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Let [0,∞) be the set of all non-negative real numbers. The set B[0,∞) = [0,∞) × [0,∞)
with the following binary operation (a, b)(c, d) = (a + c − min{b, c}, b + d − min{b, c}) is a
bisimple inverse semigroup. In the paper we study Hausdorff locally compact shift-continuous
topologies on the semigroup B[0,∞) with an adjoined compact ideal of the following tree types.
The semigroup B[0,∞) with the induced usual topology τu from R2, with the topology τL which
is generated by the natural partial order on the inverse semigroup B[0,∞), and the discrete
topology are denoted by B1

[0,∞), B
2
[0,∞), and Bd

[0,∞), respectively. We show that if SI
1 (SI

2 )
is a Hausdorff locally compact semitopological semigroup B1

[0,∞) (B2
[0,∞)) with an adjoined

compact ideal I then either I is an open subset of SI
1 (SI

2 ) or the topological space SI
1 (SI

2 ) is
compact. As a corollary we obtain that the topological space of a Hausdorff locally compact
shift-continuous topology on S1

0 = B1
[0,∞) ∪ {0} (resp. S2

0 = B2
[0,∞) ∪ {0}) with an adjoined

zero 0 is either homeomorphic to the one-point Alexandroff compactification of the topological
space B1

[0,∞) (resp. B2
[0,∞)) or zero is an isolated point of S1

0 (resp. S2
0). Also, we proved that if

SI
d is a Hausdorff locally compact semitopological semigroup Bd

[0,∞) with an adjoined compact
ideal I then I is an open subset of SI

d .

1. Introduction and preliminaries. In this paper we shall follow the terminology of
[13, 14, 15, 16, 18, 32, 35].

A semigroup S is called inverse if for any element x ∈ S there exists a unique x−1 ∈ S
such that xx−1x = x and x−1xx−1 = x−1. The element x−1 is called the inverse of x ∈ S. If
S is an inverse semigroup, then the function inv : S → S which assigns to every element x of
S its inverse element x−1 is called the inversion. On an inverse semigroup S the semigroup
operation determines the following partial order ≼: s ≼ t if and only if there exists e ∈ E(S)
such that s = te. This partial order is called the natural partial order on S.

Remark 1. For arbitrary elements s, t of an inverse semigroup S the following conditions
are equivalent (see [32, Chap. 3]):

(α) s ≼ t; (β) s = ss−1t; (γ) s = ts−1s.

2020 Mathematics Subject Classification: 22A15.
Keywords: semigroup; semitopological semigroup; topological semigroup; locally compact; compact ideal;
adjoined zero; remainder; one-point Alexandroff compactification; isolated point.
doi:10.30970/ms.61.1.10-21

© O. V. Gutik, M. B. Khylynskyi, 2024



LOCALLY COMPACT SHIFT CONTINUOUS TOPOLOGIES ON THE SEMIGROUP B[0,∞)11

A topological space X is called locally compact if every poin x of X has an open nei-
ghbourhood with the compact closure.

A (semi)topological semigroup is a topological space with a (separately) continuous semi-
group operation. An inverse topological semigroup with continuous inversion is called a
topological inverse semigroup.

A topology τ on a semigroup S is called:

• a semigroup topology if (S, τ) is a topological semigroup;

• an inverse semigroup topology if (S, τ) is a topological inverse semigroup;

• a shift-continuous topology if (S, τ) is a semitopological semigroup.

The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by two
elements p and q subjected only to the condition pq = 1. The semigroup operation on
C (p, q) is determined as follows:

qkpl · qmpn = qk+m−min{l,m}pl+n−min{l,m}.

It is well known that the bicyclic monoid C (p, q) is a bisimple (and hence simple) combi-
natorial E-unitary inverse semigroup and every non-trivial congruence on C (p, q) is a group
congruence [15].

The bicyclic monoid admits only the discrete semigroup Hausdorff topology [17]. Bertman
and West in [12] extended this result for the case of Hausdorff semitopological semigroups. If
a Hausdorff (semi)topological semigroup T contains the bicyclic monoid C (p, q) as a dense
proper semigroup then T \ C (p, q) is a closed ideal of T [17, 23]. Moreover, the closure of
C (p, q) in a locally compact topological inverse semigroup can be obtained (up to isomorphi-
sm) from C (p, q) by adjoining the additive group of integers in a suitable way [17].

Stable and Γ-compact topological semigroups do not contain the bicyclic monoid [5, 30,
31]. The problem of embedding the bicyclic monoid into compact-like topological semigroups
was studied in [6, 7, 11, 29].

In [1] Ahre considered the following semigroup. Let [0,∞) be the set of all non-negative
real numbers. The set B[0,∞) = [0,∞)× [0,∞) with the following binary operation

(a, b)(c, d) = (a+ c−min{b, c}, b+ d−min{b, c}) =


(a+ c− b, d), if b < c;

(a, d), if b = c;

(a, b+ d− c), if b > c

is a bisimple inverse semigroup. The semigroup B[0,∞) and the bicyclic monoid C (p, q) are
partial cases of bicyclic extensions of linearly ordered groups which are presented in [19,
20, 21, 28]. It is obvious that semigroup B[0,∞) is isomorphic to the semigroup of partial
bijections, namely as the semigroup of shifts of closed rays in the half-line (see [28]). This
representation shows the closed relation of the semigroup B[0,∞) to the bicyclic semigroup,
which also has a similar representation by shifts of rays in the set of positive integers.

By B1
[0,∞) we denote the semigroup B[0,∞) with the usual topology. It is obvious that

B1
[0,∞) is a locally compact topological inverse semigroup [1]. In [2, 3] it is shown that the

closure of B1
[0,∞) in a locally compact topological inverse semigroup can be obtained (up to

isomorphism) from B1
[0,∞) by adjoining the additive group of reals in a suitable way.

For any non-negative real number α we denote the following subsets in B[0,∞):
L+
α = {(x, x+ α) : x ⩾ 0} and L−

α = {(x+ α, x) : x ⩾ 0}.
It obvious that B[0,∞) =

⊔
α⩾0 L

+
α ⊔

⊔
α>0 L

−
α and L+

0 = L−
0 . Put τL be a topology on B[0,∞)
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which is generating by the bases
B(x, x+ α) = {Uε(x, x+ α) = {(x+ y, x+ y + α) ∈ L+

α : |y| < ε} : ε > 0}
and

B(x+ α, x) = {Uε(x+ α, x) = {(x+ y + α, x+ y) ∈ L−
α : |y| < ε} : ε > 0}

at any points (x, x+α) ∈ L+
α and (x+α, x) ∈ L−

α , respectively, for arbitrary α ∈ [0,+∞). The
semigroup B[0,∞) with the topology τL is denoted by B2

[0,∞). The definitions of the topology
τL and the natural partial order on B[0,∞) imply that τL is generated by the natural partial
order of B[0,∞) (see [22]). We observe that B2

[0,∞) is a Hausdorff locally compact topological
inverse semigroup [4]. Moreover for any non-negative real number α, L+

α and L−
α are open-

and-closed subsets of B2
[0,∞) which are homeomorphic to [0,+∞) with the usual topology, i.e.,

B2
[0,∞) =

⊕
α⩾0

L+
α ⊕

⊕
α>0

L−
α .

The closure of the topological inverse semigroup B2
[0,∞) in (locally compact) topological

semigroups is studied in [4].
By Bd

[0,∞) we denote the semigroup B[0,∞) with the discrete topology. It is obvious that
Bd

[0,∞) is a locally compact topological inverse semigroup.
In the paper [23] it is proved that every Hausdorff locally compact shift-continuous

topology on the bicyclic monoid with adjoined zero is either compact or discrete. This result
was extended by Bardyla onto the a polycyclic monoid [8] and graph inverse semigroups [9],
and by Mokrytskyi onto the monoid of order isomorphisms between principal filters of Nn

with adjoined zero [34]. In [24] the results of the paper [23] were extended to the monoid
IN∞ of all partial cofinite isometries of positive integers with adjoined zero. In [27] the si-
milar dichotomy was proved for so called bicyclic extensions BF

ω when a family F consists
of inductive non-empty subsets of ω. Algebraic properties on a group G such that if the
discrete group G has these properties then every locally compact shift continuous topology
on G with adjoined zero is either compact or discrete studied in [33]. Also, in [26] it is proved
that the extended bicyclic semigroup C 0

Z with adjoined zero admits continuum many shift-
continuous topologies, however every Hausdorff locally compact semigroup topology on C 0

Z is
discrete. In [10] Bardyla proved that a Hausdorff locally compact semitopological McAlister
semigroup M1 is either compact or discrete. However, this dichotomy does not hold for the
McAlister semigroup M2 and moreover, M2 admits continuum many different Hausdorff
locally compact inverse semigroup topologies [10].

In this paper we extend the results of paper [23] onto the topological monoids B1
[0,∞) and

B2
[0,∞). In particular we show that if SI

1 (SI
2) is a Hausdorff locally compact semitopological

semigroup B1
[0,∞) (B2

[0,∞)) with an adjoined compact ideal I then either I is an open subset
of SI

1 (SI
2) or the semigroup SI

1 (SI
2) is compact. Also, we proved that if SI

d is a Hausdorff
locally compact semitopological semigroup Bd

[0,∞) with an adjoined compact ideal I then I

is an open subset of SI
d .

2. A locally compact semigroup B1
[0,∞) with an adjoined compact ideal. Later in

this section by SI
1 we denote a Hausdorff locally compact semitopological semigroup which

is the semigroup B1
[0,∞) with an adjoined non-open compact ideal I.

Lemma 1. Let S be a Hausdorff locally compact semitopological semigroup with a compact
ideal I. Then for any open neighbourhood U(I) of the ideal I and any x ∈ S there exists
an open neighbourhood V (I) of I with the compact closure V (I) such that x · V (I) ⊆ U(I)
and V (I) · x ⊆ U(I).
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Proof. Fix an arbitrary open neighbourhood U(I) of the ideal I and any x ∈ S. Since I
is an ideal of S, for any α ∈ I there exists β ∈ I such that x · α = β. Since U(I) is an
open neighbourhood of β, separate continuity of the semigroup operation in S implies that
there exists an open neighbourhood V (α) of α in S such that x · V (α) ⊆ U(I). The local
compactness of the space S implies that without loss of generality we may assume that the
neighbourhood V (α) has the compact closure V (α). Then the family {V (α) : α ∈ I} is an
open cover of I. Since I is compact, I ⊆ V (α1)∪ . . .∪V (αn) for finitely many α1, . . . , αn ∈ I.
Put V1(I) = V (α1)∪ . . .∪V (αn). Then V1(I) = V (α1)∪ . . .∪V (αn) is a compact subset of S
such that x · V1(I) ⊆ U(I). Similarly we get that there exists an open neighbourhood V2(I)
of I with the compact closure V2(I) such that V2(I) · x ⊆ U(I). Put V (I) = V1(I) ∩ V2(I).
Then V (I) is an open neighbourhood of I with the compact closure V (I) = V1(I) ∩ V2(I)
such that x · V (I) ⊆ U(I) and V (I) · x ⊆ U(I).

A subset A of B[0,∞) is called unbounded if for any positive real number a there exist
(x, y) ∈ A such that x ⩾ a and y ⩾ a.

Lemma 2. For any open neighbourhood U(I) of the ideal I in SI
1 the set U(I) ∩B[0,∞) is

unbounded.

Proof. Suppose to the contrary that there exists a positive real number m such that x < m
or y < m for any (x, y) ∈ U(I) ∩ B[0,∞). Lemma 1 implies that there exists an open
neighbourhood V (I) ⊆ U(I) of I such that V (I) · (0, 2m) ⊆ U(I). Again, by Lemma 1,
there exists an open neighbourhood W (I) ⊆ V (I) of I such that (2m, 0) · W (I) ⊆ V (I).
Then choose any (x, y) ∈ W (I) \ I and observe that (a, b) = (2m, 0)(x, y)(0, 2m) has the
desired property: min{a, b} ⩾ m. The obtained contradiction implies the statement of the
lemma.

Proposition 1. For any open neighbourhood U(I) of the ideal I in SI
1 there exists a compact

subset Aa = [0, a]× [0, a] in B1
[0,∞) such that SI

1 \ U(I) ⊆ Aa.

Proof. Suppose to the contrary that there exists an open neighbourhood U(I) of the ideal
I in SI

1 such that SI
1 \ U(I) ⊈ An for any positive integer n. By Lemma 1 without loss of

generality we may assume that the closure U(I) is a compact subset of SI
1 . By Lemma 2 the

set U(I)∩B[0,∞) is unbounded in B[0,∞). Since B1
[0,∞)∩U(I) is an open subset in B1

[0,∞), the
assumption of the proposition implies that for any positive integer n there exists an element
(xn, yn) ∈ U(I) \ U(I) such that (xn, yn) /∈ An. This implies that the set U(I) \ U(I) is
unbounded in B[0,∞). But U(I) \ U(I) is a compact subspace of the metric space B1

[0,∞), a
contradiction.

Proposition 1 implies the following theorem.

Theorem 1. Let SI
1 be a Hausdorff locally compact semitopological semigroup B1

[0,∞) with
an adjoined compact ideal I. Then either I is an open subset of SI

1 or the space SI
1 is compact.

Example 1 and Proposition 2 show that if the ideal I of the semigroup SI
1 is trivial,

i.e., the ideal I is a singleton, then the semigroup SI
1 admits the unique Hausdorff compact

shift-continuous topology.
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Example 1. Let S0
1 be the semigroup B1

[0,∞) with an adjoined zero 0. We extend the
topology of B1

[0,∞) up to a compact topology τ 1Ac on S0
1 in the following way. We define

B1
Ac(0) = {Un(0) = {0} ∪ {(x, y) : x > n or y > n} : n ∈ N}

is the system of open neighbourhoods of zero in τ 1Ac.

Proposition 2. (S0
1 , τ

1
Ac) is a compact Hausdorff semitopological semigroup with continuous

inversion.

Proof. By [2, 3], B1
[0,∞) is a topological inverse semigroup, and hence it sufficient to show

that the semigroup operation on (S0
1 , τ

1
Ac) is separately continuous at zero.

It is obvious that 0 · Un(0) = Un(0) · 0 = {0} ⊆ Un(0) for any positive integer n.
Next we shall show that (x, y)·U2n(0) ⊆ Un(0) for any positive integer n > max{x, y}+1.

We consider the possible cases.
1. Suppose that a > 2n. Then for any b ∈ R the equality

(x, y)(a, b) =


(x− y + a, b), if y < a;

(x, b), if y = a;

(x, y − a+ b), if y > a,

(1)

implies that (x, y)(a, b) = (x− y+ a, b). By the assumptions n > max{x, y}+1 and a > 2n,
we get that x− y + a > −n+ 2n = n, and hence (x− y + a, b) ∈ Un(0).

2. Suppose that n ⩽ a ⩽ 2n and b > 2n. By (1) we have that (x, y)(a, b) = (x− y+ a, b).
The assumption n > max{x, y} + 1 implies that x − y + a > −n + n = 0. Since b > 2n we
get that (x− y + a, b) ∈ Un(0).

3. Suppose that 0 ⩽ a < n and b > 2n. By (1) we have that

(x, y)(a, b) = (x− y + a, b) ∈ Un(0)

in the case when y < a, and if y ⩾ a then y − a+ b > 2n, and hence (x, y − a+ b) ∈ Un(0).
Similar arguments and the equality

(a, b)(x, y) =


(a− b+ x, y), if b < x;

(a, y), if b = x;

(a, b− x+ y), if b > x,

imply that for any positive integer n > max{x, y} + 1 the inclusion U2n(0) · (x, y) ⊆ Un(0)
holds. The above inclusions imply that the semigroup operation on (S0

1 , τ
1
Ac) is separate

continuous.
Since (Un(0))

−1 = Un(0) for any n ∈ N the inversion on (S0
1 , τ

1
Ac) is continuous.

It is obvious that τ 1Ac is a compact Hausdorff topology on S0
1 . Moreover (S0

1 , τ
1
Ac) is the

one-point Alexandroff compactification of the locally compact space B1
[0,∞) such that the

singleton set {0} which consists of the zero of S0
1 is its remainder.

Theorem 1 and Proposition 2 imply the following theorem.

Theorem 2. Let S0
1 be a Hausdorff locally compact semitopological semigroup B1

[0,∞) with
an adjoined zero 0. Then either 0 is an isolated point of S0

1 or the topology of S0
1 coincides

with τ 1Ac.
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Since the bicyclic monoid does not embeds into any Hausdorff compact topological semi-
group [5] and the semigroup contains many isomorphic copies of the bicyclic semigroup,
Theorems 1 and 2 imply the following corollaries.

Corollary 1. Let SI
1 be a Hausdorff locally compact topological semigroup B1

[0,∞) with an
adjoined compact ideal I. Then I is an open subset of SI

1 .

Corollary 2. Let S0
1 be a Hausdorff locally compact topological semigroup B1

[0,∞) with an
adjoined zero 0. Then 0 is an isolated point of S0

1 .

3. A locally compact semigroup B2
[0,∞) with an adjoined compact ideal. Later in

this section by SI
2 we denote a Hausdorff locally compact semitopological semigroup which

is the semigroup B2
[0,∞) with an adjoined non-open compact ideal I.

The proof of Lemma 3 is similar to Lemma 2.

Lemma 3. For any open neighbourhood U(I) of the ideal I in SI
1 the set U(I) ∩B[0,∞) is

unbounded.

Lemma 4. Let U(I) be any open neighbourhood of the ideal I in SI
2 with the compact

closure U(I). Then there exist finite subsets B and C of non-negative real numbers such
that

SI
2 \ U(I) ⊆

⊔
α∈B

L+
α ⊔

⊔
α∈C

L−
α .

Proof. Since U(I) \ U(I) is compact subset in SI
2 , U(I) \ U(I) is compact subset in B2

[0,∞).
The equality B2

[0,∞) =
⊕

α∈[0,+∞) L
+
α⊕
⊕

α∈(0,+∞) L
−
α implies the statement of the lemma.

Lemma 5. For any non-negative real number α the sets L+
α ∪ I and L−

α ∪ I are compact.

Proof. First we show that there exists a non-negative real number α0 such that the sets
L+
α0

∪ I and L−
α0

∪ I are compact. We fix an arbitrary open neighbourhood U(I) of the ideal
I in SI

2 . By Lemma 4 L+
α ∪L−

α ⊆ U(I) for almost all but finitely many α ∈ [0,+∞). Without
loss of generality we may assume that the closure U(I) of U(I) is a compact subset of SI

2 .
Fix α0 ∈ [0,+∞) such that L+

α0
∪ L−

α0
⊆ U(I). Since L+

α0
and L−

α0
are open subsets of SI

2 , we
get that

L+
α ∪ I = SI

2 \

( ⋃
α0 ̸=α⩾0

L+
α ∪

⋃
α>0

L−
α

)
and L−

α ∪ I = SI
2 \

(⋃
α>0

L+
α ∪

⋃
α0 ̸=α⩾0

L−
α

)

are closed subsets of U(I), and hence they are compact.
We observe that

(x, x+ α0) · (α0, α) = (x, x+ α) and (α, α0) · (x+ α0, x) = (x+ α, x)

in B[0,∞) for any non-negative real numbers α, α0 and x. This implies that ρ(α0,α)(L
+
α0
) = L+

α

and λ(α,α0)(L
−
α0
) = L−

α , where ρ(α0,α) : S
I
2 → SI

2 and λ(α,α0) : S
I
2 → SI

2 are right and left shifts
on elements (α0, α) and (α, α0), respectively. Since SI

2 is a semitopological semigroup, the
sets ρ(α0,α)(L

+
α0

∪ I) ∪ I = L+
α ∪ I and λ(α,α0)(L

−
α0

∪ I) ∪ I = L−
α ∪ I are compact.

Lemma 6. Let U(I) be any open neighbourhood of the ideal I in SI
2 with compact closure

U(I). Then for any non-negative real number α the sets L+
α \U(I) and L−

α \U(I) are compact.
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Proof. By Lemma 5 for any non-negative real number α the sets L+
α ∪ I and L−

α ∪ I are
compact. Since L+

α \ U(I) and L−
α \ U(I) are closed subsets of L+

α ∪ I and L−
α ∪ I, they are

compact.

Lemmas 3, 4, 5, and 6 imply the following theorem.

Theorem 3. Let SI
2 be a Hausdorff locally compact semitopological semigroup B2

[0,∞) with
an adjoined compact ideal I. Then either I is an open subset of SI

2 or the space SI
2 is compact.

Next we need some notions for the further construction. For the natural partial order ≼
on the semigroup B[0,∞) and any (a, b) ∈ B[0,∞) we denote

↑≼(a, b) =
{
(x, y) ∈ B[0,∞) : (a, b) ≼ (x, y)

}
;

↓≼(a, b) =
{
(x, y) ∈ B[0,∞) : (x, y) ≼ (a, b)

}
;

↓◦≼(a, b) = ↓≼(a, b) \ {(a, b)} .

The following statement describes the natural partial order ≼ on the semigroup B[0,∞)

and it follows from Lemma 1 of [25].

Lemma 7. Let (a, b) and (c, d) be arbitrary elements of the semigroup B[0,∞). Then the
following statements are equivalent:

(i) (a, b) ≼ (c, d);

(ii) a ⩾ c and a− b = c− d;

(iii) b ⩾ d and a− b = c− d.

Lemma 7 implies that for any non-negative real number α the set L+
α coincides with

all elements of B[0,∞) which are comparable with (0, α), and the set L−
α coincides with all

elements of B[0,∞) which are comparable with (α, 0) with the respact to the natural partial
order ≼ on the semigroup B[0,∞). Hence we have that L+

α = ↓≼(0, α) and L−
α = ↓≼(α, 0).

Simple calculations and routine verifications show the following proposition.

Proposition 3. Let α and β be non-negative real numbers. Then the following statements
hold:

(i) L+
α · L+

β = L+
α+β;

(ii) L−
α · L−

β = L−
α+β;

(iii) L+
α · L−

β =

{
L+
α−β, if α ⩾ β;

L−
β−α, if α ⩽ β;

(iv) L−
β · L+

α = ↓≼(β, α) ⊆

{
L+
α−β, if α ⩾ β;

L−
β−α, if α ⩽ β.

Lemma 8. For arbitrary (a0, b0), (a1, b1) ∈ B[0,∞) there exists (c, d) ∈ B[0,∞) such that
(a0, b0) · (c, d) ≼ (a1, b1) [(c, d) · (a0, b0) ≼ (a1, b1)].

Moreover, (a0, b0) · (x, y) ≼ (a1, b1) [(x, y) · (a0, b0) ≼ (a1, b1)] for any (x, y) ≼ (c, d) in B[0,∞).
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Proof. We assume that c ⩾ a1+a0+b0 and d = a0+c−b0−a1+b1. The semigroup operation
of B[0,∞) implies that

(a0, b0) · (c, d) = (a0, b0) · (c, a0 + c− b0 − a1 + b1) = (a0 − b0 + c, a0 + c− b0 − a1 + b1).

Then a0 − b0 + c ⩾ a1 and

(a0 − b0 + c)− (a0 + c− b0 − a1 + b1) = a0 − b0 + c− a0 − c+ b0 + a1 − b1 = a1 − b1,

and hence by Lemma 7 we get that (a0, b0) ·(c, d) ≼ (a1, b1). The last statement of the lemma
follows from Proposition 1.4.7 of [32]. The proof of the dual statement is similar.

Lemma 8 implies the following proposition.

Proposition 4. If (a0, b0) · ↓≼(c0, d0) ⊆ ↓≼(a1, b1) [↓≼(c0, d0) · (a0, b0) ⊆ ↓≼(a1, b1)] for some
(a0, b0), (a1, b1), (c0, d0) ∈ B[0,∞), then

(a0, b0) · ↓◦≼(c0, d0) ⊆ ↓◦≼(a1, b1)
[
↓◦≼(c0, d0) · (a0, b0) ⊆ ↓◦≼(a1, b1)

]
.

Example 2. Let S0
2 be the semigroup B2

[0,∞) with an adjoined zero 0. We extend the
topology of B2

[0,∞) up to a compact topology τ 2Ac on the semigroup S0
2 in the following way.

For any (a1, b1), . . . , (ak, bk) ∈ B1
[0,∞) we put

U0[(a1, b1), . . . , (ak, bk)] = S0
2 \ (↑≼(a1, b1) ∪ · · · ∪ ↑≼(ak, bk))

and define

B2
Ac(0) =

{
U0[(a1, b1), . . . , (ak, bk)] : (a1, b1), . . . , (ak, bk) ∈ B[0,∞), k ∈ N

}
is the system of open neighbourhoods of zero in τ 2Ac.

Proposition 5. (S0
2 , τ

2
Ac) is a compact Hausdorff semitopological semigroup with continuous

inversion.

Proof. It is obvious that τ 2Ac is a compact Hausdorff topology on S0
2 . Moreover (S0

2 , τ
2
Ac) is

the one-point Alexandroff compactification of the locally compact space B2
[0,∞) such that the

singleton set {0} which consists of the zero of S0
2 is its remainder.

By [4], B2
[0,∞) is a topological inverse semigroup, and hence it sufficient to show that the

the semigroup operation on (S0
2 , τ

2
Ac) is separately continuous at zero.

Fix an arbitrary U0[(a1, b1), . . . , (ak, bk)] ∈ B2
Ac(0).

It is obvious that

0 · U0[(a1, b1), . . . , (ak, bk)] = U0[(a1, b1), . . . , (ak, bk)] · 0 = {0} ⊆ U0[(a1, b1), . . . , (ak, bk)].

By Lemma 8 for an arbitrary (a, b) ∈ B[0,∞) there exist
(c1, d1), . . . , (ck, dk), (x1, y1), . . . , (xk, yk) ∈ B[0,∞)

such that (a, b) · (ci, di) ≼ (ai, bi) and (xi, yi) · (a, b) ≼ (ai, bi) for all i = 1, . . . , k. By Proposi-
tion 4 we have that (a, b) · ↓◦≼(ci, di) ⊆ ↓◦≼(ai, bi) and ↓◦≼(xi, yi) · (a, b) ⊆ ↓◦≼(ai, bi) for all
i = 1, . . . , k. This and Proposition 3 imply that

(a, b) · U0[(c1, d1), . . . , (ck, dk)] ⊆ U0[(a1, b1), . . . , (ak, bk)]

and
U0[(x1, y1), . . . , (xk, yk)] · (a, b) ⊆ U0[(a1, b1), . . . , (ak, bk)],

and hence the semigroup operation on (S0
2 , τ

2
Ac) is separately continuous.

Since (U0[(a1, b1), . . . , (ak, bk)])
−1 = U0[(b1, a1), . . . , (bk, ak) for any (a1, b1), . . . , (ak, bk) ∈

B[0,∞) the inversion on (S0
2 , τ

2
Ac) is continuous.
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Theorem 3 and Proposition 5 imply the following theorem.

Theorem 4. Let S0
2 be a Hausdorff locally compact semitopological semigroup B2

[0,∞) with
an adjoined zero 0. Then either 0 is an isolated point of S0

2 or the topology of S0
2 coincides

with τ 2Ac.

Since the bicyclic monoid does not embeds into any Hausdorff compact topological semi-
group [5] and the semigroup B[0,∞) contains many isomorphic copies of the bicyclic semi-
group, Theorems 3 and 4 imply the following corollaries.

Corollary 3. Let SI
2 be a Hausdorff locally compact topological semigroup B2

[0,∞) with an
adjoined compact ideal I. Then I is an open subset of SI

2 .

Corollary 4. Let S0
2 be a Hausdorff locally compact topological semigroup B2

[0,∞) with an
adjoined zero 0. Then 0 is an isolated point of S0

2 .

4. A locally compact semigroup Bd
[0,∞) with an adjoined compact ideal. Later in

this section by S0
d we denote a Hausdorff locally compact semitopological semigroup which

is the semigroup Bd
[0,∞) with an adjoined zero 0.

Lemma 9. Let U(0) be an open neighbourhood of zero with the compact closure U(0) in
S0
d . Then for any (a, b) ∈ B[0,∞) the set ↑≼(a, b) ∩ U(0) is finite.

Proof. Suppose to the contrary that there exists an open neighbourhood of zero with the
compact closure U(0) in S0

d such that the set ↑≼(a, b) ∩ U(0) is infinite. By Remark 1 we
have that

↑≼(a, b) =
{
(x, y) ∈ B[0,∞) : (a, a)(x, y) = (a, b)

}
,

and hence the Hausdorffness of S0
d and separate continuity of the semigroup operation on

S0
d imply that ↑≼(a, b) is a closed subset of S0

d . Hence, ↑≼(a, b) ∩ U(0) is a compact infinite
discrete space, a contradiction. The obtained contradiction implies the statement of the
lemma.

We observe that since Bd
[0,∞) is a discrete subspace of S0

d , any open neighbourhood of
zero U(0) is closed. Lemma 9 implies the following corollary.

Corollary 5. For any open compact neighbourhood U(0) of zero in S0
d and any real number

α ∈ [0,∞) the set L+
α∩U(0) (L−

α∩U(0)) either contains a maximal elements (with the respect
to the natural partial order on B[0,∞)) or is empty.

Lemma 10. If S0
d admits the structure of a Hausdorff locally compact semitopological

semigroup with a nonisolated zero, then there exists no open compact neighbourhood U(0)
of zero in S0

d such that the sets L+
α ∩ U(0) and L+

α ∩ U(0) are finite for all α ∈ [0,∞).

Proof. Suppose to the contrary that there exists an open compact neighbourhood U(0) of
zero in S0

d such that the sets L+
α ∩U(0) and L+

α ∩U(0) are finite for all α ∈ [0,∞). Separate
continuity of the semigroup operation in S0

d implies that there exists an open compact
neighbourhood V (0) ⊆ U(0) of zero in S0

d such that (1, 0) · V (0) · (0, 1) ⊆ U(0). This
inclusion implies that U(0) \ V (0) is an infinite subsets of isolated points, which contradicts
the compactness of U(0). The obtained contradiction implies the statement of the lemma.
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Lemma 11. If S0
d admits the structure of a Hausdorff locally compact semitopological

semigroup with a nonisolated zero, then for any open compact neighbourhood U(0) of zero
in S0

d the sets L+
α ∩ U(0) and L−

α ∩ U(0) are infinite for all α ∈ [0,∞).

Proof. By Lemma 10 there exists α0 ∈ [0,∞) such that at least one of the sets L+
α0

∩ U(0)
or L−

α0
∩ U(0) is infinite. Without loss of generality we may assume that the set L+

α0
∩ U(0)

is infinite. Separate continuity of the semigroup operation of S0
d implies that there exists an

open compact neighbourhood V (0) ⊆ U(0) of zero in S0
d such that V (0) · (α0, 0) ⊆ U(0).

Since Bd
[0,∞) is a discrete subspace of S0

d and U(0) is compact, the set L+
0 ∩U(0) is infinite. By

the similar way we get that for any β0 ∈ (0,∞) there exists an open compact neighbourhood
W (0) ⊆ U(0) such that (β0, 0) ·W (0) ⊆ U(0) and W (0) · (0, β0) ⊆ U(0). Since W (0) and
U(0) are compact, L+

0 ∩W (0) is an infinite set, and hence the sets L+
β0
∩U(0) and L−

β0
∩U(0)

are infinite.

Lemma 12. If S0
d admits the structure of a Hausdorff locally compact semitopological

semigroup with a nonisolated zero, then there exists an open compact neighbourhood U(0)
of zero in S0

d such that L+
0 ∩ U(0) = ∅.

Proof. By Lemma 11 for any compact open neighbourhood U(0) of zero in S0
d the set L+

0 ∩
U(0) is infinite. For any positive integer n0 by Lemma 9 the set ↑≼(n0, n0)∩U(0) is finite. This
implies that the set L+

0 ∩ U(0) is countable. Let L+
0 ∩ U(0) =

{
(ai, ai) : ai ∈ Bd

[0,∞), i ∈ ω
}
.

Put M = {aj − ai : i, j ∈ ω, i < j}. The set M is countable as a countable union of a family of
countable sets. Then there exists α ∈ (0,∞)\M . Then for any open compact neighbourhood
V (0) ⊆ U(0) of zero in S0

d the following inclusion (α, 0) · V (0) · (0, α) ⊆ U(0) does not hold,
because (α, 0) · L+

0 · (0, α) ⊆ L+
0 . This contradicts the separate continuity of the semigroup

operation of S0
d . The obtained contradiction implies the statement of the lemma.

If we assume that S0
d admits the structure of a Hausdorff locally compact semitopological

semigroup with a nonisolated zero, then we get Lemma 12 and Lemma 11. But the statement
of Lemma 12 contradicts to Lemma 11. Hence the following theorem holds.

Theorem 5. Let S0
d be a Hausdorff locally compact semitopological semigroup which is the

semigroup Bd
[0,∞) with an adjoined zero 0. Then 0 is an isolated point of S0

d .

Later we need the following trivial lemma, which follows from separate continuity of the
semigroup operation in semitopological semigroups.

Lemma 13. Let S be a Hausdorff semitopological semigroup and I be a compact ideal
in S. Then the Rees-quotient semigroup S/I with the quotient topology is a Hausdorff
semitopological semigroup.

Theorem 6. Let SI
d = Bd

[0,∞)⊔ I be a Hausdorff locally compact semitopological semigroup
which is the semigroup Bd

[0,∞) with an adjoined compact ideal I. Then I is an open subset
of SI

d .

Proof. Suppose to the contrary that I is not open SI
d . By Lemma 13 the Rees-quotient

semigroup SI
d/I with the quotient topology τq is a semitopological semigroup. Let π : SI

d →
SI
d/I be the natural homomorphism which is a quotient map. It is obvious that the Rees-

quotient semigroup SI
d/I is isomorphic to the semigroup S0

d , and hence without loss of
generality we may assume that π(SI

d ) = S0
d and the image π(I) is zero of S0

d .
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By Lemma 3.16 of [24] there exists an open neighbourhood U(I) of the ideal I with the
compact closure U(I). Since every point of Bd

[0,∞) is isolated in SI
d we have that U(I) =

U(I) and its image π(U(I)) is a compact-and-open neighbourhood of zero in S0
d . Hence

S0
d is Hausdorff locally compact space. By Theorem 5, 0 is an isolated point of S0

d . Since
π : SI

d → SI
d/I is a quotient map, I is an open subset of SI

d .
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