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For a one-to-one partial mapping on an infinite set, we present a criterion in terms of
its cycle-chain decomposition that the inverse subsemigroup generated by this mapping is
monogenic free inverse.

We also give a sufficient condition for a regular rooted tree partial automorphism to extend
to a partial automorphism of another regular rooted tree so that the inverse semigroup genera-
ted by this extended partial automorphism is monogenic free inverse. The extension procedure
we develop is then applied to n-ary adding machines.

1. Introduction. Inverse semigroups of partial automorphisms of (infinite) regular rooted
trees naturally generalize the important and intensively investigated notion of automorphism
groups of regular rooted trees [4]. One can define them by using partial invertible automata
over finite alphabets [14, 12, 2]. Alternatively, they can be regarded as inverse limits of inverse
semigroups of partial automorphisms of finite regular rooted trees. The latter, in turn, can
be constructed as partial wreath powers of the inverse symmetric semigroup ISn [5, 6, 7].

A natural problem arising in this context is to find faithful representations of given
inverse semigroups in terms of regular rooted tree partial automorphisms. One of the possi-
ble direction here is to consider free inverse semigroups, in particular monogenic free ones
(c.f. [10, 11]).

A particularly interesting question is when the inverse semigroup generated by a one-
to-one partial mapping f on an infinite set Ω is monogenic free inverse. We find a useful
necessary and sufficient condition for this in terms of the cycle-chain decomposition of f .
Then we apply this criterion to partial automorphisms of regular rooted trees, which yields
a sufficient condition that a level transitive automorphism can be extended to a partial
automorphism generating monogenic free inverse semigroup.

The paper is organized as follows. In Section 2 we recall required definitions on inverse
semigroups including the cycle-chain decomposition of one-to-one mappings. Then we prove
a criterion when the inverse semigroup generated by a one-to-one mapping is monogenic free
inverse. In Section 3 we recall required definitions on automorphisms and partial automorphi-
sm of regular rooted trees; for details, the reader can refer to [4, 12, 2]. Then we show how
a level transitive regular rooted tree automorphism satisfying certain conditions can be
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extended to a partial automorphism of another regular rooted tree so that the inverse semi-
group generated by this extended partial automorphism is monogenic free inverse. We apply
this extension technique to n-ary adding machines. In Section 4, we formulate a few open
questions arisen during our research.

2. Monogenic free inverse semigroups. Let Ω be a non-empty set. For a partial mapping
f on Ω, we denote by dom f and ran f the domain and the range of f correspondingly. We
write f(ω) = ∅ if ω ∈ Ω \ dom f . We will use the right actions of mappings, i.e. for ω ∈ Ω
and partial mappings f, g on Ω we denote the element g(f(ω)) by (fg)(ω).

A partial mapping f : Ω → Ω is called a partial one-to-one mapping if f(ω1) ̸= f(ω2) for
distinct ω1, ω2 ∈ dom f . For a partial one-to-one mapping f , the partial inverse f−1 is well-
defined. We use the notation f−n for the nth iteration of f−1, n ≥ 1. The inverse semigroup
of all partial one-to-one mappings on Ω is denoted by IS(Ω).

A partial one-to-one mapping f ∈ IS(Ω) is called:

• a finite cycle of length k ≥ 1 if dom f = {ω1, . . . , ωk} and

f(ω1) = ω2, . . . , f(ωk−1) = ωk, f(ωk) = ω1;

• an infinite cycle if dom f = {ωi : i ∈ Z} and

f(ωi) = ωi+1, i ∈ Z;

• a finite chain of length k ≥ 0 if dom f = {ω1, . . . , ωk} and for some ωk+1

f(ω1) = ω2, . . . , f(ωk) = ωk+1, f(ωk+1) = ∅;

• an infinite left chain if dom f = {ωi : i ∈ N} and

f(ω1) = ∅, f(ωi) = ωi−1, i ≥ 2;

• an infinite right chain, if dom f = {ωi : i ∈ N} and

f(ωi) = ωi+1, i ≥ 1.

The cycle–chain decomposition of f ∈ IS(Ω) ([9, 3, 8]) is the unique partition of the set
Ω as a disjoint union of non-empty subsets such that the restriction of f on each of them is
either a finite or an infinite cycle, or a finite or an infinite chain.

The following auxiliary statement gives a useful method to prove that the inverse semi-
group generated by a given partial one-to-one mapping is free.

Theorem 1. Let Ω be an infinite set, f ∈ IS(Ω). The following statements are equivalent:

(i) the inverse subsemigroup generated by f is monogenic free inverse;

(iii) for arbitrary n ≥ 1, there exist ω1, ω2 ∈ Ω such that fn(ω1) ∈ dom f, f−n(ω2) ∈ ran f ,
but fn+1(ω1) /∈ dom f, f−(n+1)(ω2) /∈ ran f ;

(iii) the cycle–chain decomposition of f contains either both infinite left and right chains or
for arbitrary n ≥ 1 a finite chain of length greater than n.
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Proof. I. Assume that (ii) holds. We will show that the monogenic inverse subsemigroup S
generated by f is free. The proof is inspired by [2, Example 23].

Let
I = {(m,n, k) ∈ Z3 : m ≥ 0, n ≥ 0,m+ n > 0,−m ≤ k ≤ n}.

Following [13, IX.1.9], each element s ∈ S can be written in the form s = fmf−(m+n)fn−k

for some triple (m,n, k) ∈ I, and it is sufficient to show uniqueness of such representation.
Let us consider two different triples (m1, n1, k1), (m2, n2, k2) ∈ I and show that the

products s1 = fm1f−(m1+n1)fn1−k1 and s2 = fm2f−(m2+n2)fn2−k2 are different. We have
three cases.

Case 1: k1 ̸= k2. According to (ii), there exists

ω ∈ dom fmax(m1,m2) ∩ ran fmax(n1,n2)

such that ω /∈ dom fmax(m1,m2)+1. Then, ω ∈ dom s1 ∩ dom s2, and we have

s1(ω) = fm1f−(m1+n1)fn1−k1(ω) = f−n1fn1−k1(ω) = f−k1(ω),

s2(ω) = fm2f−(m2+n2)fn2−k2(ω) = f−n2fn2−k2(ω) = f−k2(ω).

Since f is one-to-one and ω does not belong to a cycle, f−k1(ω) ̸= f−k2(ω). Hence, s1 ̸= s2.
Case 2: n1 ̸= n2. Without loss of generality, we may assume that n1 < n2. Due to (ii),

there exists
ω ∈ dom fmax(m1,m2) ∩ ran fn1

such that ω ̸∈ ran fn2 . Then, on the one hand, we have

s1(ω) = fm1f−(m1+n1)fn1−k1(ω) = f−n1fn1−k1(ω) = f−k1(ω)

and ω ∈ dom s1. On the other hand,

s2(ω) = fm2f−(m2+n2)fn2−k2(ω) = f−n2fn2−k2(ω).

Since ω /∈ dom f−n2 , we have s2(ω) = ∅ and ω /∈ dom s2. Hence, dom s1 ̸= dom s2,
consequently s1 ̸= s2.

Case 3: m1 ̸= m2. Without loss of generality, we may assume that m1 < m2. Using
the assumption from the second statement we can find ω ∈ dom fm1 ∩ ran fn1 such that
ω ̸∈ dom fm2 . Then, we have

s1(ω) = fm1f−(m1+n1)fn1−k1(ω) = f−n1fn1−k1(ω) = f−k1(ω),

and ω ∈ dom s1. At the same time, since

s2(ω) = fm2f−(m2+n2)fn2−k2(ω).

and ω ̸∈ dom fm2 , we have s2(ω) = ∅ and ω ̸∈ dom s2. Hence, dom s1 ̸= dom s2 and s1 ̸= s2.
II. Assume ad absurdum that (iii) does not hold but the inverse subsemigroup generated

by f is free. Then there exists n ≥ 1 such that in the cycle–chain decomposition of f the
lengths of finite chains are bounded by n. Then the cycle–chain decomposition of fn contains
only trivial finite chains. Moreover, besides cycles it can contain only infinite left chains or
only infinite right chains. Without loss of generality we assume that it contains no infinite
left chain. Then the inverse subsemigroup generated by fn is either a bicyclic semigroup or
a cyclic group. This contradicts the assumption that the inverse subsemigroup generated by
f is free inverse.

III. The equivalence of the second and the third statements is straightforward.
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As an immediate corollary we generalize the example from [13, IX.1.11]. For arbitrary
disjoint infinite subsets A = {ai : i ≥ 1} and B = {bi : i ≥ 1} of Z define fA,B : Z → Z by

fA,B(x) =


ai+1, if x = ai, i ≥ 1;

bi−1, if x = bi, i ≥ 2;

∅, otherwise.

Then fA,B is a partial one-to-one mapping. Its cycle-chain decomposition consists of a left
infinite chain, a right infinite chain and trivial finite chains. Applying Theorem 1, we obtain
that the inverse subsemigroup of IS(Z), generated by fA,B, is monogenic free inverse.

3. Partial automorphisms of regular rooted trees. Let X be a finite set, n = |X| ≥ 2.
The set

X∗ =
∞⋃

m=0

Xm

of all finite words over X including the empty word Λ is a free monoid under concatenation.
The length of a word w ∈ X∗ will be denoted by |w|. The set X∗ is the set of vertices of an
n-regular rooted tree Tn. The empty word is the root of Tn, and two words u, v ∈ X∗ are
connected by an edge if and only if u = vx or v = ux for some x ∈ X.

A partial automorphism of the tree Tn is a partial one-to-one correspondence on X∗ which
is defined on a subtree containing root and which preserves the structure of the rooted tree,
i.e. the root is a fixed point and images of connected vertices are connected whenever they
are well defined. All partial automorphisms of Tn form an inverse semigroup PAut Tn under
superposition. All total automorphisms form the group of automorphisms of Tn denoted
by Aut Tn. Since each partial automorphism f preserves lengths of words, the cycle-chain
decomposition of f consists of finite cycles and chains. It consists of cycles if and only if f
is total.

One of the ways to define partial automorphisms of Tn is given by partial invertible
automata over X. A partial invertible automaton over X is a triple A = (Q, λ, µ), where Q is
the set of states, λ : Q× X → Q is the partial transition function and µ : Q× X → X is the
partial output function, such that the following two conditions hold:

1. the domains of partial transition and partial output functions are equal;

2. for arbitrary q ∈ Q, µ(q, ·) defines a partial one-to-one mapping on X.

A partial invertible automaton A is called finite if the set Q of its states is finite. Partial
functions λ and µ admit recursive extensions to the set Q × X∗, defined by the following
rules: for q ∈ Q, λ(q,Λ) = q, µ(q,Λ) = Λ; for x ∈ X, w ∈ X∗,

(q, xw) ∈ domλ ⇐⇒ (q, xw) ∈ domµ ⇐⇒ (q, x) ∈ domµ, (λ(q, x), w) ∈ domµ,

and

λ(q, xw) = λ(λ(q, x), w), µ(q, xw) = µ(q, x)µ(λ(q, x), w),

whenever (q, xw) ∈ domµ. Given this extension, for every state q ∈ Q, µ(q, ·) defines a
partial mapping on X∗:

fA,q(w) = µ(q, w), w ∈ X∗.
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It can be directly verified that for each f ∈ PAut Tn there exists a partial invertible auto-
maton A over X and its state q such that f = fA,q. In this case we say that A defines f at
its state q. If there exists a finite invertible automaton defining f at some of its states, then
f is called finite state partial automorphism. All finite state partial automorphisms form a
countable inverse subsemigroup FPAut Tn of PAut Tn. All finite state total automorphisms
form a countable subgroup FAut Tn of Aut Tn.

As the main application of Theorem 1 we now construct monogenic free inverse semi-
groups generated by partial automorphisms of regular rooted trees.

We start with some auxiliary definitions. Let f ∈ PAut Tn. Consider an automaton A =
(Q, λ, µ) over X such that f = fA,q for some state q ∈ Q. The state r ∈ Q is called essential
with respect to q if there exists a word w ∈ X∗ such that λ(q, w) = r. Denote by Ess(A, q)
the set of all essential states with respect to q. Then the set of partial automorphisms

{fA,r : r ∈ Ess(A, q)}

does not depend on the automaton A and its state q. This set is denoted by Q(f) and its
elements are called sections of f . For each section g ∈ Q(f) define the frequency sequence
tg(m), m ≥ 0, of g as follows

tg(m) = |{w ∈ Xm : fA,λ(q,w) = g}|, m ≥ 0.

Let A = (Q, λ, µ) be a partial invertible automaton over X. Assume that Y is a finite
alphabet such that X ⊂ Y. A partial invertible automaton A1 = (Q, λ1, µ1) over Y is called
an extension of A if restrictions of λ1 and µ1 to Q×X coincide with λ and µ correspondingly.

A sequence am, m ≥ 0, of non-negative integers is called non-finitary if the set of indices
m, such that am > 0, is infinite. The sequence am, m ≥ 0, is called polynomially bounded
if there exists a polynomial p(x) with integer coefficients such that for some M > 0 the
inequalities am ≤ p(m), m ≥ M , hold.

Theorem 2. Let A = (Q, λ, µ) be an invertible automaton over X, |X| = n ≥ 2, f ∈ Aut Tn

be a level transitive automorphism defined by A at its state q. Assume that there exists
a section g ∈ Q(f) such that the frequency sequence tg(m), m ≥ 0, is non-finitary and
polynomially bounded. Then there exists an extension A1 of A over an alphabet Y, |Y| =
n + 2, such that the inverse semigroup generated by the partial automorphism, defined by
A1 at q, is monogenic free inverse.

Proof. Since g ∈ Q(f), the automaton A defines g at some of its states. We may assume
that such a state is unique. Denote by r the state of A such that fA,r = g.

Let y0, y1 be different symbols not contained in X. Then define Y = X ∪ {y0, y1} and the
automaton A1 = (Q, λ1, µ1) over Y such that for arbitrary y ∈ Y, a ∈ Q:

λ1(a, y) =


λ(a, y), if y ∈ X;

∅, if a = r, y = y1;

a, otherwise
, µ1(a, y) =


µ(a, y), if y ∈ X;

y1, if a = r, y = y0;

∅, if a = r, y = y1;

x, otherwise

.

The automaton A1 is a partial invertible automaton and it is an extension of A. Denote
by f1 the partial automorphism, defined by A1 at q. It is sufficient to show that f1 as a
one-to-one mapping on Y∗ satisfies the third condition of Theorem 1.
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Let l ≥ 1. We will show that f1 contains a chain of length greater than l. Since the
restriction of f1 on X∗ coincides with f and f is level transitive, the cycle-chain decomposition
of f1 for each m ≥ 1 contains a cycle on the set Xm. The length of this cycle is nm. Since
the frequency sequence tg(m), m ≥ 0, is non-finitary, the set M of indices m such that
fA,λ(q,u) = g for some u ∈ Xm is infinite. For each m ∈ M , denote by Wm the subset of all
u ∈ Xm such that fA,λ(q,u) = g. Since the frequency sequence tg(m), m ≥ 0, is polynomially
bounded there exist m ∈ M and words u1, u2 ∈ Wm such that

fk(u1) = u2 and k > l.

Consider the word w1 = u1y0. The definition of the automaton A1 immediately implies
that

gi(w1) = f i(u1)y1, 1 ≤ i ≤ k − 1, gk(w1) = ∅.

Since k > l we obtain a chain of required length. The proof is complete.

As an example let us apply Theorem 2 to the n-ary adding machine (see e.g. [4]). Consider
X = {x0, . . . , xn−1} and the invertible automaton A = ({q0, q1}, λ, µ) over X such that

λ(q0, xi) = q1, 0 ≤ i ≤ n− 2, λ(q0, xn−1) = q0, λ(q1, x) = q1, x ∈ X,

µ(q0, xi) = xi+1, 0 ≤ i ≤ n− 2, µ(q0, xn−1) = x0, µ(q1, x) = x, x ∈ X.

Then A defines at its state q0 the level transitive automorphism f , called n-ary adding
machine. For w ∈ X∗ the equality λ(q0, w) = q0 holds if and only if w = xn−1 . . . xn−1. It
means that for the section f ∈ Q(f), the frequency sequence tf (m), m ≥ 0, is constant,
i.e. tf (m) = 1, m ≥ 0. Hence, it is non-finitary and polynomially bounded. Applying the
construction from the proof of Theorem 2 to A we obtain an extension A1 of A over an
alphabet X∪{y0, y1} such that the inverse semigroup generated by the partial automorphism
f1, defined by A1 at q0, is monogenic free inverse.
4. Open questions. In [2, Example 23] the authors construct a partial invertible automaton
with two states over an alphabet of cardinality four such that the inverse semigroup generated
by partial automorphisms at its states is monogenic free inverse monoid.
Problem 1. Does there exist a finite partial invertible automaton over an alphabet of
cardinality two such that the inverse semigroup generated by partial automorphisms at its
states is monogenic free inverse semigroup (monoid)?

A subsemigroup S ⊆ PAut Tn is called level transitive if S acts transitively on sets Xm,
m ≥ 0. It is called level semi-transitive [1] if S acts semi-transitively on sets Xm, m ≥ 0.
If S is level transitive then it is level semi-transitive, but not vice versa. If semigroup S is
inverse then its level semi-transitivity implies level transitivity. Let f ∈ PAut Tn be a partial
automorphism such that f is not total. Then the monogenic inverse semigroup generated by
f is not level transitive.
Problem 2. Describe minimal under inclusion level transitive inverse semigroups (level
semitransitive semigroups) that contain monogenic free inverse semigroups constructed in
Theorem 2.

Finite automata is a natural source of numerous algorithmic problems. Among others let
us mention the following one.
Problem 3. Does there exist an algorithm that decides whether the inverse semigroup
generated by the partial automorphism defined by a given finite partial automaton at its
state is monogenic free inverse?
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