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The paper presents various derivatives of set-valued mappings, their main properties and
how they are related to each other. Next, we consider Cauchy problems with linear homogeneous
set-valued differential equations with different types of derivatives (Hukuhara derivative, PS-
derivative and BG-derivative). It is known that such initial value problems with PS-derivative
and BG-derivative have infinitely many solutions. Two of these solutions are called basic. These
are solutions such that the diameter function of the solution section is a monotonically increasi-
ng (the first basic solution) or monotonically decreasing (the second basic solution) function.
However, the second basic solution does not always exist. We provide conditions for the exi-
stence of basic solutions of such initial value problems. It is shown that their existence depends
on the type of derivative, the matrix of coefficients on the right-hand and the type of the initial
set. Model examples are considered.

1. Introduction. The set-valued differential, integral and discrete-time equations and inclusi-
ons are an important part of the theory of set-valued analysis, and they are high-valued for
the control theory and its applications, as well as for fuzzy differential equations. They were
first introduced in 1969 by F. S. de Blasi and F. Iervolino [7]. Later, set-valued differential
equations have been studied by many scientists due to their applications in many areas. A lot
of results on the theory of set-valued differential, integral and discrete-time equations and
inclusions can be found in the following books and papers [11, 16, 17, 20, 21, 24, 29, 31, 36, 41]
and references therein.

In this paper first we consider some definitions of the derivative of a set-valued mapping
(Hukuhara derivative [13], Plotnikov-Skripnik derivative [32] and Bede-Gal derivative [2,
25, 26, 43, 44]) and some of their properties. Next, we consider a linear homogeneous set-
valued differential equation with different types of derivatives (Hukuhara derivative, PS-
derivative and BG-derivative). In [18,19] it is proved that the Cauchy problem for differential
equations with PS-derivative and BG-derivative has infinitely many solutions. Two of these
solutions are called basic: solutions such that the diameter function of the solution section is
a monotonically increasing (the first basic solution) or monotonically decreasing (the second
basic solution) function. However, the second base solution does not always exist. Here we
will justify the conditions for the existence of basic solutions of such initial value problems
and show that their existence depends on the type of derivative, the matrix of coefficients
on the right side and the type of the initial set.
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2. Preliminaries. In this section we recall some results from the literature that are of
interest for our paper.

Let R be the set of real numbers and Rn be the n-dimensional Euclidean space (n ≥ 2).
Denote by conv (Rn) the set of nonempty compact and convex subsets of Rn with the
Hausdorff metric

h(X, Y ) = max
{
sup
x∈X

inf
y∈Y

∥x− y∥, sup
y∈Y

inf
x∈X

∥x− y∥
}
,

where X, Y ∈ conv (Rn), ∥ · ∥ denotes the Euclidean norm.
In addition to the usual set-theoretic operations, we introduce two operations in the space

conv (Rn): the sum of the sets, the product of the scalar on the set and the operation of the
product of the matrix on the set:

X + Y = {x+ y : x ∈ X, ∨ y ∈ Y }, λX = {λx : x ∈ X}, AX = {Ax : x ∈ X},

where λ ∈ R, A ∈ Rn×n.
The following theorem will be used further:

Theorem 1 ([10, 12]). For any real (n × n)-matrix A there exist two orthogonal (n × n)-
matrices U and V such that UTAV = Σ, where Σ is a diagonal matrix. We can also choose
matrices U and V such that the diagonal elements of the matrix Σ satisfy the condition
σ1 ≥ σ2 ≥ ... ≥ σr > σr+1 = ... = σn = 0, where r is the rank of the matrix A. That is, if A
is a nondegenerate matrix, then σ1 ≥ ... ≥ σn > 0.

Therefore, this matrix A can be represented as A = UΣV T . This decomposition is called
a singular decomposition. Columns u1, ...,un of matrix U are called the left singular vectors,
columns v1, ...,vn of matrix V are called the right singular vectors, and the numbers σ1, ..., σn
are called the singular numbers (s-numbers) of the matrix A.

One can easily prove the following proposition.

Proposition 1. If a matrix A ∈ R2×2 is such that A =

(
a b
c d

)
then

σ1 =

√
(a2 + b2 + c2 + d2 +

√
F )/2, σ2 =

√
(a2 + b2 + c2 + d2 −

√
F )/2,

where F = (a2 + b2 − c2 − d2)2 + 4(ac + bd)2. Consequently, if F = 0, then the singular
numbers σ1 and σ2 of the matrix A coincide and are equal to

√
(a2 + b2 + c2 + d2)/2.

Let A ∈ Rn×n and Br(c) = {x ∈ Rn : ∥x − c∥ ≤ r} is the closed ball of radius r > 0
centered at the point c ∈ Rn. By [10], if rank(A) = k, then the set Y = AB1(0) is a
k-dimensional ellipsoid, its axis lengths are equal to the corresponding singular numbers of
the matrix A, where 0 = (0, ..., 0)T is the zero vector. Also, if rank(A) = n, then

Bσn(0) ⊂ Y ⊂ Bσ1(0),
where Bσn(0) is the inscribed ball in the set Y (i.e. the largest ball Br(0) that can fit inside
the set Y ), Bσ1(0) is the smallest circumscribed ball of the set Y (i.e. the smallest ball Br(0),
such that Y ⊆ Br(0)).

It is also easy to see that if A is an orthogonal matrix, then ABr(0) ≡ Br(0) for all r > 0.

Lemma 1 ([38]). The following properties hold: 1) (conv (Rn), h) is a complete metric space;
2) h(X + Z, Y + Z) = h(X, Y ); 3) h(λX, λY ) = |λ|h(X, Y ) for all X, Y, Z ∈ conv (Rn) and
λ ∈ R.
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However, conv (Rn) is not a linear space because it does not contain inverse elements
for the addition, and therefore the difference is not well defined, i.e. if X ∈ conv (Rn) and
X ̸= {x}, then X + (−1)X ̸= {0}. As a consequence, alternative formulations for difference
have been suggested [3,13,30,38,40]. One of these alternatives is the Hukuhara difference [13].

Let X, Y ∈ conv (Rn). A set Z ∈ conv (Rn) such that X = Y + Z is called a Hukuhara
difference (H-difference) ( [13]) of the sets X and Y and is denoted by X H Y.

Obviously, X HY ̸= X + (−1)Y. In this case X HX = {0} and (X + Y )HY = X for any
X, Y ∈ conv (Rn). Properties of this difference are studied in details in [13,17,20,29,31,36,
38, 40]. M. Hukuhara introduced the concept of H-differentiability for set-valued functions
by using the H-difference [13].

Let X : [0, T ] → conv (Rn) be a set-valued mapping; (t0 − ∆, t0 + ∆) ⊂ [0, T ] be a
∆-neighborhood of a point t0 ∈ [0, T ]; ∆ > 0. For any ρ ∈ (0,∆) consider the following
Hukuhara differences X(t0 + ρ) H X(t0) and X(t0)

H X(t0 − ρ) if these differences exist.
We say that the mapping X : [0, T ] → conv (Rn) has Hukuhara derivative (H-derivative)

([13]) DHX(t0) at a point t0 ∈ (0, T ), if there exists an element DHX(t0) ∈ conv (Rn) such
that the limits

lim
ρ→0+

ρ−1(X(t0 + ρ)
H
X(t0)) and lim

ρ→0+
ρ−1(X(t0)

H
X(t0 − ρ))

exist in the topology of conv (Rn) and are equal to DHX(t0).
If H-derivative DHX(t) exists for all t ∈ (0, T ) and the limits

lim
ρ→0+

ρ−1(X(ρ)
H
X(0)) and lim

ρ→0+
ρ−1(X(T )

H
X(T − ρ))

exist, then we say that the set-valued mapping X(·) is H-differentiable on [0, T ].
The properties of the Hukuhara derivative are obtained in [8, 17, 29, 31, 36, 38]. Here, we

mention some of them.

Theorem 2 ([13]). If the mapping X : [0, T ] → conv (Rn) is H-differentiable on [0, T ], then
X(t) = X(0) +

∫ t

0
DHX(s)ds, where the integral is understood in the sense of [13].

Corollary 1. If the mapping X(·) is H-differentiable on [0, T ], then function diam(X(·)) is
a non-decreasing function on [0, T ], where diam(X(t)) = max

x,y∈X(t)
∥x− y∥.

Corollary 2. If the function diam(X(·)) is a decreasing function on [0, T ], then the mapping
X(·) is not H-differentiable on [0, T ].

Later, T.F. Bridgland introduced the concept of a derivative for set-valued mappings
without using the Hukuhara difference and considered its properties [8].

We say that the mapping X : [0, T ] → conv (Rn) has Huygens derivative DBX(t0) ([8])
at a point t0 ∈ (0, T ), if there exists an element DBX(t0) ∈ conv (Rn) such that

lim
ρ→0+

ρ−1h(X(t0 + ρ), X(t0) + ρDBX(t0)) = 0,

lim
ρ→0+

ρ−1h(X(t0), X(t0 − ρ) + ρDBX(t0)) = 0.

A similar derivative was later considered in [6,14,15,22,27,28,36]. The examples can be
constructed where the Huygens derivative exists, but the Hukuhara derivative does not exist
(see [6,36]). However, if the diameter of the set-valued mapping is a decreasing function, the
Huygens derivative also does not exist [8, 36].

The last drawback of these derivatives significantly impairs the possibility of using these
derivative for modeling applied processes. Later, to overcome the shortcomings of this app-
roach, other types of differences and derivatives for set-valued mappings were considered:
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π-derivative [3, 42] and T-derivative [30, 31, 36]. However, difficulties arose in writing the
corresponding set-valued differential equation with these derivatives.

Later, A. V. Plotnikov and N. V. Skripnik took advantage of some approaches that were
used in [30] and introduced a new definition of a derivative, which eliminated the main
drawback of the Hukuhara derivative.

Let X : [0, T ] → conv (Rn) and t ∈ (0, T ). We say that X(·) has a PS-derivative
DpsX(t) ∈ conv (Rn) at t ∈ (0, T ) ([32]), if for all ρ > 0 that are sufficiently close to 0,
the H-differences and the limits exist in at least one of the following expressions:
(i) lim

ρ→0
ρ−1(X(t+ ρ) H X(t)) = lim

ρ→0
ρ−1(X(t) H X(t− ρ)) = DpsX(t),

(ii) lim
ρ→0

ρ−1(X(t) H X(t+ ρ))=lim
ρ→0

ρ−1(X(t− ρ) H X(t))=DpsX(t),

(iii) lim
ρ→0

ρ−1(X(t+ ρ) H X(t)) = lim
ρ→0

ρ−1(X(t− ρ) H X(t)) = DpsX(t),

(iv) lim
ρ→0

ρ−1(X(t) H X(t+ ρ))=lim
ρ→0

ρ−1(X(t) H X(t− ρ))=DpsX(t).

Properties of the PS-derivative are obtained in [18,19,32–35]. Here, we mention some of
them.

Remark 1 ([32]). If the set-valued mappingX(·) is H-differentiable then it is PS-differentiable
and DpsX(t) = DHX(t).

Remark 2 ([32]). If the set-valued mappingX(·) is PS-differentiable on [0, T ] and diam(X(·))
is a non-decreasing function on [0, T ] then the set-valued mapping X(·) is H-differentiable
and DpsX(t) = DHX(t).

Remark 3 ( [32]). There exist set-valued mappings that are PS-differentiable but not
H-differentiable.

Theorem 3 ([32]). If the mapping X : [0, T ] → conv (Rn) is PS-differentiable on [0, T ], then
for all t ∈ [0, T ] :

(i) if the function diam(X(t)) is a non-decreasing function on [0, T ], then:

X(t) = X(0) +

∫ t

0

DpsX(s)ds;

(ii) if the function diam(X(t)) is a decreasing function on [0, T ], then

X(t) = X(0)
H

∫ t

0

DpsX(s)ds.

Simultaneously, M. T. Malinowski [25, 26], H. Vu and L. S. Dong [43], H. Vu and
N. Van Hoa [44] and Ş. E. Amrahov, A. Khastan, N. Gasilov and A .G. Fatullayev [2]
adapted the concept of the Bede-Gal derivative [4, 39] for interval-valued mappings on set-
valued mappings.

Definition 1 ([2, 43]). Let X : [0, T ] → conv (Rn) and t ∈ (0, T ). We say that X(·) has a
BG-derivative DbgX(t) ∈ conv (Rn) at t ∈ (0, T ), if for all ρ > 0 that are sufficiently close
to 0, the H-differences and the limits exist in at least one of the following expressions:
(i) lim

ρ→0
ρ−1(X(t+ ρ) H X(t)) = lim

ρ→0
ρ−1(X(t) H X(t− ρ)) = DbgX(t),

(ii) lim
ρ→0

(−ρ)−1(X(t) H X(t+ ρ))=lim
ρ→0

(−ρ)−1(X(t− ρ) H X(t))=DbgX(t),

(iii) lim
ρ→0

ρ−1(X(t+ ρ) H X(t)) = lim
ρ→0

(−ρ)−1(X(t− ρ) H X(t)) = DbgX(t),

(iv) lim
ρ→0

(−ρ)−1(X(t) H X(t+ ρ))=lim
ρ→0

ρ−1(X(t) H X(t− ρ))=DbgX(t).
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Remark 4. In [25,26] M. T. Malinowski considered set-valued mappings that satisfy condi-
tion (ii) and called this derivative the second type Hukuhara derivative.

Remark 5 ([2, 43]). If the set-valued mapping X(·) is H-differentiable on [0, T ] it is BG-
differentiable on [0, T ] and DbgX(t) = DHX(t).

Remark 6 ([2, 43]). If the set-valued mapping X(·) is BG-differentiable on [0, T ] and the
function diam(X(·)) is a non-decreasing function on [0, T ] then the set-valued mapping X(·)
is H-differentiable and DbgX(t) = DHX(t).

Remark 7 ( [2, 43]). There exist set-valued mappings that are BG-differentiable but not
H-differentiable.

Theorem 4 ([2]). If the mapping X : [0, T ] → conv (Rn) is BG-differentiable on [0, T ], then
for all t ∈ [0, T ] :

(i) if the function diam(X(t)) is a non-decreasing function on [0, T ], then

X(t) = X(0) +

∫ t

0

DbgX(s)ds;

(ii) if the function diam(X(t)) is a decreasing function on [0, T ], then

X(t) = X(0)
H

(−1)

∫ t

0

DbgX(s)ds.

Remark 8. By Remarks 1 and 5, if the set-valued mapping X(·) is H-differentiable on [0, T ]
then it is BG-differentiable on [0, T ] and PS-differentiable on [0, T ] as well as DHX(t) =
DpsX(t) = DbgX(t).

Remark 9 ([18, 19]). There exist set-valued mappings X(·) such that DbgX(t) ̸= DpsX(t)
for any t.

3. Initial value problem with linear set-valued differential equations. In this section,
we consider the Cauchy problem

DX(t) = AX(t), X(0) = X0, (1)

where A ∈ Rn×n is a nondegenerate matrix, X : [0, T ] → conv (Rn) is a set-valued mapping,
DX(t) is one of the previously considered derivatives (DHX(t), DpsX(t), Dbg(t)) of the set-
valued mapping X(t), n ≥ 2.

Definition 2. A set-valued mapping X(·) is called a solution of problem (1) if it is conti-
nuously differentiable and satisfies system (1) everywhere on [0, T ].

Remark 10. In paper [18] a differential equation DX = aX, X(0) = X0 was considered,
where a is a real number.

As known, the Cauchy problem with differential equation with Hukuhara derivative

DHX(t) = AX(t), X(0) = X0 (2)

has a unique solution on the interval [0, T ] ( [29, 31]). It is also obvious that the function
diam(X(t)) is a non-decreasing function on [0, T ].
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Remark 11. The solution of problem (2) is a solution of the integral equation

X(t) = X0 +

∫ t

0

AX(s)ds, t ∈ [0, T ]

and vice versa.

Remark 12 ([7, 29, 31]). If A = aE then X(t) = eatX0 for all t ∈ [0, T ], where a ≥ 0 is a
number, E is the identity matrix.

Now, we consider the Cauchy problem (1) with linear differential equation with PS-
derivative and BG-derivative. By [2,32–35], this initial value problem has at least one soluti-
on. Moreover, one of these solutions (the one whose diameter is a non-decreasing function)
coincides with the solution of the corresponding problem (2).

We will show it by the following example.

Example 1. Let
DX(t) = AX(t), X(0) = B1(0), t ∈ [0, 1], (3)

where A ∈ R2×2 such that A =

(
a cos(ϕ) −a sin(ϕ)
a sin(ϕ) a cos(ϕ)

)
, a ∈ R and ϕ ∈ [0, 2π) are numbers

and a ̸= 0, X : [0, 1] → conv (R2) is a set-valued mapping, DX(t) is one of the previously
considered derivatives (DHX(t), DpsX(t), Dbg(t)) of the set-valued mapping X(t).

Obviously, the matrix A is such that A = aR(ϕ), where a is the number, R(ϕ) is the
rotation matrix. In this case, the singular values of the matrix A are equal to each other for
any a and ϕ and σ1 = σ2 = |a|. By [10,38] we have

AB1(0) = aR(ϕ)B1(0) = |a|B1(0) = B|a|(0).
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Figure 1: a = 2, X1(t), t ∈ [0, 1]
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Figure 2: a = 2, X2(t), t ∈ [0, 1]

Hence, the set-valued mapping X(t) = Be|a|t(0) is a solution of the Cauchy problem (3)
with Hukuhara differential equation (see Figure 1). This can be verified by substituting
X(t) = Be|a|t(0) into system (3), i.e

DHX(t) = AX(t) =⇒ DHBe|a|t(0) = ABe|a|t(0) =⇒

DH(e
|a|tB1(0)) = aR(ϕ)Be|a|t(0) =⇒ d(e|a|t)

dt
B1(0) = |a|Be|a|t(0) =⇒

|a|e|a|tB1(0) ≡ |a|e|a|tB1(0) and X(0) = Be|a|0(0) ≡ B1(0).
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Also the set-valued mapping X1(t) = X(t) is a solution of the Cauchy problem (3) for the
differential equation with the PS-derivative and the Cauchy problem (3) for the differenti-
al equation with the BG-derivative and is called the first basic solution (see Figure 1).
Consequently, the function diam(X1(t)) is an increasing function on [0, 1].

The set-valued mapping X2(t) = Be−|a|t(0) is a solution of the Cauchy problem (3) for the
differential equation with the PS-derivative and the Cauchy problem (3) for the differential
equation with the BG-derivative and is called the second basic solution (see Figure 2).
Consequently, the function diam(X2(t)) is a decreasing function on [0, 1]. By [2, 32], the
second basic solution X2(·) is also a solution of the corresponding integral equation:

Xps
2 (t) = X0

H
∫ t

0
AXps

2 (s)ds or Xbg
2 (t) = X0

H (−1)
∫ t

0
AXbg

2 (s)ds.

Let us prove thatX2(t) = Be−|a|t(0) is a solution of the Cauchy problem (3) for the differential
equation with the PS-derivative and differential equation with the BG-derivative:

PS-derivative BG-derivative

X0
H

t∫
0

AXps
2 (s)ds = X0

H (−1)
t∫
0

AXbg
2 (s)ds =

B1(0)
H

t∫
0

ABe−|a|s(0)ds = B1(0)
H (−1)

t∫
0

ABe−|a|s(0)ds =

B1(0)
H

t∫
0

aR(ϕ)Be−|a|s(0)ds = B1(0)
H (−1)

t∫
0

aR(ϕ)Be−|a|s(0)ds =

B1(0)
H

t∫
0

|a|e−|a|sdsB1(0) = B1(0)
H

t∫
0

|a|e−|a|sdsB1(0) =

= B1(0)
H (

1− e−|a|t)B1(0).

Hence e−|a|tB1(0) = B1(0)
H
(
1− e−|a|t)B1(0) =⇒ e−|a|tB1(0) +

(
1− e−|a|t)B1(0) =

B1(0) =⇒
(
e−|a|t + 1− e−|a|t)B1(0) = B1(0) =⇒ B1(0) ≡ B1(0)
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Figure 3: a = 2, Y1(t), t ∈ [0, 1]
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Figure 4: a = 2, Y2(t), t ∈ [0, 1]

We also note that set-valued mappings

Y1(t) =

{
Be|a|t(0), t ∈ [0, 0.5];

Be|a|(1−t)(0), t ∈ [0.5, 1]
and Y2(t) =

{
Be−|a|t(0), t ∈ [0, 0.5];

Be|a|(t−1)(0), t ∈ [0.5, 1]
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are the solutions of the Cauchy problem (3) for the differential equation with the PS-
derivative and differential equation with the BG-derivative (see Figure 3 and Figure 4).

Also we note that the solution Y1(·) is a solution of the integral equations

(PS-derivative) Y1(t) = X0 +

∫ m(t)

0

AY1(s)ds
H
θ(t− 0.5)

∫ l(t)

0.5

AY1(s)ds,

and

(BG-derivative) Y1(t)=X0 +

∫ m(t)

0

AY1(s)ds
H

(−1)θ(t− 0.5)

∫ l(t)

0.5

AY1(s)ds,

where t ∈ [0, 1], m(t) = min{t, 0.5}, l(t) = max{t, 0.5}, θ(t) is the Heaviside function.
Similarly, the solution Y2(·) is a solution of the integral equations

(PS-derivative) Y2(t) =X0
H
∫ m(t)

0

AY2(s)ds+ θ(t− 0.5)

∫ l(t)

0.5

AY2(s)ds,

and

(BG-derivative) Y2(t) =X0
H
(−1)

∫ m(t)

0

AY2(s)ds+ θ(t− 0.5)

∫ l(t)

0.5

AY2(s)ds.

Obviously, in this example, there are infinitely many such solutions. These solutions will
be called mixed solutions. For these mixed solutions Y (·), the diameter function diam(Y (·))
is not increasing or decreasing over the entire interval.

It is obvious that if a = 0, then the Cauchy problem (3) for the differential equation
with Hukuhara derivative, the differential equation with PS-derivative and the differential
equation with BG-derivative will have the unique solution X(t) = B1(0).

Remark 13. Note also that in this example, the shape of the section of the solutions
corresponds to the shape of the original set, and the dimensions of the section of the solution
do not depend on the parameter ϕ.

However, if A =

(
a cos(ϕ) −b sin(ϕ)
b sin(ϕ) a cos(ϕ)

)
, a, b ∈ R and ϕ ∈ [0, 2π) are numbers, then the

singular values of the matrix A are equal to each other for any a, b and ϕ and σ1(a, b, ϕ) =
σ2(a, b, ϕ) =

√
a2 cos2(ϕ) + b2sin2(ϕ). Therefore, the matrixA can be written as σ1(a, b, ϕ)R(ψ),

where ψ = arccos
(

a cos(ϕ)
σ1(a,b,ϕ)

)
. Obviously, the set-valued mappings X1(t) = eσ1(a,b,ϕ) tB1(0) and

X2(t) = e−σ1(a,b,ϕ) tB1(0) are basic solutions of the Cauchy problem (3) for the differential
equation with the PS-derivative and the Cauchy problem (3) for the differential equation
with the BG-derivative. In this case, the size of the section of the solutions will depend on
a, b and ϕ.

Remark 14. In this example, we have

1) X0 = (−1)X0 =⇒ X0
H (−1)X0 = {0} [19];

2) as X0 = (−1)X0 and AX0 = σ1X0, then there exists an α > 0 such that H-differences
X0

H αAX0 and X0
H α(−1)AX0 exist [19].

Also, we note that solutions of differential equations with PS-derivative will be solutions
of the differential equation with BG-derivative and vice versa.

Remark 15 ( [19]). If H-difference X0
H (−1)X0 exists, then
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1) if H-differenceX0
HαAX0 exists, then H-differenceX0

Hα(−1)AX0 exists and vice versa;

2) if H-difference X0
HαAX0 does not exist, then H-difference X0

Hα(−1)AX0 does not
exist and vice versa.

Next, will look at an example when X0
H (−1)X0 = {g}, but g ̸= 0 (X0 ̸= (−1)X0) and

there exists an α > 0 such that H-differences X0
H αAX0 and X0

H α(−1)AX0 exist.

Example 2. Let A =

(
1 −1/2
1/2 1

)
, b = (1, 1)T and

DX(t) = AX(t), X(0) = B1(b), t ∈ [0, 1], (4)

It is easy to check that the singular values σ1, σ2 of the matrix A are equal to
√
1.25 ≈

1.118 and the matrix A can be represented as
(
1.118 cos(ϕ) −1.118 sin(ϕ)
1.118 sin(ϕ) 1.118 cos(ϕ)

)
, where ϕ ≈

26.6◦. Hence, the system (4) has two basic solutions (see Example 1).
The set-valued mappings Xps

1 (·) and Xps
2 (·) are basic solutions of the Cauchy problem

(4) for the differential equation with PS-derivative (see Figure 5 and Figure 6).
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Figure 5:
Xps

1 (t) = Be1.118t(e
1.118t), t ∈ [0, 1]
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Figure 6:
Xps

2 (t) = Be−1.118t(e−1.118t), t ∈ [0, 1]

The set-valued mappings Xbg
1 (·) and Xbg

2 (·) are basic solutions of the Cauchy problem
(4) for the differential equation with BG-derivative (see Figure 7 and Figure 8).

Obviously, in this example, we have two different second basic solutions (see Figure 6
and Figure 8). This is true because X0 = B1(b) ̸= (−1)X0 = (−1)B1(b) = B1((−1)b), but
the H-difference X0

H (−1)X0 exists and is equal to {2b}.

Remark 16. In this case, the Cauchy problem (1) for the differential equation with PS-
derivative and the Cauchy problem (1) for the differential equation with BG-derivative have
two basic solutions and their second basic solutions will be different.

Now we consider the following example, when H-differences

X0
H
αAX0 and X0

H
α(−1)AX0

do not exist for all α > 0.
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Figure 7:
Xbg

1 (t) = Be1.118t(e
1.118t), t ∈ [0, 1]
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Figure 8:
Xbg

2 (t) = Be−1.118t(e1.118t), t ∈ [0, 1]

Example 3. Let A =

(
4/7 2/3
2/3 6/5

)
and

DX(t) = AX(t), X(0) = B1(0), t ∈ [0, 1]. (5)

Obviously, the matrix A can be represented in the form(
α11(ϕ) cos(ϕ) −α12(ϕ) sin(ϕ)
α21(ϕ) sin(ϕ) α22(ϕ) cos(ϕ)

)
,

where ϕ ∈ (0, 2π) and ϕ ̸= kπ
2
, k = 1, 2, 3. For example, if ϕ = π

4
then α11(ϕ) = 4

7 cos(ϕ)
=

4
√
2

7
, α12(ϕ) = − 2

3 sin(ϕ)
= −2

√
2

3
, α21(ϕ) =

2
3 sin(ϕ)

= 2
√
2

3
, α22(ϕ) =

6
5 cos(ϕ)

= 6
√
2

5
. However, for

any admissible ϕ, we will not be able to get one of those options considered in Example 1,
i.e. α11(ϕ) = α12(ϕ) = α21(ϕ) = α22(ϕ) or α11(ϕ) = α22(ϕ) and α12(ϕ) = α21(ϕ).

By Proposition 1, the singular values of the matrix A are not equal to each other (σ1 =
1.62, σ2 = 0.15). From Theorem 1, the matrix A can always be decomposed in the form
UΣV T . Just as matrix A is symmetric positive definite, it can be represented in the form
UΣUT [5, 12]:(

4/7 2/3
2/3 6/5

)
=

(
−0.54 −0.84
−0.84 0.54

) (
1.62 0
0 0.15

) (
−0.54 −0.84
−0.84 0.54

)
.

Obviously, U = UT = R(ψ)Ry, where Ry =

(
−1 0
0 1

)
is the y-axis reflection matrix, ψ ≈

57.6◦.
Hence UTB1(0) = (R(ψ)Ry)B1(0) = R(ψ)(RyB1(0)) = R(ψ)B1(0) = B1(0). Further,

ΣB1(0) = Y =

{
(x1, x2)

T ∈ R2 :

(
x1
σ1

)2

+

(
x2
σ2

)2

≤ 1

}
is an ellipse.

As U = R(ψ)Ry and RyY = Y then R(ψ)Y = Z is a rotated by ψ ellipse in which
half-diagonals are equal to σ1 and σ2, i.e.

Z =

{
(x1, x2)

T ∈ R2 :
(x1 cos(ψ) + x2 sin(ψ))

2

σ2
1

+
(−x1 sin(ψ) + x2 cos(ψ))

2

σ2
2

≤ 1

}
.
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Obviously, the H-differences B1(0)
H αAB1(0) and B1(0)

H (−1)αAB1(0) for all α > 0 do
not exist (the Hukuhara difference between the ball and the ellipsoid does not exist [1]),
then the problem (5) for the differential equation with PS-derivative and the problem (5)
for the differential equation with BG-derivative do not have a second basic solution, i.e.
this the Cauchy problem will have only one basic solution X(·), i.e. the first basic solution
X(t) = exp(At)B1(0) :

DH(exp(At)B1(0)) = A exp(At)B1(0) =⇒
d(exp(At))

dt
B1(0) = A exp(At)B1(0)

=⇒ A exp(At)B1(0) ≡ A exp(At)B1(0), X(0) = exp(0 · A)B1(0) = B1(0).

Because A = UΣUT , then exp(At)B1(0) = exp(UΣUT t)B1(0) = U exp(Σt)UTB1(0) =
R(ψ) exp(Σt)B1(0).

Consequently, the section of the first basic solution X(t) at each moment of time t will
be a rotated by ψ ellipse in which the half-diagonals are equal to eσ1 t and eσ2 t, i.e.

X(t) = R(ψ) exp(tΣ)B1(0) =

=

{
(x1, x2)

T ∈ R2 :
(x1 cos(ψ) + x2 sin(ψ))

2

e2σ1t
+

(−x1 sin(ψ) + x2 cos(ψ))
2

e2σ2t
≤ 1

}
(see Figure 9 and Figure 10).
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Figure 9: X(t), t ∈ [0, 1]
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Figure 10: Z(t) = Be0,15 t(0), Y (t) = Be1,62 t(0),
X(t), t ∈ [0, 1]

Also note that this Cauchy problem has infinitely many mixed solutions. For example,
the solution Y1(·) such that the function diam(Y1(·)) increases on (0, 0.75) and decreases on
(0.75, 1) or the solution Y2(·) such that the function diam(Y2(·)) increases on (0, 0.5) and
(0.75, 1) and decreases on (0.5, 0.75) (see Figures 11 and 12).

Remark 17. If the matrix A is not symmetric and has different singular values, then it is
obvious that additional calculations using matrix analysis will be required to find the rotation
angle of the ellipse. We also note that obtaining analytical solutions is not the purpose of
this paper.

Later in this paper we will consider only the basic solutions. The following remarks are
obvious.
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Figure 11: Y1(t), t ∈ [0, 1]
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Figure 12: Y2(t) t ∈ [0, 1]

Remark 18. If X0 is a ball and all singular values of the matrix A are equal to each other,
then the Cauchy problem for the differential equations with PS-derivative and BG-derivative
have two basic solutions.

Remark 19. If X0 is a ball and at least two singular values of the matrix A are not equal
to each other, then the Cauchy problem for the differential equations with PS-derivative and
BG-derivative have only the first basic solution.

Next, consider an example when the Hukuhara difference X0
H (−1)X0 does not exist.

Example 4. Let
DX(t) = AX(t), X(0) = K, t ∈ [0, 1], (6)

where A ∈ R2×2 such that A = aR(ϕ), a ∈ R and ϕ ∈ [0, 2π) are numbers, K is the triangle
with vertices (−1; 0)T , (1; 0)T and (0; 1)T .

It is obvious that K ̸= (−1)K and the Hukuhara difference K H (−1)K does not exist.
If a > 0 and ϕ = 0 or a < 0 and ϕ = π, then AK = |a|K and H-differences K H αAK

for all α ∈ (0, |a|−1) exist and the Cauchy problem (6) for the differential equation with
PS-derivative has two basic solutions X1(·) and X2(·) (see Figure 13 and Figure 14).
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Figure 13: a = 1, ϕ = 0, X1(t), t ∈ [0, 1]
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Figure 14: a = 1, ϕ = 0, X2(t), t ∈ [0, 1]

However, in this case, the Hukuhara difference K H (−1)αAK for all α > 0 does not exist
and the Cauchy problem (6) for the differential equation with BG-derivative has only the
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first basic solution X(·), which coincides with the first basic solution X1(·) of the Cauchy
problem (6) for the differential equation with PS-derivative.

If a < 0 and ϕ = 0 or a > 0 and ϕ = π, then AK = −|a|K and H-differences
K H (−1)αAK for all α ∈ (0, |a|−1) exist and the Cauchy problem (6) for the differenti-
al equation with BG-derivative has two basic solutions X1(·) and X2(·) (see Figure 15 and
Figure 16).
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Figure 15: a = 1, ϕ = π, X1(t), t ∈ [0, 1]
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Figure 16: a = 1, ϕ = π, X2(t), t ∈ [0, 1]

However, in this case, the Hukuhara difference K H αAK for all α > 0 does not exist
and the Cauchy problem (6) for the differential equation with PS-derivative has only the
first basic solution X(·), which coincides with the first basic solution X1(·) of the Cauchy
problem (6) for the differential equation with BG-derivative.

Also note that if ϕ ̸= kπ, k = 0, 1, then AK is the triangle rotated at an angle ϕ.
Hence, H-differences K H αAK and K H (−1)αAK for all α > 0 do not exist (triangles K
and AK are not homothetic) and the Cauchy problem (6) for the differential equation with
PS-derivative and the Cauchy problem (6) for the differential equation with BG-derivative
have only one solution X(·), which coincides with the solution of the Cauchy problem (6)
for the differential equation with the Hukuhara derivative (see Figure 17).
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Figure 17: a = 1, ϕ = π
3 , X(t), t ∈ [0, 1]
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Figure 18: X(t), t ∈ [0, 1], when

A =

(
−1 −0.89
0.93 −0.98

)
, σ1 = 1.37, σ2 = 1.32
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Remark 20. In this case, the existence of two basic solutions guarantees the condition of
coincidence of singular numbers, as well as a certain angle of rotation, that is, only if the

matrix has the following form
(
a 0
0 a

)
, then if a > 0, then the Cauchy problem (6) for the

differential equation with PS-derivative has two basic solutions, if a < 0, then the Cauchy
problem (6) for the differential equation with BG-derivative has two basic solutions.

We also note that if the matrix A ̸= aR(ϕ) and has different singular values, then H-
differences K H αAK and K H (−1)αAK for all α > 0 do not exist (triangles K and AK
are not homothetic), i.e. system (6) has only the first basic solution, regardless of the type
of the derivative (see example Figure 18).

Based on all stated above, we can make the following proposition.

Proposition 2. For system (1) the following statements are true:
1) if H-difference X0

H (−1)X0 = {0} and there exists an α > 0 such that H-difference
X0

H αAX0 exists, then the Cauchy problem (1) for the differential equation with PS-
derivative and the Cauchy problem (1) for the differential equation with BG-derivative have
two basic solutions and they are equivalent;

2) if H-difference X0
H (−1)X0 = {g}, g ̸= 0 and there exists an α > 0 such that H-

difference X0
H αAX0 exists, then the Cauchy problem (1) for the differential equation with

PS-derivative and the Cauchy problem (1) for the differential equation with BG-derivative
have two basic solutions and their second basic solutions will be different.

3) if the H-difference X0
H (−1)X0 does not exist,

a) but there exists an α > 0 such that H-difference X0
H αAX0 exists, then there are two

basic solutions of the Cauchy problem (1) for the differential equation with PS-derivative
and the first basic solution of the Cauchy problem (1) for the differential equation with
BG-derivative;

b) but there exists an α > 0 such that H-difference X0
H (−1)αAX0 exists, then there

are two basic solutions of the Cauchy problem (1) for the differential equation with BG-
derivative and the first basic solution of the Cauchy problem (1) for the differential equation
with PS-derivative;

that is, in this case, the second base solution for the Cauchy problem for the differential
equations with PS-derivative and the Cauchy problem for the differential equations with
BG-derivative cannot exist simultaneously.

Remark 21. It is easy to see that in order to check the existence of two basic solutions, it
is necessary to check the existence of the following Hukuhara differences:

X0
H

(−1)X0, X0
H
αAX0, X0

H
(−1)αAX0.

Also we note that to check the existence of the second and third differences, one can use
the properties of the singular values of the matrix A. However, we note that the presence of
different singular values (not all singular values are equal) does not guarantee the existence
of only the first basic solution, i.e. the absence of the second basic solution.

Let us show this in the following example.

Example 5. Let
DX(t) = AX(t), X(0) = C, t ∈ [0, 1], (7)
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where A =

(
a11 cos(ϕ) −a12 sin(ϕ)
a21 sin(ϕ) a22 cos(ϕ)

)
, aij ∈ R (i, j = 1, 2) and ϕ ∈ [0, 2π) are numbers,

C = {x ∈ R2 : |xi| ≤ 1, i = 1, 2} is a square.
It is obvious that C = (−1)C. Next, we will consider some cases for the matrix A.
A. Let aij = a ̸= 0, i, j = 1, 2, i.e. A = aR(ϕ). The singular values of the matrix A are

equal to each other for any a and ϕ, i.e. σ1 = σ2 = |a|.
If ϕ = πk

2
, k = 0, 1, 2, 3, then AC = |a|C and H-differences C H αAC and C H (−1)αAC

for all α ∈ (0, |a|−1) exist and the Cauchy problem (7) for the differential equation with
PS-derivative and the Cauchy problem (7) for the differential equation with BG-derivative
have two basic solutions X1(·) and X2(·) (see Figure 19 and Figure 20).

If ϕ ̸= πk
2
, k = 0, 1, 2, 3, then AC is a square rotated at an angle ϕ. Hence, H-differences

C H αAC and C H (−1)αAC for all α > 0 do not exist and the Cauchy problem (7) for
the differential equation with PS-derivative and the Cauchy problem (7) for the differential
equation with BG-derivative have only first basic solution X(·) such that X(t) = C+X11(t),
where X11(t)={(x1, x2) ∈ R2 : |x1 cos(ϕ) + x2 sin(ϕ)| ≤ e|a|t − 1, | − x1 sin(ϕ) + x2 cos(ϕ)| ≤
e|a|t − 1} (see Figure 21).
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Figure 19: a = 1, ϕ = π
2 , t ∈ [0, 1],

X1(t) = {x ∈ R2 | |xi| ≤ e|a|t, i = 1, 2}
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2 , t ∈ [0, 1],

X2(t) = {x ∈ R2 | |xi| ≤ e−|a|t, i = 1, 2}
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6 , X(t), t ∈ [0, 1] Figure 22: a = 1

4 , b = 1, ϕ = π, X2(t), t ∈ [0, 1]

B. Let a11 = a22 = a, a21 = a12 = b and |a| ≠ |b|. The singular values of the matrix A
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are equal to each other for any a and ϕ, i.e. σ1 = σ2 =
√
a2 cos2(ϕ) + b2 sin2(ϕ). Obviously,

if ϕ = πk
2
, k = 0, 2, then AC = |a|C and if ϕ = πk

2
, k = 1, 3, then AC = |b|C. Consequently,

H-differences C H αAC and C H (−1)αAC for all α ∈ (0,min{|a|−1, |b|−1}) exist and the
Cauchy problem (7) for the differential equation with PS-derivative and the Cauchy problem
(7) for the differential equation with BG-derivative have two basic solutions X1(·) and X2(·).

If ϕ ̸= πk
2
, k = 0, 1, 2, 3, then AC is a square rotated at an angle ψ(a, b, ϕ) ̸= πk

2
, k =

0, 1, 2, 3. Hence, H-differences C H αAC and C H (−1)αAC for all α > 0 do not exist and the
Cauchy problem (7) for the differential equation with PS-derivative and the Cauchy problem
(7) for the differential equation with BG-derivative have only one basic solution X(·). In this
case, the graphs of the solutions of system (7) are similar to those given in the case A (see
Figure 19, Figure 20 and Figure 21).

C. Let a11 = a12 = a, a21 = a22 = b and |a| ≠ |b|. In this case, the singular values of the
matrix A are equal to σ1 = max{|a|, |b|}, σ2 = min{|a|, |b|}.

If ϕ = πk
2
, k = 0, 1, 2, 3, then AC is the rectangle with sides 2|a| and 2|b|. Consequently,

H-differences C H αAC and C H (−1)αAC for all α ∈ (0, (max{|a|, |b|})−1) exist (H-differen-
ce of a square and a rectangle is a rectangle) and the Cauchy problem (7) for the differential
equation with PS-derivative and the Cauchy problem (7) for the differential equation with
BG-derivative have two basic solutions X1(·) and X2(·). For example, if a = 1

4
, b = 1, ϕ = π

then the second solution X2(·) has the form X(t) = { (x1, x2) ∈ R2 : |x1| ≤ e−
t
4 , |x2| ≤ e−t}

(see Figure 22).
If ϕ ̸= πk

2
, k = 0, 1, 2, 3, then AC is some quadrilateral that is not a rectangle. Hence, H-

differences C H αAC and C H (−1)αAC for all α > 0 do not exist and the Cauchy problem
(7) for the differential equation with PS-derivative and the Cauchy problem (7) for the
differential equation with BG-derivative have only one basic solution X(·).

D. Let aij, i, j = 1, 2, be such that |aij|, i, j = 1, 2, are not equal to each other (all
different). Obviously if ϕ = πk

2
, k = 0, 1, 2, 3, then we get a case similar to case C. Also,

if ϕ ̸= πk
2
, k = 0, 1, 2, 3, then AC is some quadrilateral that is not a rectangle. Hence, H-

differences C H αAC and C H (−1)αAC for all α > 0 do not exist and the Cauchy problem
(7) for the differential equation with PS-derivative and the Cauchy problem (7) for the
differential equation with BG-derivative have only one basic solution X(·).

Remark 22. Obviously, in this case, the properties of the singular numbers do not determine
the number of basic solutions. Their number determines the angle of rotation. That is, if the

matrix A has one of the following types
(
a 0
0 b

)
or

(
0 a
b 0

)
, then the system (7) has two

basic solutions, where a, b ∈ R \ 0.

Conclusion. The paper shows that the Cauchy problem for the linear set-valued differential
equation are significantly different from the Cauchy problem for an ordinary differential
equation. In this Cauchy problem, the number of solutions may depend on the type (shape)
of the initial set, the considered derivative, and the matrix on the right-hand side. The
paper gives the conditions for the existence of two basic solutions for the case when n ≥ 2. If
n = 1, then the system turns into an interval differential equation and it always has two basic
solutions. We also note that in [32–35] the authors considered another type of differential
equations with PS-derivative, in which at most one solution can exist.
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