂ ∆ρ. Then for an arbitrary natural k > ρ
the equalities G⊥

5kUµGk = GkUµG
⊥
5k = 0 hold.

Lemma 9. Let (µn)n∈N be a sequence in M and µn
w→ µ ∈ M . Then for arbitrary f ∈ H

and ε > 0 there exists m ∈ N such that
∥G⊥

mUµnf∥ ≤ ε, ∥G⊥
mU

∗
µn
f∥ ≤ ε for all n ∈ N.
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Proof. Let f ∈ H and ε ∈ (0, 1). Since the sequence (µn)n∈N converges weakly, this sequence
is bounded and uniformly dense. Set

c := sup
n∈N

(2∥µn∥+ 1), γ :=
ε

ec(∥f∥2 + 1)
.

Let us choose a compactly supported function f̃ ∈ H such that ∥f − f̃∥2 ≤ γ. Since
(µn)n∈N is uniformly dense, there exists a sequence (µ̃n)n∈N in M 0 such that the supports of
measures µ̃n are contained in some interval ∆ρ and ∥µn− µ̃n∥ ≤ γ. Assume that the support
of the function f̃ is also contained in ∆ρ. It follows from Corollary 4 that if k ∈ N, k > ρ
and m = 5k, then

G⊥
mUµ̃n f̃ = 0 = G⊥

mU
∗
µ̃n
f̃ , n ∈ N. (11)

Let us prove that ∥G⊥
mUµnf∥ ≤ ε for an arbitrary n ∈ N. Using the equality (11), we have

∥G⊥
mUµnf∥ = ∥G⊥

mUµnf −G⊥
mUµ̃n f̃∥ ≤

≤ ∥Uµnf − Uµ̃n f̃∥ ≤ ∥Uµn − Uµ̃n∥B(H)∥f∥2 + ∥Uµ̃n∥B(H)∥f − f̃∥2.
The estimates (10) imply that

∥Uµn − Uµ̃n∥B(H) ≤ ecγ, ∥Uµ̃n∥B(H) ≤ ec, n ∈ N.
Thus ∥G⊥

mUµnf∥ ≤ ecγ∥f∥2 + ecγ = ε, n ∈ N.
We prove similarly that ∥G⊥

mU
∗
µn
f∥ ≤ ε for all n ∈ N.

Lemma 10. Let µ ∈ M 0, u = dµ/dm and q = u′ + u2. Then for an arbitrary λ ∈ C+ the
function eλ,µ(x) := (Uµeλ)(x), x ∈ R, is the right Jost solution of the equation −y′′+qy = λ2y
and

|e−iλxeλ,µ(x)− 1| ≤ e∥µ∥h|µ|(x), x ∈ R. (12)

Proof. In view of Corollary 3, Uµ ∈ B+(H), and, hence (see Remark 2) Uµ ∈ B(H+). Fix
λ ∈ C+. Obviously, for an arbitrary a ∈ R there exists g ∈ W 2

2 such that g(x) = eλ(x) for
x ≥ a. Since Uµ ∈ B+(H), we get

eλ,µ(x) = (Uµeλ)(x) = (Uµg)(x), x > a.

By (9) and Corollary 3, we have that for x > a

−e′′λ,µ(x) + q(x)eλ,µ(x) = [TµUµg](x) = [UµT0g](x) = λ2[Uµeλ](x) = λ2eλ,µ(x).

Then, in view of part (1) of Lemma 4, for big enough numbers η ∈ R
eλ,µ(x) = eλ(x), x ∈ (η,∞).

Therefore, eλ,µ is the right Jost solution of the equation −y′′ + qy = λ2y.
Let us prove the estimate (12). Fix x ∈ R and λ ∈ C+, and consider the function

f(t) :=

{
eiλ(t−x), if t ≥ x;
0, if t < x.

The function f belongs to L∞ and ∥f∥∞ = 1. Lemma 7 implies that the function Kuf is
continuous and

|(Kuf)(x)| ≤ e∥u∥1
∫ ∞

x

|u(t)| dt, x ∈ R.

Thus, using the equalities

e−iλxeλ,µ(x)− 1 = (Kuf)(x) (x ∈ R), ∥u∥1 = ∥µ∥,
∫ ∞

x

|u(t)| dt = |µ|([x,∞)) = h|µ|(x),

we obtain the estimate (12).
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Lemma 11. Let µ ∈ M 0, u = dµ/dm and q = u′+u2. Then Uµ is a classical transformation
operator for Sturm–Liouville operator T = −d2/dx2 + q.

Proof. Note that the classical transformation operator U for the operator −d2/dx2 + q with
a compactly supported potential q is continuous in all Lp and acts by the formula

(Uf)(x) = f(x) +

∫ ∞

x

K(x, t)f(t) dt, x ∈ R,

where the function K is continuous on the set Ω = {(x, t) ∈ R2 | x ≤ t}. In particular, U
belongs to the algebra B+(H), and it also belongs to the algebra B(H+). Moreover, for an
arbitrary λ ∈ C+ the formula

e(x, λ) := eiλx +

∫ ∞

x

K(x, t)eiλt dt

defines the right Jost solution of the equation −y′′ + qy = λ2y. In this case, the right Jost
solution is defined unambiguously, thus (see Lemma 10)

Ueλ = eλ,µ = Uµeλ, λ ∈ C+.

Since (see Lemma 3) the linear span of the set {eλ | λ ∈ C+} is everywhere dense in the
space H+, we conclude that U = Uµ.

The following theorem describes some important properties of the operator Uµ in the
smooth case.

Theorem 2. Let µ ∈ M 0. Then the operator Uµ is invertible in B(H) and ∥U−1
µ ∥ ≤

√
2.

Proof. Let µ ∈ M 0, u = dµ/dm and q = u′+u2. In view of Lemma 11, the operator Uµ can
be represented in the form Uµ = I +K, where K acts by the formula

(Kf)(x) =
∫ ∞

x

K(x, t)f(t) dt, x ∈ R, f ∈ H.

Note that (see [2]) the function K is a solution of Gelfand-Levitan-Marchenko equation:

F (x+ t) +K(x, t) +

∫ ∞

x

K(x, y)F (y + t) dy = 0, x ≤ t. (13)

In this case, the operator Tµ is non-negative, thus the real-valued function F is defined by
the formula (see [2])

F (x) :=
1

2π

∫
R
r(λ)e−iλx dλ, x ∈ R,

where r is the reflection coefficient. It follows from the results of [8] that r is the Fourier
transform of a function from L1 and ∥r∥∞ < 1. Hence F ∈ L1. Denote by F the operator in
the space H acting by the formula

(Ff)(x) :=
∫
R
F (x+ t)f(t) dt, x ∈ R.

It is easy to see that the operator F is self-adjoint and ∥F∥ ≤ ∥r∥∞ < 1. Fix an arbitrary
ξ ∈ R and consider the auxiliary operators

Kξ := E⊥
ξ KE⊥

ξ , Fξ := E⊥
ξ FE⊥

ξ .

The results of [2, Sect. III] imply that the operator Kξ is compact. Moreover, as shown in [2,
Sect. III], by (13), we obtain the equality

(I +Kξ)(I + Fξ)(I +K∗
ξ) = I. (14)
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In view of (14), we have that ran(I + Kξ) = H. Since the operator Kξ is compact, the
operator (I +Kξ) is invertible. Thus we can rewrite (14) in the form

(I +Kξ)
−1[(I +Kξ)

−1]∗ = I + Fξ,

which implies ∥(I +Kξ)
−1∥2 ≤ ∥I + Fξ∥ ≤ 1 + ∥F∥ < 2. Hence ∥(I +Kξ)

−1∥ ≤
√
2, ξ ∈ R.

Let us consider the sequence of the operators An := I + K−n, n ∈ N. Clearly, this
sequence converges to the operator A = I + K in the strong operator topology, and the
sequence (A∗

n)n∈N converges to the operator A∗ in the strong operator topology. Moreover,
∥A−1

n ∥ ≤
√
2 for all n ∈ N. Thus, in view of Lemma 19, the operator I +K is invertible and

(I +K)−1 ≤
√
2.

4. Transformation operators. The general case.
Let µ ∈ M . We introduce the notation

tµ(f) := −
(
pµ

d

dx

1

p2µ

d

dx
pµ

)
f. (15)

We define the domain of the differential expression (15) as the set (see the introduction)
dom tµ := {f ∈ L1,loc(R) | pµf ∈ AC(R), p−2

µ (pµf)
′ ∈ AC(R)}.

Let µ ∈ M and λ ∈ C+. A solution y of the equation tµ(f) = λ2f is called the right (left)
Jost solution if

y(x) = eiλx(1 + o(1)), x→ +∞
(
y(x) = e−iλx(1 + o(1)), x→ −∞

)
.

It what follows, we denote the right and left Jost solutions by eλ,µ and e−λ,µ, respectively.
The main results of this section are the following two theorems.

Theorem 3. For µ ∈ M and λ ∈ C+, the equation tµ(f) = λ2f has unique right and left
Jost solutions eλ,µ and e−λ,µ. Moreover, for eλ,µ the estimate

|e−iλxeλ,µ(x)− 1| ≤ e∥µ∥h|µ|(x), x ∈ R, (16)

holds.

Theorem 4. For each µ ∈ M , there exists a unique operator Uµ ∈ B+(H) such that
Uµeλ = eλ,µ, λ ∈ C+.

Moreover: 1. Uµ is invertible in the algebra B(H), and ∥U−1
µ ∥B(H) ≤

√
2; 2. the equality

Tµ = UµT0U−1
µ holds.

First, we prove two auxiliary lemmas.

Lemma 12. Let (µn)n∈N be a sequence in M 0 and µn
w→ µ ∈ M . Then from the sequence

(µn)n∈N one can choose a subsequence (µnk
)k∈N such that there exist the limits

U = s-lim
k→∞

Uµnk
, U− = s-lim

k→∞
U−µnk

.

Moreover: 1) if f ∈ domS0, then Uf ∈ domSµ and SµUf = U−S0f ; 2) if f ∈ domS0,
then U−f ∈ domS−µ and S−µU−f = US0f ; 3) if f ∈ domT0, then Uf ∈ domTµ and
TµUf = UT0f .
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Proof. Since µn
w→ µ, we obtain sup

n∈N
∥µn∥ = α <∞. Thus (see Corollary 2)

sup
n∈N

∥U±µn∥B(H) ≤ eα.

Also (see Lemma 2),
Pµn

s→ Pµ, P−µn

s→ P−µ. (17)

Let φ ∈ W 1
2 . In view of Corollary 3, Uµnφ ∈ domSµn and SµnUµnφ = U−µnS0φ, n ∈ N.

Since Sµn = P−1
µn
S0Pµn , we get

S0PµnUµnφ = PµnU−µnS0φ, φ ∈ W 1
2 . (18)

Consider the auxiliary operators
Vµn := PµnUµn , n ∈ N.

Let us fix φ ∈ W 1
2 and show that the set {Vµnφ}n∈N is relatively compact in the space H.

The equality (18) implies that Vµnφ ∈ W 1
2 for all n ∈ N and (Vµnφ)

′ = PµnU−µnφ
′.

Since the operator sequences (U±µn)n∈N and (Pµn)n∈N are bounded in B(H), the sequences
(Vµnφ)n∈N and ([Vµnφ]

′)n∈N are bounded in H. Therefore, the set {Vµnφ}n∈N is bounded
in W 1

2 . Note that for an arbitrary m ∈ N the operator

W 1
2 ∋ f 7→ Gmf ∈ H

is compact. Thus the set {GmVµnφ}n∈N is relatively compact in H for an arbitrary m ∈ N.
In view of Lemma 9, for an arbitrary ε > 0 there exists m ∈ N such that ∥G⊥

mVµnφ∥ ≤ ε,
n ∈ N. Thus the set {Vµnφ}n∈N is relatively compact in H.

It follows from the above result that for an arbitrary φ ∈ W 1
2 and for an arbitrary sequence

(µnk
)k∈N from the vector sequence (Vµnk

φ)k∈N one can choose a convergent subsequence.
Observing that the space H is separable and the set W 1

2 is everywhere dense in H, by
Lemma 18, we conclude that from the sequence (Vµn)n∈N one can choose the convergent
subsequence (Vµnk

)k∈N, which converges in the strong operator topology. Taking into account
(17) and the equalities

Uµnk
= P−1

µnk
Vµnk

= P−µnk
Vµnk

, k ∈ N,
we obtain that the sequence (Uµnk

)k∈N converges in the strong operator topology. The establi-
shed results imply that from the sequence (µn)n∈N one can choose a subsequence (µnk

)k∈N
such that both limits exist

U = s-lim
k→∞

Uµnk
, U− = s-lim

k→∞
U−µnk

. (19)

Let us prove part (1). Fix an arbitrary φ ∈ W 1
2 . From (18), we deduce that

S0Pµnk
Uµnk

φ = Pµnk
U−µnk

S0φ.

Taking into account (17), (19) and the fact that the operator S0 is closed, by passing to the
limit, we obtain that PµUφ ∈ domS0 and S0PµUφ = PµU−S0φ. Thus Uφ ∈ domSµ and
SµUφ = U−S0φ. Therefore, part (1) is proved.

Obviously, part (2) follows from part (1). Let us prove part (3). In view of (1) and (2),
by using the equality Tµ = S−µSµ, we obtain that for an arbitrary f ∈ W 2

2 the element Uf
belongs to domTµ and

TµUf = S−µSµUf = S−µU−S0f = US2
0f = UT0f.
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Lemma 13. Let (µn)n∈N be a sequence in M 0 and µn
w→ µ ∈ M . Assume that Uµn

s→ U .
Then: 1) the operator U belongs to the algebra B+(H) and is invertible in the algebra B(H),
moreover, ∥U−1∥B(H) ≤

√
2; 2) for an arbitrary λ ∈ C+ the function Ueλ is the right Jost

solution of the equation tµ(f) = λ2f .

Proof. Let us prove part (1). Since µn ∈ M 0 (n ∈ N), the sequence (Uµn)n∈N belongs to the
algebra B+(H) (see Corollary 3). Therefore, the operator U also belongs to B+(H).

Theorem 2 implies that the operators Uµn are invertible in B(H) and |U−1
µn

∥B(H) ≤
√
2,

n ∈ N. Thus, in view of Lemma 19, to prove invertibility of the operator U , it suffices to
show that from the sequence (U∗

µn
)n∈N one can choose a subsequence, which converges in the

strong operator topology in the algebra B(H). It follows from Lemma 2 that P±µn

s→ P±µ

as n→ ∞, and the sequences (Uµn)n∈N and (U−µn)n∈N are bounded. Replacing the measures
µn in (18) with −µn, we obtain that for an arbitrary φ, ψ ∈ W 1

2

(S0P−µnU−µnφ | ψ)H = (P−µnUµnS0φ | ψ)H ,
and, therefore,

(φ | U∗
−µn

P−µnS0ψ)H = (S0φ | U∗
µn
P−µnψ)H , φ, ψ ∈ W 1

2 .

The last equality implies that the functional
W 1

2 ∋ φ 7→ (S0φ | U∗
µn
P−µnψ)H

is continuous in H. Thus U∗
µn
P−µnψ ∈ domS0 and

S0U
∗
µn
P−µnψ = U∗

−µn
P−µnS0ψ. (20)

Let us consider the auxiliary operators
Vµn := U∗

µn
P−µn , n ∈ N.

Let us fix ψ ∈ W 1
2 and show that the set {Vµnψ}n∈N is relatively compact in H.

It follows from the equality (20) that Vµnψ ∈ W 1
2 for all n ∈ N and

(Vµnψ)
′ = U∗

−µn
P−µnψ

′.

Since the operator sequences (U±µn)n∈N and (P−µn)n∈N are bounded in B(H), the sequences
(Vµnψ)n∈N and ([Vµnψ]

′)n∈N are bounded in H. Hence the set {Vµnψ}n∈N is bounded in the
space W 1

2 . Thus for an arbitrary m ∈ N the set {GmVµnψ}n∈N is relatively compact in H. In
view of Lemma 9, for an arbitrary ε > 0 there exists m ∈ N such that ∥G⊥

mU
∗
µn
P−µψ∥ ≤ ε,

n ∈ N. Thus

∥G⊥
mVµnψ∥ = ∥G⊥

mU
∗
µn
P−µnψ∥ ≤ ∥G⊥

mU
∗
µn
P−µψ∥+

+∥G⊥
mU

∗
µn
(P−µ − P−µn)ψ∥ ≤ ε+ C∥(P−µ − P−µn)ψ∥, n ∈ N,

where C = supn∈N ∥U∗
µn
∥. Therefore, taking into account P−µn

s→ P−µ, we obtain that the
set {Vµnψ}n∈N is relatively compact in H.

It follows from the above proof that for an arbitrary ψ ∈ W 1
2 and for an arbitrary sequence

(µnk
)k∈N from the sequence (Vµnk

ψ)k∈N one can choose a convergent subsequence. Observing
Lemma 18, we conclude that from the sequence (Vµn)n∈N one can choose a subsequence
(Vµnk

)k∈N that converges in the strong operator topology. Taking into account the equalities
U∗
µnk

= Vµnk
Pµnk

, k ∈ N,

and the convergence Pµn

s→ Pµ, we obtain that the sequence (U∗
µnk

)k∈N also converges in the
strong operator topology. Therefore, invertibility of the operator U is proved.
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We now prove part (2). Fix λ ∈ C+ and let φ = Ueλ. It is obvious that for an arbitrary
a ∈ R there exists a function g ∈ W 2

2 such that g(x) = eλ(x) for x > a. Since U ∈ B+(H),
φ(x) = (Ueλ)(x) = (Ug)(x), x > a.

Thus, in view of Lemma 12 (part (3)), for x > a

[tµ(φ)](x) = [TµUg](x) = [UT0g](x) = λ2[Ueλ](x) = λ2φ(x).

Since a is arbitrary, we conclude that φ is a solution of the equation tµ(y) = λ2y. Let us
show that

φ(x) = eiλx(1 + o(1)), x→ +∞. (21)

According to Lemma 10, we obtain that for an arbitrary n ∈ N
eλ,µn(x) = (Uµneλ)(x) = (Uµng)(x), x > a,

and
|e−iλxeλ,µn(x)− 1| ≤ e∥µn∥h|µn|(x), x ∈ R. (22)

Since µn
w→ µ ∈ M , we obtain (see Proposition 1) that supn∈N ∥µn∥ = c < ∞ and the

sequence (µn)
∞
n=1 is uniformly dense. Thus for an arbitrary ε > 0 there exists aε > a such

that h|µn|(x) ≤ εe−c, n ∈ N, x > aε. It follows from the established above that
|e−iλx(Uµng)(x)− 1| ≤ ε, x > aε.

Thus, taking into account lim
n→∞

∥Ug − Uµng∥ = 0 and (Ug)(x) = φ(x), we get that the
inequality

|e−iλxφ(x)− 1| ≤ ε (23)

holds almost everywhere on the half-line (aε,∞). Note that the function φ is left conti-
nuous. Indeed, since φ ∈ domTµ, the function pµφ is continuous on R. And since pµ is
left continuous, the function φ is also left continuous. Thus the inequality (23) holds for all
x > a. Hence, since ε is arbitrary, the asymptotic (21) holds. Therefore, Ueλ is the right Jost
solution of the equation tµ(f) = λ2f .

Remark 4. Since the space M 0 is everywhere dense in M in the weak topology, in view of
Lemmas 12 and 13, for arbitrary µ ∈ M and λ ∈ C+ the equation tµ(f) = λ2f has the right
Jost solution.

Proof of Theorem 3. Denote by J the reflection operator given in the space L1,loc by the
formula

(Jf)(x) = f(−x), x ∈ R.
It is an involution, and acts in the space H as a unitary operator.

It is easy to see that for an arbitrary measure µ ∈ M there exists the unique measure
µ♭ ∈ M , which satisfies the equality

pµ♭(−x) = pµ(x)

at all points of continuity of the function pµ. Therefore, we obtain the mapping M ∋ µ 7→
µ♭ ∈ M , which is an involution. It is easy to see that for µ ∈ M

JPµJ = Pµ♭ , JSµJ = −Sµ♭ , JTµJ = Tµ♭ , JtµJ = tµ♭ .
Let µ ∈ M . It follows from the above result that if φ is the right Jost solution of the

equation tµ♭(y) = λ2y, then Jφ is the left Jost solution of the equation tµ(y) = λ2y. Thus,
by Remark 4, we get that for arbitrary µ ∈ M and λ ∈ C+ the equation tµ(f) = λ2f has
right and left Jost solutions.
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It follows from the above that to prove uniqueness of the Jost solutions, it suffices to
prove only uniqueness of the right Jost solution. Assume that for some µ ∈ M and λ ∈ C+

the equation tµ(y) = λ2y has two different right Jost solutions φ1 and φ2. These solutions
are certainly linearly independent. Otherwise, in view of the asymptotic on +∞, they would
be equal. Denote by φ a left Jost solution of the equation tµ(y) = λ2y. Linear independence
of φ1 and φ2 implies that φ is a linear combination of the solutions φ1 and φ2. It means
that φ is the eigenfunction of the operator Tµ corresponding to the eigenvalue λ2. But this
is impossible, since Tµ ≥ 0 and λ2 /∈ [0,∞). Therefore, uniqueness of the right Jost solution
is proved.

It remains to prove the estimate (16) for eλ,µ. Fix an arbitrary µ ∈ M and λ ∈ C+,
and let (νn)n∈N be a θ-sequence for µ. Since (see Lemma 1) νn

w→ µ ∈ M and ∥νn∥ ≤ ∥µ∥,
h|νn| ≤ h|µ|, for all n ∈ N, we find (see (22)) that |e−iλxeλ,µn(x)− 1| ≤ e∥µ∥h|µ|(x), x ∈ R.

Taking into account the above inequality, following the logic on the final part of the proof
of Lemma 13, by passing to the limit, we obtain

|e−iλxeλ,µ(x)− 1| ≤ e∥µ∥h|µ|(x), x ∈ R.

Proof of Theorem 4. Let µ ∈ M and (νk)k∈N be a θ-sequence for µ. Then µn
w→ µ and

{νn}n∈N ⊂ M 0. Combining the results of Lemmas 12 and 13, we conclude that there exists
the operator U ∈ B+(H), which possess the following properties: (a) Ueλ = eλ,µ for all
λ ∈ C+; (b) U is invertible in the algebra B(H), and ∥U−1∥B(H) ≤

√
2; (c) if f ∈ domT0,

then Uf ∈ domTµ and TµUf = UT0f .
In view of Remark 2 and Lemma 3, the condition (a) determines operator U unambi-

guously. Thus it only remains to prove the equality Tµ = UT0U
−1. Since the operator Tµ is

self-adjoint, the operator T ′
0 := U−1TµU is similar to a self-adjoint operator. The condition

(c) implies the inclusion T0 ⊂ T ′
0. But it is possible only if T ′

0 = T0. Therefore, U−1TµU = T0,
that is Tµ = UT0U

−1.

5. Proof of Theorem 1.
To prove Theorem 1, we repeat the consideration of Section 4 and partly Section 3 with

some modifications. In the case when proofs are the same, we will only make a corresponding
reference.

The following lemma is a counterpart of Corollaries 2 and 4.

Lemma 14. Let µ, µ̃ ∈ M . Then

∥Uµ∥B(H) ≤ exp{∥µ∥}, ∥Uµ − Uµ̃∥B(H) ≤ exp(∥µ∥+ ∥µ̃∥)∥µ− µ̃∥. (24)

Moreover, if suppµ ⊂ (−k, k) for some k ∈ N, then

G⊥
5kUµGk = 0. (25)

Proof. Let µ, µ̃ ∈ M , and (νn)
∞
n=1, (ν̃n)∞n=1 be θ-sequences for the measures µ and µ̃ respecti-

vely. Due to Lemma 1, these sequences belong to M 0 and converge weakly to the measures
µ and µ̃ respectively. Moreover, ∥νn∥ ≤ ∥µ∥, ∥ν̃n∥ ≤ ∥µ̃∥, n ∈ N.

Note, (νn − ν̃n)
∞
n=1 is a θ-sequence for the measure µ − µ̃, thus ∥νn − ν̃n∥ ≤ ∥µ − µ̃∥,

n ∈ N. Taking into account the above inequalities and Corollary 2, we obtain that

∥Uνn∥B(H) ≤ exp{∥µ∥}, ∥Uνn − Uν̃n∥B(H) ≤ exp(∥µ∥+ ∥µ̃∥)∥µ− µ̃∥. (26)
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By passing in (26) to the limit as n→ ∞, we obtain the estimate (24)
Let suppµ ⊂ (−k, k) for some k ∈ N. It follows from part (2) of Lemma 1 that supp νn ⊂

(−k, k), n ≥ n0 for some n0 ∈ N. Thus part (4) of Lemma 4 implies that G⊥
5kUνnGk = 0,

n ≥ n0. By passing to the limit as n→ ∞, we obtain the equality (25).

The following lemma is an analog of Lemma 9.

Lemma 15. Let (µn)n∈N be a sequence in M and µn
w→ µ ∈ M . Then for arbitrary f ∈ H

and ε > 0 there exists m ∈ N such that ∥G⊥
mUµnf∥ ≤ ε, n ∈ N.

Proof. Let f ∈ H, ε ∈ (0, 1) and

c := sup
n∈N

(2∥µn∥+ 1), γ :=
ε

ec(∥f∥2 + 1)
.

Let us choose a compactly supported function f̃ ∈ H such that ∥f − f̃∥2 ≤ γ. Since the
sequence (µn)n∈N is uniformly dense, there exists a sequence (µ̃n)n∈N in M such that all
supports of the measures µ̃n lie in some interval ∆ρ and ∥µn − µ̃n∥ ≤ γ, n ∈ N.

We can also assume that supp f̃ ⊂ ∆ρ. It follows from Lemma 14 that there exists m ∈ N
such that G⊥

mUµ̃n f̃ = 0 for all n ∈ N. Thus, we obtain that

∥G⊥
mUµnf∥ = ∥G⊥

mUµnf −G⊥
mUµ̃n f̃∥ ≤

≤ ∥Uµnf − Uµ̃n f̃∥ ≤ ∥Uµn − Uµ̃n∥B(H)∥f∥2 + ∥Uµ̃n∥B(H)∥f − f̃∥2,
∥G⊥

mU∗
µn
f∥ = ∥G⊥

mU
∗
µn
f −G⊥

mU∗
µ̃n
f̃∥ ≤

≤ ∥U∗
µn
f − U∗

µ̃n
f̃∥ ≤ ∥Uµn − Uµ̃n∥B(H)∥f∥2 + ∥Uµ̃n∥B(H)∥f − f̃∥2.

The estimates (24) imply that
∥Uµn − Uµ̃n∥B(H) ≤ ecγ, ∥Uµ̃n∥B(H) ≤ ec, n ∈ N.

Thus ∥Uµn −Uµ̃n∥B(H)∥f∥2 + ∥Uµ̃n∥B(H)∥f − f̃∥2 ≤ ecγ∥f∥2 + ecγ = ε. Hence ∥G⊥
mUµnf∥ ≤ ε

for all n ∈ N.

Lemma 16. Let (µn)n∈N be a sequence in M and µn
w→ µ ∈ M . Then from the sequence

(µn)n∈N one can choose a subsequence (µnk
)k∈N such that there exist the limits U = s-lim

k→∞
Uµnk

,

U− = s-lim
k→∞

U−µnk
. Moreover:

1) if f ∈ domS0, then Uf ∈ domSµ and SµUf = U−S0f ;

2) if f ∈ domS0, then U−f ∈ domS−µ and S−µU−f = US0f ;

3) if f ∈ domT0, then Uf ∈ domTµ and TµUf = UT0f .

Proof. Since µn
w→ µ, we obtain supn∈N ∥µn∥ = α <∞. Therefore (see Lemma 14),

sup
n∈N

∥U±µn∥B(H) ≤ eα.

Let φ ∈ W 1
2 . In view of Lemma 4, Uµnφ ∈ domSµ and SµnUµnφ = U−µnS0φ, n ∈ N. Since

Sµn = P−1
µn
S0Pµn ,

S0PµnUµnφ = PµnU−µnS0φ, φ ∈ W 1
2 . (27)

Consider the auxiliary operators
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Vµn := PµnUµn , n ∈ N.
Let us fix φ ∈ W 1

2 and show that the set {Vµnφ}n∈N is relatively compact in the space H.
The equality (27) implies that Vµnφ ∈ W 1

2 for all n ∈ N and (Vµnφ)
′ = PµnU−µnφ

′. Repeating
the same consideration as in the proof of Lemma 12, we show that for an arbitrary m ∈ N
the set {GmVµnφ}n∈N is relatively compact in H.

By Lemma 15, for an arbitrary ε > 0 there exists m ∈ N such that ∥G⊥
mVµnf∥ ≤ ε, n ∈ N.

Thus the set {Vµnφ}n∈N is relatively compact in H. Next, the proof follows the considerations
of the proof of Lemma 12.

Lemma 17. Let (µn)n∈N be a sequence in M and µn
w→ µ ∈ M . Assume that Uµn

s→ U .
Then U = Uµ.

Proof. According to Theorem 4, Uµn ∈ B+(H) for all n ∈ N. And, thus the limited operator
U also belongs to B+(H). Fix λ ∈ C+ and let φ = Ueλ. For an arbitrary a ∈ R there exists
the function g ∈ W 2

2 such that g(x) = eλ(x) for x > a. Since U ∈ B+(H),
φ(x) = (Ueλ)(x) = (Ug)(x), x > a.

Thus, in view of part (3) of Lemma 16, for x > a

[tµ(φ)](x) = [TµUg](x) = [UT0g](x) = λ2[Ueλ](x) = λ2φ(x).

Since a is arbitrary, we have that tµ(φ) = λ2φ. Let us show that

φ(x) = eiλx(1 + o(1)), x→ +∞. (28)

Using Theorems 3 and 4, we obtain that for an arbitrary n ∈ N
eλ,µn(x) = (Uµneλ)(x) = (Uµng)(x), x > a,

and
|e−iλxeλ,µn(x)− 1| ≤ e∥µn∥h|µn|(x), x ∈ R.

Hence
|e−iλx(Uµng)(x)− 1| ≤ e∥µn∥hµn(x), x > a.

Since µn
w→ µ , we obtain that supn∈N ∥µn∥ = c <∞ and the sequence (µn)

∞
n=1 is uniformly

dense. Thus for an arbitrary ε > 0 there exists aε > a such that h|µn|(x) ≤ εe−c, n ∈ N,
x > aε. It follows that

|e−iλx(Uµng)(x)− 1| ≤ ε, x > aε.

Thus, taking into account that lim
n→∞

∥Ug−Uµng∥ = 0 and (Ug)(x) = φ(x), we conclude that
the inequality

|e−iλxφ(x)− 1| ≤ ε (29)

holds almost everywhere on the half-line (aε,∞). Thus similar considerations as in the proof
of Lemma 13 establish that the inequality (29) holds for all x > a. Since ε is arbitrary,
we establish the asymptotic (28). Therefore, Ueλ is the right Jost solution of the equation
tµ(f) = λ2f . Hence, we proved that Ueλ = eλ,µ for all λ ∈ C+. Thus, in view of Theorem 4,
U = Uµ.

Proof of Theorem 1. Let (µn)n∈N be a sequence in M and µn
w→ µ ∈ M . Combining the

results of Lemmas 16 and 17, we conclude that:

(a) from each subsequence of the sequence (Uµn)n∈N one can choose a subsequence, which
converges in the strong operator topology;
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(b) if the subsequences (Uµnk
)k∈N of the sequence (Uµn)n∈N converges in the strong operator

topology, then s-lim
k→∞

Uµnk
= Uµ.

Thus, by Lemma 20, the sequence (Uµn)n∈N is convergent in the strong operator topology and
Uµn

s→ Uµ. Therefore, the mapping M ∋ µ 7→ Uµ ∈ B(H) is sequentially continuous if M is
equipped with the weak topology and B(H) is equipped with the strong operator topology.
It follows from Lemma 10 that Uµeλ = eλ,µ, λ ∈ C+. Thus (see Theorem 4) Uµ = Uµ for
µ ∈ M 0. Since M 0 is everywhere dense in M (in the weak topology), the mapping µ 7→ Uµ

is the unique continuous extension of the mapping µ 7→ Uµ. It also follows from Theorem 4
that for every µ ∈ M the operator Uµ is invertible in B(H) and Tµ = UµT0U−1

µ .

Appendix. Some auxiliary results. Here we will give auxiliary lemmas.

Lemma 18. Let G be a separable infinite-dimensional Hilbert space, Φ be an everywhere
dense set inG, and the sequence (An)n∈N possess in the algebra B(G) the following properties:
1) supn∈N ∥An∥ < ∞; 2) for an arbitrary φ ∈ Φ and for an arbitrary subsequence (Ank

)k∈N
one can choose a G-convergent subsequence of the sequence (Ank

φ)k∈N. Then from (An)n∈N
one can choose a subsequence which converges in the strong operator topology.

Proof. To prove this lemma we use Cantor’s diagonal argument. Since G is separable, there
exists a countable subset {φs}s∈N in Φ which is everywhere dense in G. Using (2), one can
construct by induction a sequence of the subsequences (A{j}

n )n∈N, j ∈ N, such that for each j:
(a) the sequence (A

{j}
n φj)n∈N is convergent in the space G; (b) the sequence (A

{j+1}
n )n∈N is a

subsequence of the sequence (A
{j}
n )n∈N. Then the diagonal sequence (A

{n}
n )n∈N converges on

each φj. Since the sequence (An)n∈N is bounded, and the set {φs}s∈N is everywhere dense
in G, the sequence (A

{n}
n )n∈N converges in the strong operator topology.

Lemma 19. Let G be a Hilbert space, (An)n∈N be a sequence in B(G), and An
s→ A ∈ B(G).

Assume that: 1) all An are invertible in the algebra B(G) and supn∈N ∥A−1
n ∥ = α < ∞;

2) from the sequence (A∗
n)n∈N one can choose a subsequence which converges in the strong

operator topology. Then A is invertible in the algebra B(G). Moreover, A−1
n

s→ A−1 and
∥A−1∥ ≤ α.

Proof. Without loss of generality, we may assume that A∗
n

s→ B ∈ B(H). Then
(Af | g) = lim

n→∞
(Anf | g) = lim

n→∞
(f | A∗

ng) = (f | Bg), f, g ∈ H.

Hence B = A∗. For arbitrary f ∈ G and n ∈ N, ∥f∥ ≤ ∥A−1
n ∥∥Anf∥ ≤ α∥Anf∥ and

∥f∥ ≤ ∥(A∗
n)

−1∥∥A∗
nf∥ ≤ α∥A∗

nf∥. Thus, by passing to the limit, we obtain that
inf{∥Af∥, ∥A∗f∥} ≥ α−1∥f∥, f ∈ G,

so that the operators A and A∗ are bounded below. Hence A has an inverse operator in
B(G). By the relation A−1

n − A−1 = A−1
n (A− An)A

−1, we get that for an arbitrary f ∈ G

∥(A−1
n − A−1)f∥ ≤ α∥(A− An)A

−1f∥ → 0 as n→ ∞,

and, therefore, A−1
n

s→ A−1.

Lemma 20. Let X be a Hausdorff topological space, and (xn)n∈N be a sequence in X.
Assume that: 1) from each subsequence of the sequence (xn)n∈N one can choose a convergent
subsequence; 2) all convergent subsequences of the sequence (xn)n∈N have the same limit
a ∈ X. Then the sequence (xn)n∈N converges to a.
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The proof of Lemma 20 is obvious.

Lemma 21. If self-adjoint operators A and B are similar, then they are unitarily equivalent.

Proof. Let self-adjoint operators A and B act in the Hilbert space G and

A =MBM−1, (30)

where an operator M ∈ B(G) is invertible in the algebra B(G). Let M = UN be the polar
decomposition of the operatorM , i.e.,N = (M∗M)1/2 and U =MN−1. SinceM is invertible,
the operator U is unitary. It follows from (30) that MBM−1 = A = A∗ = (M∗)−1BM∗.
Therefore, BM∗M = M∗MB, i.e., the self-adjoint operator B commutes with the bounded
positive operator M∗M . Thus B commutes with N too. Hence,

A =MBM−1 = UNBN−1U−1 = UBU−1.
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3. F. Demontis, C. van der Mee, Scattering operators for matrix Zakharov-Shabat systems, Integral Equations
and Operator Theory, 62 (2008), 517–540, https://doi:10.1007/s00020-008-1640-3.

4. S. Albeverio, R. Hryniv, Ya. Mykytyuk, Inverse scattering for impedance Schrödinger operators, I. Step-
like impedans lattice, J. Math. Analysis and Appl., (2017), https://doi:10.1016/j.jmaa. 2017.07.068 (27
pp.)

5. V.I. Bogachev, Weak convergence of measures, Amer. Math. Soc., Mathematical Surveys and Monographs,
234, (2018), 286 p.

6. I. Gohberg, S. Goldberg, M. Kaashoek, Classes of linear operators, V.2, Birkhäuser Verlag, 1990, 465 p.
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