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This paper has involved the use of a variety of variations of the Fermat-type equation
f™(2) + g™(z) = 1, where n(> 2) € N. Many researchers have demonstrated a keen interest to
investigate the Fermat-type equations for entire and meromorphic solutions of several complex
variables over the past two decades. Researchers utilize the Nevanlinna theory as the key tool
for their investigations. Throughout the paper, we call the pair (f,g) as a finite order entire

I
fre g =1,
functions satisfying the system, where mj, ma,ni,ny € N\ {1}. Taking into the account the
idea of the quadratic trinomial equations, a new system of quadratic trinomial equations has
fmt2afg gt =1
[+ 2afg+g9™ =1,
we consider some earlier systems of certain Fermat-type partial differential-difference equations
on C2, especially, those of Xu et al. (Entire solutions for several systems of nonlinear difference
and partial differential-difference equations of Fermat-type, J. Math. Anal. Appl. 483(2), 2020)
and then construct some systems of certain quadratic trinomial partial differential-difference
equations with arbitrary coeflicients. Our objective is to investigate the forms of the finite order
transcendental entire functions of several complex variables satisfying the systems of certain
quadratic trinomial partial differential-difference equations on C™. These results will extend
the further study of this direction.

solution for the Fermat-type compatible system if f, g are finite order entire

been constructed as follows: where o € C\ {0, £1}. In this paper,

1. Introduction. By a meromorphic function f on C" (n € N), we mean that f can
be written as a quotient of two holomorphic functions without common zero sets in C".
Notationally, we write f := £, where g and h are holomorphic functions without common
zero sets on C” such that h # 0 and g # 0.

Let 2 = (z1,22,...,2,) € C", a € CU{o0}, k € Nand r > 0. We consider some notations
from [12,29,32]. Let B,(r) := {z € C" : |z| < r}, where |2]? := > i1 |21*. The exterior
derivative splits d := 0+ 9 and twists to d° := = (0 —9). The standard Kaehler metric on C"
is given by v, (z) := dd°|z|*. Define w,(2) := dd°log |z|* > 0 and 0, (2) := d°log |z|* Aw!~!(2)
on C™\ {0}. Thus 0,(z) defines a positive measure on 0B, := {z € C" : |z| = r} with
total measure 1. The zero-multiplicity of a holomorphic function h at a point z € C" is
defined to be the order of vanishing of h at z and denoted by DY(z). A divisor of f on C"
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is an integer valued function which is locally the difference between the zero-multiplicity
functions of g and h and it is denoted by Dy := D) — D) (see [6, p. 381]). Let a € CU {oo}
be such that f # a. Then the a-divisor v} of f is the divisor associated with the holomorphic
functions g — ah and h (see [12, p. 346]). In [32], Ye has defined the counting function and

the valence function with respect to a respectively as follows: n(r, a, f) := r>=>" [ sy ViU !

and N(’r’a f) rnrafdt We write
1 .

N(r,a, f) = N(r, =), when a # oo;

N<T7 f)> when a = 0.

The proximity function [12,32] of f is defined as follows:
m(r, f log™ [f(2)]ow(2), when a = oo,
OBn(r)

) =
1 1
( a> /m()log 1z —a” on(2), when a # co.
)

By denoting S(r) := B,(r) N supp v}, where supp v§ = {z e Cn: v 4(2) # 0} (see [12,
p. 346]). The notatlon Nyi(r, 7=) is known as truncated valence functlon In particular,
Ny(r, ﬁ) = N(r, =
Ni(r, ﬁ), the a-divisors of f in S(r) of multiplicity m are counted m-times if m < k and
k-times if m > k. The Nevanlinna characteristic function is defined by T'(r, f) = N(r, f) +
m(r, f), which is increasing for r. The order of a meromorphic function f is denoted by p(f)
and is defined by

o) = i o8 L0 ])

=00 log r

) is the truncated valence function of simple a-divisors of f in S(r). In

, where log" x = max{log z, 0}.

Given a meromorphic function f, recall that a meromorphic function « is said to be a small
function of f, if T'(r,a) = S(r, f), where S(r, f) is used to denote any quantity that satisfies
S(r, f) =o(T(r, f)) as r — oo outside of a possible exceptional set E of finite linear measure
([ dr < +00) (see [11,29,32]).

Given a meromorphic function f(z) on C", f(z + ¢) is called a shift of f and A(f) =
f(z+c¢) — f(2) is called a difference operator of f, where ¢ € C™\ {(0,0,...,0)}.

A significant number of researchers have demonstrated a keen interest in investigating
the Fermat-type equations for entire [8,17,18,21] and meromorphic solutions |20, 31| over
the past two decades. This has involved the use of a variety of variations of the equation
f™(2) + g"(z) = 1, where n € N. Yang and Li [31] were the first to undertake the study of
transcendental meromorphic solutions of Fermat-type differential equations on C. Liu [20]
was the first who investigated on meromorphic solutions of Fermat-type difference equation
as well as differential-difference equations on C. For other leading and recent developments
in these directions, we also refer to the reader to [7,22,23,25| and the references therein.

A difference polynomial (resp. a partial differential-difference polynomial) in f is a finite
sum of difference products of f and its shifts (resp. of products of f, partial derivatives of f
and of their shifts) with all the coefficients of these monomials being small functions of f.
Below we select a single branch for the square root of a complex number by the condition

V1=1.

In 2013, Saleeby [27] considered the quadratic trinomial equations

fP+2afg+g*=1, acC\{£1} (1)
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and the associated partial differential equations

ou(zy, z2) 2 Ou(z1, z2) Ou(z1, 22) ou(zy, z2)
T\, 22) 2 TH\e1, 22)
( 821 ) +ea 821 822 + 622

)2 =1, (2,2)€C* (2

and obtained an explicit form of all entire and meromoprhic solutions of the equation usi-
ng their representation by arbitrary entire or meromorphic function, respectively. Moreover,
he proved that the entire and meromorphic solutions of (2) are the first degree polynomi-
als in the variables z; and 2. In 2016, Liu and Yang [24] have proved the non-existence
of transcendental meromorphic solutions of some trinomial quadratic differential-functional
equation and justified that the order of entire solutions of some associated difference equation
equals one. In 2020, Xu et al. [30] considered the Fermat-type systems of partial differential-
difference equations

2
(%;1322)) + faler e,z + ) = 1

2
(szézzll,m)) —+ f1<21 + c1, 29 + 62)2 _ 1’

(3)

2

(—aflézll’”)> + (falz1 + e, 2+ @) — iz, 2)) = 15
2

(22L22) 4 (fi(z1 4 1,2+ 03) = falz1, 22)) = 1,

and obtained an explicit representations of transcendental entire solutions with finite order
for system (3) and (4), separately. In 2021, Li et al. [19] extended the results of Xu et
al. |30] by replacing the first partial derivative in variables z; and 2y by their sum, i.e. by
the derivative in the direction (1,1) and obtained similar results to Xu’s results in [30].

Inspired by the results of Saleeby [27], any researcher can be curious about the following
question.

(4)

Problem 1. Is it possible to study further by extending the systems of partial differential-
difference equations (3), (4), and Li’s systems from [19] to a new system of quadratic trinomial
partial differential-difference equations C" with arbitrary coefficients?

Our main objective in this paper is to extend the investigations from the systems of
certain Fermat-type partial differential-difference equations on C? to the systems of certain
quadratic trinomial partial differential-difference equations on C" with arbitrary coefficients.
Note that our investigations are based on the multidimensional Nevanllinna theory. Given
this, our study is limited the class of functions having finite order. There are known two
other approaches in the complex analysis which are also used to study analytic solutions
of system of partial differential equations. But they allow to consider functions of infinite
order. The first approach is the multidimensional Wiman-Valiron theory which examines
the properties of the maximal term and the central index of the power series [13—-16|. This
theory is applicable for any entire solution of differential equations. But even in the case of
analytic in the unit disc functions, the question of a complete analogue of the Wiman-Valiron
theory is still not fully studied. The second approach is based on the notion of bounded [-
index [5]. It allows to study as entire, so analytic in some bounded domain solutions of
directional differential equations [1-3], and system of partial differential equations [4]. The
method overlaps all analytic functions having bounded multiplicities of zero points.

2. The Main Results. For I = (iy,is,...,4,) € Z7 we put ||[I|| = >°,_, i Then any
polynomial Q(z) on C" of degree d can be expressed as Q(z) = ZﬁIH:O apZit - 2 where
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Z, = NU{0}, a; € C such that a; are not all zero at a time for ||| = d. Suppose that
Q(z 4+ ¢) — Q(z) = constant(say B € C), for any ¢ € C*\ {(0,0,...,0)}. Let Q(2) =
> o1 a7+ ®(2) + A, where A € C and deg(®(2)) > 2. Now, Q(z +¢) — Q(z) = B implies

that 37, ajc; + ®(2 + ¢) — ®(z) = B. Thus, we have ®(z +¢) = ®(2) and > 7, a,c; = B.
Since ®(z) is periodic, so we can express ®(z) as

z):ZG,\(z), where G,\(z HG (5)

where A belongs to the finite index set [; of the family {G\(z) : A € I} and « belongs to
the finite index set Iy of the family {G,(2) : @ € I} with

Ga(z) = Z q)27a,j1:jz (77j12j1 + 77j2zj2) + Z q)3,a,j1,j2,j3(<j12j1 + Cjzzjz + gjszjé) +

Ji,j2=1, n J1,j2,33=1,
J1<72 71<72<73
St E Do v jn areonin Ein 250 + i zjy + 0+ 15,25,),
j17j27"'7jn:17

J1<)2<...<Jn
where 7;, (i, t; € C (1 <@ < n), deg®(2) = deg Q(z) and Pyayjo....im Ein 2 + tinzjo +
.+ tj,2j,) is a univariate polynomial in t; z;, + t;,2j, + ... + t;,,2;,. Here n;, G, t; € C
(1 <i < n) are chosen from the conditions n;,¢;, + 1;,¢5, = 0, (¢, + (pCjy + CjsCjs = 0,
ticiy +tj,¢j, + ... +1;,.¢;, =0 and ¢ is given below in system (7) or (8).
It is important to note that, if Q(z+c¢)— Q(z) = constant, for any ¢ € C"\ {(0,0,...,0)},
then we can express Q(z) as Q(2) = > _7_, a;2; + ®(z) + A, where A € C,

P(z) = Z ( Z Pt aenim (G 21+ Ui Zjp + o+ tjmzjm)> (6)

m=2 j'17j2'a"'7jm:'17
71<72<...<Jm

and Dy, o im (G2 + 5,25, + ...+ 15, 2;,.) 1s a univariate polynomial in such a variable
tizj, +ti,2j, + ...+t 2, Here t; € C (1 < i < n) is chosen from the condition ¢, ¢;, +
tjyCjo + ...+ t;.¢j, =0 and ¢ is given below in system (7) or (8).

We will consider the following systems of quadratic trinomial partial differential-difference
equations on several complex variables:

2
<a —6f1(z)) + 2aa1 =5~ 8f1( 2 Fi(z) + Fi(2)* =
<a agi(f)) + 2aa, 8f2( LFy(2) 4+ Fy(2)? =

{F3(2)2 + 200F5(2) (ans1 [1(2) + angafo(z + €)) + (an1 f1(2) + nsafol(z + ¢))* =
Fiy(2)? 4 20Fy(2) (ant1f2(2) + angafi(z + ©)) + (ani1 f2(2) + ansafi(z +¢)° = 1,

where a; € C\ {0} for 1 <j<n+2, a€C\{0,£1} and

z 2 P
Fi(2) = asfi(2) +asfo(z + ¢) + as 8f1( Fy(2) = az f2(2 )+a3f1(z+c)+a4a fQI(),
F3(z) = 9f1(2) +a 8f1( ) 4t anafl( ) Fy(z) = 8f2( ) + a28];22(22) T an8f2(z).

0z1 Ozn 0z1 Ozn

Throughout the paper, we denote

A= 2\/1+—a+22m7 Ay = Wite  2ivi—a’ Yy = (CHZQ—G2Z17~-7a12n—an21)7
= (a162 — agcr, .., a1C, — A1), Y1 = (22,23, -+, 2n), S1= (C2,C3,- -+, Cn), (9)
( ) (ak+101A1 + alAg)/(\/ﬁal) and Fg(k) = (CLlAl -+ ak+101A2>/(\/§a1).
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Thus, we have A; Ay = A+ A3 = P~ and A7 — A3 =

2(1— a2 1 Z\/ﬁ
In all our statements below we assume that ¢ = (¢1,¢,...,¢,) € C"\ {(0,0,...,0)},

aj € C\ {0} for 1 < j < n+ 2. For the finite order transcendental entire solutlons of the
system (7), we obtain the following results.

Theorem 1. If ay = =+ag, then the functions fi(z) = N 2 + g1(1), fo(z) =

2aa1a201+a c

Z1
\/a 2aa1agcl+a20
g2(y1) are finite order transcendental entire functions of periods 2s;.

— + g2(y1) are finite order transcendental entire solutions of (7), where g1(y1),

For simpler notation of the following results in Theorems 2-4 we introduce such a condi-
tion (A) :
(2() The constants b;, K;,t;, p,v € C(1 <j <n,1<i<4)suchthat ;K =1= K3Kj,
®,(2) is a polynomial defined in (6) with ®(z) = 0, if ®;(z) contain the variable z;, and
grk(y1) (3 < k < 8) are finite order entire functions satisfying
a2gs(y1) + asga(yr + s1) = Ty(1) K= bzt L Ty (1) [ em 2= bz 1w,
a2gs(y1) + asgs(y1 + s1) = T (1) Kge™ Za=2 b2 MO 4 Ty (1) G edei=2 bizit (),
azgs(y1) + asge(yr +51) =0,  az96(y1) + asgs(y1 + s1) =0,

where I’y (1), T'y(1) are given in (9).

Z bjzj+®1(2)+u - Z bjzj—P1(2)—p
Theorem 2. If ay = tag, then f1(z) = <A Ker=2 + Ay Kye =2 )
- Z bjzj—P1(2Hv Z bjzj+®1(z)—v
+93(v1), fo(2) = Kse = A K o= >+g4(y1) are finite order
transcendental entlre solutions of (7), for which condition () holds and
2 Tj=atici = 1 e~ Xiebiertnty — _wkady
Siabie v _ _asKsdi S beitaty L _aakody oS biejpy _ _asKiAy
as Ko Ao asK3Aq’ as K4 A"
52 by @1 (2) 41 — 30 bz @1 (2)
Theorem 3. Ifa?ay+ajay = 0, then fi(z) = %@j:l 3% —%e X biz N
— 20 bjzi—®1(2)+v 20 bjzi+P1(z)—v )
g5(y1), fo(z) = —%e =1 + %eiﬁ + g6(y1) are finite order

transcendental entire solutions of (7), for which condition (2() holds, by = ta3/a; and

22?,1 bjcj — 17 e~ Z?:l bjcj+u+v — CL?)KI?
a101 17
€ZJ 1bjej—p—v _ _ _a3Ks 621 1hjejtutry _  asKs €_ZJ 1bjcj—p—v _ _askKi

a1b1 K3’ a1b1 K3’ arbi1 Ky *

n n
2 bjzj+@1(2)+u =2 bjzj—=®1(z)—p

: A = A =
Theorem 4. The functions fi(z) = ﬁlTIfglef—l — \/52711{516 =1 + 95(y1),
> bjzj+P1(2)+v — > bjzj—Pi(z)—v
fo(z) = \Afffgl =t - \?QKI‘)‘ e =7 + g6(y1) are finite order transcendental
entire solutions for (7), for which condition () holds,
Z bjcj—p+v Z bjcj+p—v
e U e L O L ) CO
~ 3 bieit bjc;—ut
st (o — 2t — ) ¢ B s (e~ B

and (—Albl/AQ — a4b%/a1 — CL2/CL1) (Ale/Al — (l4b%/CL1 — CLQ/CLl) = (CL3/CL1)2.
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For the finite order transcendental entire solutions of the system (8), we obtain the
following result.

Theorem 5. If a,.1 = *a,.2, then fi(z) = _ 21 —— + h(y) and fo(z) =
\/a172aa1an+1cl+an+1c1
= + hso(y) are finite order transcendental entire solutions of (8), where

\/a1—2aa1an+1cl+an+1cl
h;(y) (] = 1 ,2) are finite order transcendental entire functions with periods 2s satisfying

Zk 1 k azk EO'

For simpler notation of the following results in Theorems 6-7 we introduce such a condi-
tion (B) :
(°8) The constants b;, p, v, K; € C (1 < j <n, 1 <1i <4) are such that KKy, =1 =

K3K, and hy(y) (3 < k < 6) are finite order entire functions satisfying > 7, a; 8%’“2( Y =
J

and

zn: bjzi+p Z bjzj—p
ant1h3(y) + ant2ha(y + s) = Ti(n) Kie=2 + Iy(n) Kae 7= ;
- i ijj v z": ij]'—l/

ani1ha(y) + aniohs(y + s) =T1(n) Kze 7=2 + Dy (n) Kye=2 :
any1h5(y) + ang2hs(y +5) =0 and  any1he(y) + an2hs(y +5) =0,
where I'y(n), I'2(n) are given in (9).

Theorem 6. If a,11 = *a,.2, then fi(z) =

3 > bjzj+p — Z bjzj—p
\/a A1K1€J + Ay Kye =1 +

Z bjzj+v i bjzj—v )
A1 Kze =1 + Ay Ky er=? 21 + hy(y), are finite order trans-

hs(y), fa(z) =
cendental entire solutions of (8), for which }7"_, a;b; = 0, () holds, and

25 b; b;
e ]Z 5 Cj _ 1 e J; jcit+utv _ an+2K4A2
’ . an+1K1A1° .
€J§2 bicimny — _ GntoKA el 2:: 3y _ _ antaKhAy eijgz bici—m—v _ _ ant20 Ay
ant1K2A42” an+1K3A417 an+1K4Az”
n n
2 bjzjtu =2 bjzj—p
Theorem 7. Ifa, 1 # +a, o, then fi(2)=—— AlKleJ — Ay Kye =1 +
fz ajb;
> bjzitv — Z bjzj—v ]
hs(y), fa(z) = —f A K3zer=! — Ay Kye = + he(y) are finite order trans-
Z ajb

cendental entire solutions of (8), for which (8) holds, <Z a;b; + Agan+1/A1> (Z ajb; —
j=1 =1

Alan+1/A2> = —a’ ., and

;

an_+133412(12(4 Z? 1 an + an+1 62?:1 bies =ity = 17
av;:;‘i{z{}lﬁ Z;L 1 ajb + an+1 62?:1 bicsthmy = ]-7
%fj—ffm i1 ajb; — ﬁjanﬂ e” Zimi bt =
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The key tools in the proof of the main results are Nevanlinna’s theory of several complex
variables, the difference analogue of the lemma on the logarithmic derivative in several
complex variables [12] and the Lagrange’s auxiliary equations |28, Chapter 2| for quasi-linear
partial differential equations.

3. Some Lemmas. The following are relevant lemmas of this paper and will be used to
prove the main results.

Lemma 1 ([11], Lemma 1.5, p. 239). Let f; #0 (j = 1,2 3) be meromorphic functions on
C™ such that f, is not constant and fi + fo+ f3 =1 W1th Z] 1 {N2 r,0; f;) + 2N(r, f;) } <
T (r, f1) + O(log™ T(r, f1)) holds as r — oo out side of a possible exceptional set of finite
linear measure, where A < 1 is a positive number. Then either fo =1 or f3 = 1.

Let f(z) be an entire function on C™ (n > 1) such that f(0) # 0 and p(n(r,0, f)) < oo
Let ¢ be the smallest integer such that the integral fooo %dr converges. Then there exists
an entire function ¢(z) satisfying the following conditions:

(i) The function f(z)¢!(z) is an entire function on C" and does not vanish.

(ii) The expansion of the function In¢(z) in the neighborhood of the origin has the form:
(iii) For any R > 0, In My(R) < quRq{ Bn0) gy 4 R [0 nL0)) ds}. where €, is a

constant and My(R) = lrr‘lgé |¢(%)| This function ¢(z) is called the canonical function
(see [26, Theorem 4.3.2, p. 245]).

Lemma 2 ([26], Theorem 4.3.4, p. 247). Let f(z) be an entire function on C" such that
f(0) # 0 and p(N(r,0, f)) < oo. Then there exists an entire function g(z) and a canonical
function ¢(z) such that f(z) = ¢(2)ed®).

Lemma 3 (|9], Lemma 2.1, p. 282). If g is a transcendental entire function on C" and if f
is a meromorphic function of positive order on C, then f o g is of infinite order.

Lemma 4 ([10], Proposition 3.2, p. 240). Let P be a non-constant entire function in C".

Then p (¢F) = deg(P), if P is a polynomial, .

~+00, otherwise.

Lemma 5 ([11], Theorem 2.1, p. 242). Suppose that ay(z),a1(2), ..., amn(z) (m > 1) are
meromorphic functions on C" and go(2), 91(2), . .., gm(z) are entire functions on C" such that
9j(z) — gr(2) are not constants for 0 < j < k < n. If 37 a;(2)e%®) = 0 and T(r,a;) =
o(T(r)), 7=0,1,...,n hold as r — oo out side of a possible exceptional set of finite linear

measure, where T'(r) = 0<rm]£1< T(r,e%79%), then aj(z) =0 (j =0,1,2,...,n).
<< n

Lemma 6 ([6], Lemma 3.2, p. 385). Let f be a non-constant meromorphic function on C".
Then for any I € ', T'(r,0' f) = O(T (r, f)) for all r except possibly a set of finite Lebesgue

measure, where I = (i1, 1, ... ,i,) € Z} denotes a multiple index with ||I|| = i1 +ia+4- - +1ip,
Z, =NU{0}, and ' f = 0L
2z, - 0zy

4. Proofs of the main theorems.
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Proof of Theorem 1. Part 1. The first part is common for all Theorems 1-4. Let (f1, f2)
be a pair of finite order transcendental entire functions satisfies the system (7). Let ay %Z(f) =
L(U1(2) +Vi(2)) and azfi(2) + as fo(z +0) + a2 = L (U (2) = Va(2)), where Uy (2) and

Vi(z) are finite order entire functions on C". The ﬁrst equation of (7) becomes (1 + «)U} +
(1—-a)V2 =1, ie.

(VI+ati+ivi—an) (VI+al, - ivI=aVi) =1.

Here /1 + aU; £1iy/1 — oVj are finite order entire functions and have no zeros on C". In

view ofthe Lemma 2, we have v/1 + aU;+iv/1 — aV; = K1eP’® and /1 + aU;—ivV1 — oV =
Koe ) where K, Ky € C\ {0} such that KK, = 1 and P(z) is an entire function in C".

Thus, we have
K.eP®) 4 K e P& K,eP®) _ K e FPQ)
Vi+alU = 1 —'_2 2 and vV1—a V] = 1 5 2¢ .
i

Since p(fi) < +oo (i = 1,2), by using Lemmas 3, 4 and 6, we get from (10) that P(z) is a
polynomial on C". Therefore, we have

(10)

(11)

al—aglz(f) = 75 (A KPP + Ay Kpe )
(Igfl( ) + a3f2(z + C) +aq z fl( L= \/Li (A2K16P(Z) + A1K2€*P(z)> )

where A; and A, are given in (9). Again, let alafZ( 2) — %(Ug( z) + Va(2)) and azfa(2) +
)

asfi(z+c) +a48 fg(z = (Ug( )—Va(2)), where Us(2), Va(z) are finite order entire functions
on C". Using smular arguments as above, we get
ay 6](;1(2) (A Kg@Q + A2K46 Qz )) X (12)
a/2f2( ) + agfl(z + C) + ay aafjf(z) = ﬁ (A2K36Q(Z) + A1K467Q(Z)) ,

where K3, Ky € C\ {0} such that K3K4 = 1 and Q(2) is a polynomial on C". The different
cases arise separately in proofs of all Theorems 1-4.

Part 2. Now we begin to prove properly Theorem 1. Let P(z),Q(z) be simultaneously
constants. From (11) and (12), we have

(118?2(1) = ¥1, a2f1(2)+a3f2(z+c)+ 62( z) _ = 9,
ala?z(l) = 3, CleQ(Z) + Clgfl(z + C) +a 8]02( z) _ = (4,

where ¢; € C for 1 < j < 4 with ¢} + 2appprs1 + @i = 1 (k = 1,3). Hence, we have

fi(z) = (p1/a1)z1 + g1(y1) and f2(2) = (p3/a1)z1 + g2(y1), where g;(y1) (j = 1,2) are finite
order transcendental entire functions of zs, 23, ..., z,. Thus, we deduce that

((a2p1 + asps)/ar)z + (a2g1(y1) + asg2(y1 + s1)) + ascips/ar = o
and ((a2ps + aspr)/a1)z1 + (a2g2(y1) + asgi(y1 + s1)) + ascrpr/ar = @4

Since ¢;(y1) (j = 1,2) are finite order transcendental entire functions, so we have

aspr + azpz = 0, a3 + azpr = 0, a291 (yl) + a392(y1 + 51) =0
a2g2(yl) + a391(?/1 + 31) = 0,a3c1p3 = a1p2 and ascip; = aipa.
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Qa2

asz Qg
i.e., ap = Zasz, which nnphes that o1 = +¢3. It is easy to see that ¢1/ps = —al/(ag
From gol + 2109 + g02 = 1, we deduce that ¢, = :l:CLQCl/\/al — 2aayascy + adct, o1 =
Fay/+/a? — 2aaiage; + a3c? and p3 = ay/+/a? — 2aayasc; + aic?. Therefore,

For non-zero solution of system asp; +azps = 0, asps+aszp; = 0, we must have ‘ =0,
c1

21 21

fi(z) = +91(y1) fa(z) = +92(yl)

\/a1 — 2qaiascy + asc? \/a1 — 2aajascy + asc?

where g;(y1) (j = 1,2) are finite order transcendental entire functions with periods 2s;. O

Proof of Theorem 2. Let either P(z) or Q(z) be a constant. Assume that P(z) is a
L) — o1, asfi(2) +
azfo(z 4 ¢) + ay i fl(z) = (pg, where @1, s € C with ©? + 20109 + 3 = 1. Thus, we have
as f1(2) + asfa(z + c) 9, which implies that M ~@0hE) . wer which contra-

a3 0Oz a3 a1’

constant and ()(z) is a non-constant polynomial. From (11), we have a,

dicts the fact that af 98(2) ig 4 transcendental entire function.
Let P(2),Q(z) be both non-constant polynomials. Differentiating partially with respect
to z; on both sides of the first equation of (11), we get

82f1(z) A1K16 AQKQ@ P(z) 8P(Z)
5’2% \/5(11 821 )

Using the last equation, we derive from the second equation of (11) that

A asAy OP(2) _ Ay agAy OP(2)
_ Pt (A2l > Koo PE) <_ .
as f1(z) + asfa(z + ) e <\/§ N + Kse 7 + 3, 0=

Differentiating partially the last expression with respect to z;, we get

df1(2) dfa(z +¢) poy (A2 0P(2)  aiAy (OP(2)\® sy 9*P(2)
as + as = K16 — — — 3 —+
0z 0z V2 0z V2a; \ 0z V2a; 023

Ky P ( AL OP(2)  aidy (0P(z))2+ 1Ay 82P(z)>' 13)

\/_ 0% \/§a1 0z V2a, 0z
Using the first equations of (11) and (12), we get from (13) that

ALK g

qjl(z)eP(z)JrQ(erc) + Ql(z)efP(z)+Q(z+c) _ z+e) = 1, (14>
A2K4
a 8P z a 8P z a 82P z a a 6P z
where Wy (z) = 243 (%012 — ey (972 — wli OFE) _ ad) 0 (z) = agz(— o0 —
2
Z—‘l‘(ag—z(f))Q + Z—jaangZ) — ¢2). Using similar arguments as above, we deduce from the first
1

equation of (11) and (12) that

AK
Wa(2)Q ) 1 () LT = (15)
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where \IJQ(Z) — alK3(8Q(Z) _ a4A1(8Q(z))2 _oaaA 92Q(2) agAl) 92(2) _ al_]Q(_iBQ_(z)

azKo \ 021 a1As \ Oz a1As 8,2% a1As /) a3z Ko Ao Oz
2
%(%)2 + Z—‘;% — %2). From (14), it is clear that both W;(z) and ©(2) are not si-

multaneously identically zero, otherwise we arrive at a contradiction. Let W;(z) = 0 and
Q1(2) # 0. From (14), we have

A K.
0 Qz+c) _ 113 2Q(z+c)+P(Z) _ P2 = 0. 16
1(2)e A2K4 ¢ (16)

From (16), it is easy to see that Q(z + ¢) — P(z) is a non-constant polynomial. We claim
that Q(z + ¢) + P(z) and 2Q(z + ¢) + P(z) are non-constant polynomials. If possible, let
Q(z + ¢) + P(z) = ki which implies Q(z + ¢) = k; — P(2) and 2Q(z + ¢) + P(z) = ko which
implies P(z) = ko — 2Q(z + ¢), where kq, ko € C. For above two situations, we deduce from
(16) that

Oy (z)ekr — %e%;— e?P®) = 0; (17)

Ql<z)62Q(z+C)—k2 _ #éeQ(z-i—c) _ e—Q(z+c) = .
In both circumstances, we get a contradiction from (17) by using Lemma 5. Hence, Q(z +
¢) + P(z) and 2Q(z + ¢) + P(z) are non-constant polynomials. In view of Lemma 5, we get
a contradiction from (16). Using similar arguments, we again get a contradiction from (14)
and (15), when Wy(z) Z 0, Q1(2) = 0; Wa(2) =0, Qa(2) Z 0 and ¥y(2) £ 0, Qz(2) = 0. Now,
it easy to see that

N(T,\I/1<Z) P(z)+Q(z+c)) _ N(,,, 0 ( ) 7P(z)+Q(z+c)) N(T —AlK 62Q z+c)/(A2K4)) _
= N(r,0; ¥ (z)e” )+Q(z+c)) = N (r,0;Q(2)e” Z)+Q(z+c)) =
= N(?” 0 A1K3€2Q zte) /<A2K4)) == S(T —A1K3€2Q zte) /(A2K4))

By Lemma 1, we get from (14) that either W, (2)e#+RGE+e) = 1 or Q) (2)e PE+RGE+e) = |
where W1 (z) and Q;(z) are given after (14). Similarly, by using Lemma 1, we deduce from (15)
that either Wy(2)e@) PG+ = 1 or y(2)e~@EH+PE+e) = 1 where Uy(z) and Qy(2) are given
after (15). Now we will discuss the following cases.

Let

Uy (2)el@HRGEF) = 1 Wy(2)eRQE+PEHe) = 1 (18)

Using (18), we get from (14) and (15) respectively

fﬁ%Q (2)ePEI7QETD =1 2220 (2)e @R ~PEF) = 1, (19)
From (18), it is clear that P(z) + Q(z + ¢) and Q(z) + P(z + ¢) are both constants, say
& and & respectively, Where £1,& € C. Now P(z2) — P(z+2¢c) = (P(2) + Q(z +¢)) —
(Q(z+c¢)+ Plz+2c) =& — & and Q(z) — Q(z + 2¢) = & — & . It is easy to see that
P(z) = 370 bz + ®1(2 —|— poand Q(z) = Y7 djzj + ®o(z) + v, where by, di, p,v € C
(1 <i<n)and ®y(z) (k=1,2) is a polynomial defined in (6). From (18), we have

2
0P1(2) \ _ asAy 0P1(2) _asA PP1(2)  asAl — azKs ,—&
<b1 + dz1 alAg b + 82’1 a1A2 82% 1A2 - 1K16 ’

<d 4 20ate )) _ (d 4 2222) >> 4 a1 & g;%(a —a = aln

al

(20)

If ®4(2) (k = 1,2) contain the variable 21, then by comparing the degrees on both sides
of (20), we get that deg(®x(z)) < 1 for k = 1,2. For simplicity, we still denote P(z) =
> i1 bjzi+pand Q(z) = 377 djz; + v, where by, dj, p,v € C (1 < j < n). This implies
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that ®(2) =0 for £ = 1,2. Since P(z) + Q(z +¢) is a constant, so we must have b; +d; =0
for 1 < j <n. Therefore P(2) =3 7 bj2; + pand Q(2) = — 37, b;jz; + v. From (18) and
(19), we deduce that

- i bjcj+utv
le_%(ﬂ_a_z)e i=1 -1

. | (21)

From (21), we have
2
ay Ay Q4,9 Q2 Ay Q4,9 Az
=) (=20 — =0 -2 ) [+ =P+ — ) =
(%) <A1 ! ay ! al) (AQ 1+611 1+a1
2
ai Ay Q4 .o Q2 Ay aq .o a2
= (=) (=2 + =P+ =) (= — == =
(CL3> <A11+a11+a1) (A21 all a1 7
e, 1)

na (g—jbf + —) by = 0. Since (A2 — A2)/(A,As) = —2iv/T — a2 # 0, so, cither by = 0
or a4b% +ay = 0. It is clear that both b; and a4b% + as are not simultaneously zero, otherwise
we get a; = 0, which is a contradiction.

Now two different cases are possible by = 0 and a4b? + as = 0. The second case is
considered in the proof of Theorem 4.
If by = 0, then we deduce from (21) that

n n n n
2 3" bjcj 2 -2 > bjcj — > bjcitutv S bjcj—p—v
=77 _(az) _ =77 =0 _ _asKyAy iz 7 — _a3K3A;.
e = =e e = ,€ = :
as as K141 as Ko Ao (22)
i bjcj+utv S bjcj—p—v
citu _ )
ei=2 7 — _a3KsAs e i=2 7 — _a3KiA
asK3A1? azK4As”

From (11) and (12), we deduce that

> byzjtu - i bjzj—p
fiz) = \/ila <A1K1672 + AgKoe =2 ) 21+ 93(h);
. n 23
1 > bjzjtv 2 bjzj—v %)
f2(z) = V2a A1K3€ =2 + A2K46]72 21+ g4(y1)7

where g;(y1)(j = 3,4) are finite order entire functions. From (22), it is clear that ay = %as.
Using (22) and (23), we get from the second equation of (11) that

_zn: bjzj+p - z": bjzj—p
azg3(y1) + azga(y + s1) = L1 (1) Kyei= + (1) Kye =2 7

where 'y (1) (k = 1,2) are given in (9). Similarly, we deduce from the second equation of
(12) that azgs(y1) + asgs(yr + s1) = T1(1) Kge™ Zi=2 b2 4 Ty (1) K yeXi=2 b2,
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If ®4(2) (k = 1,2) is independent of 1, then we have P(2) = >"_, bjz; + ®1(z) + p and
Q(z) = >_5_ djzj + Po(z) + v, where bj, dj,p,v € C (1 <j<n and 2 < i< n)and Py(2)
(k = 1,2) is a polynomial defined in (6). Since P(z)+ @Q(z+c¢) is a constant, so we must have
bj+d; =0for 1 <j <nand ®(z) + Py(2) = 0. Therefore P(z) = Z;;l biz; + P1(2) + p
and Q(2) = —> 7 bjz; — ®1(2) + v. From (18) and (19), we again have (21) and either
by = 0 or a4b? + ay = 0. The second case is considered in the proof of Theorem 4.

If by = 0, then we have (22). Using arguments similar to those presented above, we deduce
that

3 by B =3 by ()

filz) = A= | AiKqe™ + AgKpe = +a();
_ Z bjzj—®1(2)+v Z bjzj+P1(z)—v

f2< ) \fa A1 Kze =2 + Ay Kyer=2 +h2(y1)7

where ay = taz and h;(y1)(j = 1,2) are finite order entire functions satisfying

i bjzj+®1(2)+u - fj bz —®1(z)—p
ashi(y1) + agho(yr + s1) = T'1(1) Kye7=2 + Iy(1)Kye =2 :
- i bjzj_q>1(z)+V i ijj+<I>1(z)—V
asho(y1) + aghi(yr + s1) = [1(1) Kse 7=2 + Iy(1) Kyei=2 ,
where I'y(1) (k = 1,2) are given in (9). O

Proof of Theorem 3. Let ®4(2) (k = 1,2) contain the variable z;. Taking into account
the proof of Theorem 2 we assume that a4b? + a; = 0. Then from (21) we have

n
(QZbcj 2 —2 > bjcy
e i=1 =2 ) =¢ J=! :
aib !
n
- bjci+utv bjcj—p—v
e 32:31 7 _ o asKy = — _ _a3K3 . (24>
alblK17 albll(Q7
n n
bjcij+utv — bjcj—p—v
€J§1 7 — __asKy J§1 7 — _a3Ky
\ a1b1 K3’ a1b1 Ky °

From (24), it is easy to see that ag = +a;b;. The Lagrange’s auxiliary equations [28, Chap-
ter 2| of the first equation of (11) are

% _dz dz, \/_aldfl

10 0 szﬁﬂ —Zn:bjzj—u.
A1K16] ! +A2K2€ J=1

Note that a; = z; for 2 < 7 <n and df; = ’?}Kl eX=1 bzt 4 %ff e~ o=t biziTh e,

A Kl b1z1+2 bj eﬁu A2K2 —biz1— Z bjej—p
dfy = 21,
\/_al \/—al
ALK i bjzj+u A Ky — Z bjzj—p
filz) = RS ) 2fty T .

e - e
V2a1b; V2a1b,

Note that after integration with respect to zi, replacing ay by 29,..., oy, by z,, where a; € C
for 1 < 7 < n. Hence, the solution is x (a1, as, ..., a,) = 0. For simplicity, we suppose
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A K, i bjzjtn A Ky - 2”: bjzi—p
z) = —e=! — e =t + ,
fl( ) \/5&1[)1 \/§a1b1 95(91)
where g5(y1) is a finite order entire function of 2, 23, ..., z,. Similarly, we deduce from the

first equation in (12) that

AK3 - i bjzj+v Ay Ky i bjzj—v
zZ)=— e 7=t + er=1 + )
f2( ) \/5(11()1 \/§a1b1 gG(yl)

where g6(y1) is a finite order entire function. Using (24) and representations for fi, fo given
above, we deduce from the second equation of (11) that

*fﬁbﬂrﬂ
e =t +g5(y1) | +as| —

AlKg 7]2:1 bj(zj+cj)+V+

e
\/§a1b1

——e
\/50151 \/§CL151

( A K, ibﬂ‘zﬁf‘ Ay Ko
as J=1

A2K4 Ji:l bj(zj+cj)—v

e + + s +a e
\/§a151 gﬁ(yl 1>> ! ( \/§CL1 \/5&1

AlKlbl ]é:lbjzj+/‘ B AQKle ejZi:ijZj.“>

+ f—
_Xn: bjzj+u - Xn: bjzj—p
 AyK et + Ay Kpe =1
\/§ )
K £ v A bAN\ K S S A b A
i eI= a a e I= a a
l'e"l <21+A2+411)—2 <22—A1—|—412)+
\/5 aby a1 \/§ aby a1
5> byztu ~ S bz
A2K167:1 +A1K26 i=1
+a295(y1) + azgs(yn + 51) = NG

Hence, asgs(y1) + asge(ys + s1) = 0. From (24) and representations for fi, fo given above,
using arguments similar as above, we deduce from the second equation in (12) that
asge(y1) + asgs(y1 + s1) = 0.
Let ®4(z) (k = 1,2) is independent of z;. In view of proof of Theorem 2 one has a4b?+as =
0. Then (24) is true. Using arguments similar to presented above, we deduce from (11) and
(12) that

i bizj+P1(2)+p s bjzj—P1(z)—p
fi(z) = AELe= ” L + hs(y1);
V2a1b1 V2a1b1 !
— bjzj—P1(z)+v S bjzi+P1(2)—v
falz) = —Zafae =7 + AzKa gi=i 7 + ha(y1)
\/§a1b1 \/Ealbl ’

where a3 = fa,b; and h;(y1)(j = 3,4) are finite order entire functions satisfying
aghg(yl) + a3h4(y1 + 31) = 0, a2h4(y1) + aghg(yl + 81) =0.

Proof of Theorem 4. Let

Ty (2)elHHRETD = 1 Oy (2)e QTP = (25)

Since P(z), Q(z) are non-constant polynomials, so it is clear from (25) that P(2)+Q(z+c¢) =
& and —Q(2)+ P(z+c¢) = &, where &, & € C. Therefore, we have P(z)+ P(z+2c¢) = & +&o,
which is not possible, since P(z) is a non-constant polynomial.
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Let
Qy(2)e PEFOEFD) = 1 W, ()eR@@ P+ = (26)

From (26), it is clear that —P(2) + Q(2+¢) = & and Q(z) + P(z +¢) = &4, where &3, &, € C.

Using arguments similar to those presented in the proof of Theorem 7, we get a contradiction.
Let

Q1 (2)e PEOFREFD = 1 ) (2)e”@EHPEF) = 1 (27)

Using (27), we get from (14) and (15) respectively

Ay Ky

0 P(2)—Q(z+c)
A K 1(2)e

Wy(2)eRR)—PEFe) = 1 (28)

L

From (27), it is clear that P(z) — Q(z + ¢) and Q(z) — P(z + ¢) are both constants, say &3
and &, respectively, where £3,&, € C. Now P(z) — P(z + 2¢) = (P(2) — Q(2 +¢)) + (Q(z +
¢) = P(2+2c)) =&+ & and Q(2) — Q(z+2¢) = &3+ &y Thus P(z) = Y77 bz + ®1(2) +p
and Q(z) = 77 djzj + ®(2) + v where b;, d;, v € C (1 <i <n) and ®4(z) (k =1,2) is
a polynomial defined in (6). From (27), we have

A 0P1(2) 0P1(2) ay 02®1(2) as — azK
——1(b1+ ) —a (n %) i - ms e
(d N a<1>2<z>) (d n 3‘192(Z)>2 TELC T
1

If ®(z) (k= 1,2) contain the variable z;, then by comparing the degrees on both sides
of (29), we get that deg(®x(z)) < 1 for k = 1,2. For simplicity, we still denote P(z) =
> i1 bizi +pand Q(z) = 377 djz; + v, where bj,d; € C (1 < j < n+1). This implies
that ®(z) =0 for £ = 1,2. Since P(z) — Q(z +¢) is a constant, so we must have b; = d; for
1 <j < n. Therefore P(2) =37 | bjzj +pand Q(z) = > 7_, bjz; + v, where b;, i, v € C for
1 < j < n. From (27) and (28), we obtain

/ n
bjc;—p+v
wRy (_Avpy  aspe ea; AT .
azKy e a; 1 ay ?
n
bjci+p—v
wKa Ay aap2 e J; PG 1:
Jeska \T a0 T T ) © o (30)
n
— > bjej+tp—v
a1 Ky &b _aap2  a), =1 — 1.
a3 K3 e a1 al )
n
— bjcj—p+v
ks (Asp a2 _ ax egl”u -1
\ a3 K1 e a; 1 a1

From (30), we have

Ay 2 Ay 2 2 as ?
Sl Mg T2 (L2 g B2 (D5 31
( Ay b a1 ! ) (Al b a1 Cbl) (al) ( )

By similar arguments as in the proof of Theorem 2, we obtain from (11) and (12) that

bizi+ 25
fi(z) = 21Ky ejgl T k. e J; o + g7(y1);
V2a1by N " V2a1by " !
> bjzitv bjzj—v

o) = e ™ = e B ),
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where g;(y1)(j = 7,8) are finite order entire functions satisfying asg7(y1) + asgs(y1 +s1) =0
and asgs(vy1) + aszgr(y1 + s1) = 0.

If ®4(z) (k = 1,2) is independent of z;, then, we have P(2) =37 | b;jz; + ®1(2) + p and
Q(z) = Y- djzj + ®o(2) + v, where bj,dj, p,v € C (1 < j < n)and $p(2) (k= 1,2) is
a polynomial defined in (6). Since P(z) — Q(z + ¢) is a constant, so we must have b; = d;
for 1 < j < nand ®(2) = ®y(z). Therefore P(2) = 377 bjz; + ®1(2) + p and Q(2) =
> i1 bjzj + ®1(2) + v, where bj, p,v € C for 1 < j < n. By similar arguments as above in
the case ®x(z) (k= 1,2) contain the variable z;, we again obtain (30), (31) and

o~

3 by @1 (2) 41 3 bz —®1(2)—p

fi(z) = \Aflffél et \1/43;1(;16 = + hs(y1);
i bjzj+®1(z)+v — i bjzj—P1(z)—v

f2(z) - \?1;1(216 = \1/452;1(1;116 = + h6(y1)7

where h;(y1)(j = 5,6) are finite order entire functions satisfying ashs(y1) +ashe(yr +s1) =0
and ashe(y1) + ashs(yr + s1) = 0. O

Proof of Theorem 5. Let (fi, f2) be a pair of finite order transcendental entire functions
satisfies the system (8). Using arguments similar to those presented in Theorem 1, we get

( N
Z CLj 3](;12(;) = \/Lﬁ (A1K1€P(Z) + AQKQG_P(Z)) i
j=1

anJFlfl( ) + an+2f2(2 + C) - \/L» (A2K1€P(z) —+ A1K26_P(z)) ;
Z a] 0fa(z — (A1K3€Q + A2K4€ Q(z)) .

Z

\an+1f2( 2) + anyafi(z +c) = <A2K3€Q + A Kyem @ )) ;

where Ky, Ky, K3, Ky € C\ {0} such that K1 Ky = 1 = K3K,, P(2),Q(z) are polynomials
on C" and A;, A, are given in (9). The following cases arise.
Let P(z),Q(z) be simultaneously constants. Then from (32), we have

> q GQZ( Dt hi() + a4 ©) = 1, (33)
j=1 /
Z a; (9];22(2) =73 An1f2(2) + angafi(z +¢) =, (34)
=1 !

where ; € C for 1 < j < 4 such that 7§ + 2av172 + 793 = 1 and 73 + 209371 + 73 = 1. The
Lagrange’s auxiliary equations of the first equation of (33) are

dzy dz dzs  dz,  dfi(2)

ai Qg as Qn T '
Note that z; = (a; + aj21)/ay for 2 < j < n and df1(z) = (y1/a1)dz, implies that fi(z) =
(71/a1)z1 + aq, where o; € C for 1 < j < n. Hence the solution is x (a1, g, ..., a,) = 0. For
simplicity, we suppose f1(z) = (71/a1)z1 + hi1(y), where hy(y) is a finite order transcendental
entire function of a;ze — as21,...,a12, — a,z1. In view of this, we deduce from the first

equation of (33) that » 7, ]dfg( Y = .
Using arguments similar as above we deduce from the first equation of (34) that

fo(2) = (3/a1)z1 + ha(y), (35)
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8h()
20 = o,

Using (35) and the representation fi(z) = (v1/a1)z1 + hi(y) we get from the second equation
of (33) that

where hs(y) is a finite order transcendental entire function satisfying > " =1 @

(an+171 + an+273)21/a1 + an—i—lhl(y) + an+2h2(y + 3) + (%+2C173)/a1 = Y2- (36>

Comparing both sides of (36), we get a, 1171 + anioys = 0, any1h1(y) + ani2he(y+s) = 0 and
An+2C1Y3/a1 = 7y2. Similarly, by using (35) and the representation fi(z) = (v1/a1)z1 + hi(y),
we get from the second equation of (34) that a,17v3+ani2m = 0, ani1he(y)+ani2hi(y+s) =
0 and a,2¢171 /a1 = 7y4. Similarly, as in proof of Theorem 1, we deduce that

z
Uny1 = Fani2, [1(2) = 2 + ha(y)
a1 — 2aaiap4101 + aan

and fo(z) = = + ho(y), where h;(y) (j = 1,2) are finite order transcen-

\/af 2aa1an+1cl+an+lcl

Oh;(y) — ‘ O

dental entire functions with periods 2s satisfying » ,_, ax o

Proof of Theorem 6. Let either P(z) or Q(z) be a constant. Repeating arguments from
proof of Theorem 2 in the same case, we get a contradiction.

Let P(z),Q(z) be both non-constant polynomials. Now differentiating partially with
respect to z;(1 < j < n) on both sides of the second equation in (32) and summarizing
them in j we get

"9 "0 A K — A Ke PO I oP
an+12 J fl(Z)jL nHZ ) f2(z+0) 2 Kye” 1Kse™ Zaﬂ‘ (2)_

a,————=+a a
= 8zj =1 8zj \/5 =1 8zj
Applying (32) to the last equation we deduce that
ALK
\1,3(2)6P(Z)+Q(z+c) + Q3(Z)e—P(Z)+Q(Z+c) _ AlKg e2Qte) = 1 (37)
248y
n O0P(z L OP(z
where Ws(2) = 3 8 ( 0 @)% — Ahanen ) and 9(:) =5 28 (3 0 %5+ fann)
By using arguments similar as above, we deduce from (32) that
AK
\1,4(2)6Q(z)+P(z+c) + Q4(Z)efQ(z)+P(z+c) . AlKl 2P(z+c) =1, (38)
2189
n 0Q(z n z
where Uy(2) = ani3K2(Zj:1 a; gz( ) f‘;anﬂ) Q(z) = —%(Z] 1G5 8; )+A2an+ ).

Using arguments similar to those presented above in proof of Theorem 2 and in view of

Lemma 1, we obtain from (37) and (38) respectively
Wy(2)elBHRETD =1 or  Qy(2)e PETQETD =

and either
Wy(2)eQ@HPERD =1 or  Qy(z)e @R = 1
Let
Wy(z)el@HQETD = 1 @y (2)eQ@HPET) = 1 (39)
Using (39), we get from (37) and (38) respectively that
0 (2)-Q(z+0) = q 0 Q(z)=P(z+e) — 1 40

From (39), it is clear that P(z) 4+ Q(z+c¢) and Q(z)+ P(z+c¢) are both constants, say & and
& respectively, where &1, & € C. By using arguments similar to those presented in the proof
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of Theorem 2, we have P(2) = 37 bjz; + ®1(2) + pand Q(z) = Y7, djz; + $2(2) + v,
where b;,d;, p,v € C (1 <i <n)and ®y(z) (k =1,2) is a polynomial defined in (6). From
(39), we have

- 09,(2)\ A _ oKy o ¢ 0Ps(2)\ A Y O
Zaj <b‘7+a—2]>_A_2an+1 = Tle 1, ZU,] (d]+ >—A—2an+1 = TSB 2,

=1

Since a; # 0 for all j = 1,2,...,n, by comparing the degrees on both sides of the last
equations, we get that deg(®.(z)) < 1 for k£ = 1,2. For simplicity, we still denote P(z) =

> i bizjtpand Q(z) = 3°7, djzj+v, where bj, dj, i, v € C (1 < j < n). This implies that
Py (2) =0 for k =1,2. Since P(z) + Q(z + ¢) is a constant, so we must have b; + d; = 0 for
1 <j <n. Therefore P(z) =37 bjz; + pand Q(2) = — Y7, bjz; + v, Where bj,u, veC
for 1 < j <n. From (39) and (40), we have

/ n
— > bjcjtptv
j=1 — 1.
n Z bjcj+p+v
Jj=1 pnd N
an+2K2 Z ] A2 A, 0nt1 | € L;

n Z:bcJ n—v
an+2K3 z_: anH ei=1 =1;

- i bjc;—p—v
Ky j=1 —
an42K1 ( Z ajb + (ln+1> =1

\

From the last system we deduce that
. A - Ag - Ay . A
(Z ajbj — A—:an+1> (Z (ljb + A an+1> = (Z ajb + A an+1> <Z ajbj — A—ian+1> s
Jj=1 Jj=1 Jj=1 j=1
ant1(A3-A3)

ie., T&(albl + agby + -+ -+ apb,) = 0. Hence, aiby + agby + - - - + a,b, = 0. Also, that
system implies

( i i
2 bjc; 2 -2 bjc;
~ _ [ ant2 _ - .
e J 1 — (a,n_+> =e Jj=1 ;
n+1
n n
67 ]_;1 bjcitutv _ aniaKads ejgl bjcj+ptv _ anasKods.
. an+1K1417 7 ant1K3A1?
ejgl bjcj—p—v _ anaKsdy e_jgl bjej—p—v _aniaKaAr
\ an+1K2A2 ’ an+1K4A2 ’

Hence, it is clear that a,1 = *a,,2. The Lagrange’s auxiliary equations [28, Chapter 2| of
the first equation of (32) are

dzy  dz  dz _dz, V2dfy(2)

- - n . . p— n . PR *
ai as as Qap, AlKlezjzl bjzj+u + A2K26 2 j=1bjzi—p

Note that z; = (a; + a;z1)/ay for 2 < 57 < n, Y0 bpzi = bizi + >y by <M> =

al
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(bl + 2222 akbk/al) 21 + ZZ:Q Oékbk/(ll = 2222 akbk/al and

A K E bjzjtu A Ky — 3 biz—n
dfy = 18 dzy 2ol "5
\/_al \/_a1
A K, Z ajbj/a1+p A2K2 Z aybj/a1—p
= ei=2 d j=2

Z1 =

= <1,
\/§a1 \/_Cll '
that is, n n
A K S bjzitp A K. — S bjzi—u
filr) = B em T 222 ST
V2a, V2a,
where a; € C for 1 < j < n. Hence, the solution is x(ay, as, ..., a,) = 0. For simplicity, we
suppose
z 2 bizjtu - Xni bjzj—p
fl(z> = \/ila <A1K1€J ! A2K26 j=t ) + hg (y), (41)
1
where 3 (y) is a finite order entire function satisfying Y "_; a; mg’;(y) = 0. Similarly, from the
third equation of (32), we obtain
1 — Z bjzj+v E bjzj—v
fg(Z) = \/ﬁa (Alng J=1 ’ -+ A2K4€J 1 > 21+ h4(’y), (42)
1
where hy(y) is a finite order entire function satisfying > 7, a; 8}542 = 0. Using (41) and

(42), we deduce from the second and fourth equations of (32) that

ib-z-ﬁ-u —zn:b-z-—u
Ani1hs(y) + anpoha(y + 8) = Ti(n)Kie=t | +To(n)Kee =4
— i ijj-i-ll i ij]'—l/

ant1ha(y) + anohs(y +s) =i(n)Kze = + Ty(n) Kyei=" :
where I'y(n) and I's(n) are given in (9). O

Proof of Theorem 7. Let W (2)e’®+@G+9) = 1 and Qy(2)eQ@+PE+e) = 1. Repeating
arguments similar to the proof of Theorem 2, we get a contradiction.

Suppose that Q(2)e P#+Q(E+e) = 1 and Wy(2)eQ#+F(E+e) = 1. Using arguments similar
to those presented in the proof of Theorem 3, we get a contradiction.

Let

Oy (2)e PEOTRED) = 1 ) (2)e~@EHPE) = (43)

Using (43), we get from (37) and (38) respectively that

A Ky

M () PG -QE+) — 1
A1K3 1(2)6 )

My (z)eQ@ =P+ = (44)

Using arguments similar to those presented in Theorem 6, we deduce that P(z) =

Y bjzj + poand Q(z) = > bjz; + v, where bj,u,v € C for 1 < j < n. From (43) and
=1 j=1
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(44), we have

_% 2 -1 aibi + i—fanﬂ eX=1 itV — 1.
_anf;% Z?:l ajbj + i_fan-&-l 62?:1 bjcj+pu—v _ 1;
anfzz—fst S aby — Grang ) e” i bicitu-v _ 1.
L anf;% 2?21 ajb; — %anﬂ e~ Lj=1bici—pty 1
Hence, it is easy to see that
n n
Z ajbj + j_janJrl Z Cijj — i—;an+1 — —CL721+2. (45>
=1 =

If apy1 = Layio, then from (45), we get Z;L:1 a;jb; = 0 and hence we obtain the same
conclusions as in the proof of Theorem 6. Therefore, we consider that a,.1 # £a,.2. By
using similar arguments as in the proof of Theorem 6, from the first and third equations of
(32), we get

fi(z) = m (A1K162?:1 biFith Ay Koe™ 2=t bjzj_u) + hs(y);

_— _— (46)
£2(2) = sty (ArKoeX5m bt — Ay Ky 2™ ) o h(y),
where h;(y) (j = 5,6) are finite order entire functions satisfying y ,_, aj 82{; iy) = 0. Using

(45) and (46), we deduce from the second and fourth equations of (32) that a,1hs5(y) +
aniohe(y+s) =0 and  a,i1he(y) + ansahs(y +s) = 0. O
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