УДК 517.98, 517.5

YA. MYKYTYUK, N. SUSHCHYK

REFLECTIONLESS SCHRÖDINGER OPERATORS AND MARCHENKO PARAMETRIZATION

Ya. Mykytyuk, N. Sushchyk. *Reflectionless Schrödinger operators and Marchenko parametri*zation, Mat. Stud. **61** (2024), 79–83.

Let $T_q = -d^2/dx^2 + q$ be a Schrödinger operator in the space $L_2(\mathbb{R})$. A potential q is called reflectionless if the operator T_q is reflectionless. Let \mathcal{Q} be the set of all reflectionless potentials of the Schrödinger operator, and let \mathcal{M} be the set of nonnegative Borel measures on \mathbb{R} with compact support. As shown by Marchenko, each potential $q \in \mathcal{Q}$ can be associated with a unique measure $\mu \in \mathcal{M}$. As a result, we get the bijection $\Theta: \mathcal{Q} \to \mathcal{M}$. In this paper, we show that one can define topologies on \mathcal{Q} and \mathcal{M} , under which the mapping Θ is a homeomorphism.

1. Introduction. In the Hilbert space $L_2(\mathbb{R})$, we consider the self-adjoint and bounded below Schrödinger operator T_q generated by the differential expression

$$\mathfrak{t}_q(f) = -f'' + qf$$

with a locally integrable real-valued potential $q \in L_{1,\text{loc}}(\mathbb{R})$. For an arbitrary $z \in \mathbb{C} \setminus \mathbb{R}$, the equation $\mathfrak{t}_q(f) = zf$ has unique solutions $f_{\pm}(\cdot, z, q)$ that are square integrable on \mathbb{R}_+ and \mathbb{R}_- , respectively, and satisfy the condition $f_{\pm}(0, z, q) = 1$. The formula

$$m_{\pm}(z) := m_{\pm}(z,q) := f'_{\pm}(0,z,q)$$

defines the Weyl-Titchmarsh *m*-functions on the half-lines \mathbb{R}_+ and \mathbb{R}_- , respectively. It is known (see [1]) that the pair (m_+, m_-) uniquely determines the potential q. We call the operator T_q (a potential q) reflectionless (see [2]) if the function

$$n_q(\lambda) := \begin{cases} m_+(\lambda^2), & \operatorname{Im} \lambda > 0, \ \operatorname{Re} \lambda \neq 0; \\ m_-(\lambda^2), & \operatorname{Im} \lambda < 0, \ \operatorname{Re} \lambda \neq 0 \end{cases}$$
(1)

has an analytic continuation to the domain $\mathbb{C} \setminus i\mathbb{R}$. We can also suggest (see [3] and [4]) an equivalent definition of the reflectionless potential q in terms of the limiting values of the functions m_{\pm} on $(0, \infty)$.

Denote by \mathcal{Q} the set of all reflectionless potentials q, and by \mathcal{M} the set of nonnegative Borel measures on \mathbb{R} with compact support. If $q \in \mathcal{Q}$, there exists a unique measure $\nu_q \in \mathcal{M}$ such that, for λ with $\operatorname{Im} \lambda \cdot \operatorname{Re} \lambda \neq 0$,

$$n_q(\lambda) = i\lambda + \int \frac{d\nu_q(t)}{t - i\lambda}.$$

²⁰²⁰ Mathematics Subject Classification: 34B20, 34L40.

Keywords: Schrödinger operator; reflectionless potential; homeomorphism. doi:10.30970/ms.61.1.79-83

As shown in [2], the mapping

$$\mathcal{Q} \ni q \stackrel{\Theta}{\mapsto} \nu_q \in \mathcal{M} \tag{2}$$

is bijective, so that the set Q is parameterized by elements of the set \mathcal{M} . This parameterization is called the Marchenko parametrization.

In the present paper, we show that one can define topologies on \mathcal{Q} and \mathcal{M} , under which the mapping (2) is a homeomorphism. To formulate the main result of the paper, let us introduce some notations.

For a measure $\mu \in \mathcal{M}$, we define the numerical characteristics

$$\alpha(\mu) := \sup\{|\lambda| \mid \lambda \in \operatorname{supp} \mu\}, \qquad \gamma(\mu) := \alpha^2(\mu) + \mu(\mathbb{R})$$

and for an arbitrary $n \in \mathbb{N}$, we put

$$\mathcal{Q}(n) := \{ q \in \mathcal{Q} \mid \|q\|_{\infty} \le n \}, \qquad \mathcal{M}(n) := \{ \mu \in \mathcal{M} \mid \gamma(\mu) \le n \}.$$

We define the topology of uniform convergence on compact subsets of \mathbb{R} on the set $\mathcal{Q}(n)$ and the topology of weak convergence on the set $\mathcal{M}(n)$. It turns out that the topological spaces $\mathcal{Q}(n)$ and $\mathcal{M}(n)$ are metric compacts (see Section 2). Observe that if $q \in \mathcal{Q}$, then $q \leq 0$.

We denote by φ_n the embedding $\mathcal{Q}(n)$ in \mathcal{Q} and equip \mathcal{Q} with the inductive topology with respect to the family $\{(\mathcal{Q}(n), \varphi_n)\}_{n \in \mathbb{N}}$. Analogously, we denote by ψ_n the embedding $\mathcal{M}(n)$ in \mathcal{M} and equip \mathcal{M} with the inductive topology with respect to $\{(\mathcal{M}(n), \psi_n)\}_{n \in \mathbb{N}}$.

The main result of this paper is:

Theorem 1. The mapping Θ is a homeomorphism from \mathcal{Q} to \mathcal{M} .

Note that there are similar but different results in the papers [2, 3].

2. Preliminaries. For an arbitrary real-valued potential $q \in L_{\infty}(\mathbb{R})$, we put

$$\beta(q) := -\inf\{\lambda \mid \lambda \in \sigma(T_q)\},\$$

where $\sigma(T_q)$ is the spectrum of the operator T_q . The results of [2] (see Theorem 2.1 and Lemma 1.4) imply that the following theorem holds.

Theorem 2. Let $q \in \mathcal{Q}$ and $\mu = \Theta(q)$. Then

$$\beta(q) \le \gamma(\mu) \le 2\beta(q), \quad \|q\|_{\infty} \le 2\beta(q). \tag{3}$$

Corollary 1. Let $n \in \mathbb{N}$. Then

$$\Theta(\mathcal{Q}(n)) \subset \mathcal{M}(2n), \quad \Theta^{-1}(\mathcal{M}(n)) \subset \mathcal{Q}(2n), \\ \mathcal{M}(n) \subset \Theta(\mathcal{Q}(2n)), \quad \mathcal{Q}(n) \subset \Theta^{-1}(\mathcal{M}(2n)).$$

$$\tag{4}$$

Proof. Take $q \in \mathcal{Q}$; then, obviously, $\beta(q) \leq ||q||_{\infty}$, and in view of (3), we have that

$$\gamma(\mu) \le 2 \|q\|_{\infty}, \quad \|q\|_{\infty} \le 2\gamma(\mu).$$

Inclusions (4) follow from these inequalities.

Recall that the set $\mathcal{Q}(n)$ is equipped with the topology of uniform convergence on compact subsets of \mathbb{R} . In view of [2], for an arbitrary $n \in \mathbb{N}$ the space $\mathcal{Q}(n)$ is countably compact. Since the topology on $\mathcal{Q}(n)$ is generated by the metric

$$d(q_1, q_2) := \max_{x \in \mathbb{R}} (1 + x^2)^{-1} |q_1(x) - q_2(x)|, \qquad q_1, q_2 \in \mathcal{Q}(n),$$
(5)

for an arbitrary $n \in \mathbb{N}$ the space $\mathcal{Q}(n)$ is a metric compact.

Denote by $C_0(\mathbb{R})$ the space of all complex-valued continuous functions on \mathbb{R} with compact support. For each measure $\mu \in \mathcal{M}$ and each function $f \in C_0(\mathbb{R})$, we put

$$(\mu, f) := \int_{\mathbb{R}} f \, d\mu.$$

We equip the set $\mathcal{M}(n)$ with the topology of weak convergence, i.e., a sequence $(\mu_j)_{j\in\mathbb{N}}$ in $\mathcal{M}(n)$ is convergent to $\mu \in \mathcal{M}(n)$ if and only if $\lim_{j\to\infty} (\mu_j, f) = (\mu, f)$ for all $f \in C_0(\mathbb{R})$.

By Helly's theorems (see [5]), for every $n \in \mathbb{N}$ the space $\mathcal{M}(n)$ is countably compact. Note that the topology of the space $\mathcal{M}(n)$ is metrizable. Indeed, there exists a countable set $\{\varphi_k\}_{k\in\mathbb{N}}$ in $C_0(\mathbb{R})$ with the topology of uniform convergence such that its linear span $\lim \{\varphi_k\}_{k\in\mathbb{N}}$ is everywhere dense in $C_0(\mathbb{R})$ and $\|\varphi_k\|_{\infty} = 1$ for all $k \in \mathbb{N}$. It is easy to see that the metric

$$d(\mu,\nu) := \sum_{k \in \mathbb{N}} 2^{-k} |(\mu - \nu, \varphi_k)|, \qquad \mu, \nu \in \mathcal{M},$$

generates the topology of weak convergence on $\mathcal{M}(n)$, and hence $\mathcal{M}(n)$ is a metric compact.

Let $q \in \mathcal{Q}$. Denote by $s(\cdot, z, q)$ and $c(\cdot, z, q)$ the solutions of the equation

$$-f'' + q(x)f = zf, \qquad x \in \mathbb{R}$$

which satisfy the initial data

$$c(0, z, q) = s'(0, z, q) = 1,$$
 $c'(0, z, q) = s(0, z, q) = 0.$

Then $f_+(x, z, q) = c(x, z, q) + m_+(z, q)s(x, z, q)$ for an arbitrary $z \in \mathbb{C} \setminus \mathbb{R}$. According to the classical Weyl theorem (see [6]) the equality

$$\int_{0}^{+\infty} |f_{+}(x, z, q)|^{2} dx = \frac{\operatorname{Im} m_{+}(z, q)}{\operatorname{Im} z}$$

holds. If $\lambda \in \Omega := \{\zeta \in \mathbb{C} \mid 0 < \arg \zeta < \pi/2\}$, then (see (1))

$$f_+(x,\lambda^2,q) = c(x,\lambda^2,q) + n_q(\lambda)s(x,\lambda^2,q),$$
(6)

and thus

$$\int_{0}^{+\infty} |f(x,\lambda^2,q)|^2 dx = \frac{\operatorname{Im} n_q(\lambda)}{2\operatorname{Im} \lambda \operatorname{Re} \lambda}.$$
(7)

3. Proof of Theorem 1.

Lemma 1. Let $n \in \mathbb{N}$. The mapping Θ^{-1} acts continuously from the space $\mathcal{M}(n)$ into the space $\mathcal{Q}(2n)$.

Proof. Since the spaces $\mathcal{M}(n)$ and $\mathcal{Q}(2n)$ are metric compacts, it suffices to prove that if a sequence $(\mu_k)_{k\in\mathbb{N}}$ converges to $\mu \in \mathcal{M}(n)$ in $\mathcal{M}(n)$, then the sequence $q_k = \Theta^{-1}(\mu_k), k \in \mathbb{N}$, converges to $q = \Theta^{-1}(\mu)$ in $\mathcal{Q}(2n)$. The proof is divided into two parts.

Part 1: Let a sequence $(\mu_k)_{k\in\mathbb{N}}$ converge to $\mu \in \mathcal{M}(n)$ in the space $\mathcal{M}(n)$ and $q_k := \Theta^{-1}(\mu_k)$, $k \in \mathbb{N}$. In view of (4), the sequence $(q_k)_{k\in\mathbb{N}}$ belongs to $\mathcal{Q}(2n)$. Since $\mathcal{Q}(2n)$ is a countable compact, from the sequence $(q_k)_{k\in\mathbb{N}}$ one can choose a subsequence $(\widetilde{q}_k)_{k\in\mathbb{N}}$, which converges to a function \widetilde{q} in the space $\mathcal{Q}(2n)$. Let us show that $\widetilde{q} = \Theta^{-1}(\mu)$.

Fix an arbitrary $\lambda \in \Omega$. Since $\sup_{k \in \mathbb{N}} \|\widetilde{q}_k\|_{\infty} \leq 2n$, it is easy to check that the sets

$$\{c(\cdot,\lambda^2,\widetilde{q}_k)\}_{k\in\mathbb{N}},\qquad \{s(\cdot,\lambda^2,\widetilde{q}_k)\}_{k\in\mathbb{N}}$$

are relatively compact subsets in each space $C^2[-m,m]$ $(m \in \mathbb{N})$. Thus, using Cantor's diagonal process, from the sequence $(\tilde{q}_k)_{k\in\mathbb{N}}$ one can choose a subsequence $(\hat{q}_k)_{k\in\mathbb{N}}$ such that the sequences

$$(c(\cdot,\lambda^2,\widehat{q}_k))_{k\in\mathbb{N}}, \qquad (s(\cdot,\lambda^2,\widehat{q}_k))_{k\in\mathbb{N}}$$

converge in each space $C^2[-m,m]$ $(m \in \mathbb{N})$. It is obvious that those sequences converge to the functions $c(\cdot, \lambda^2, \tilde{q})$ and $s(\cdot, \lambda^2, \tilde{q})$, respectively.

It follows from (6) and (7) that for all $k \in \mathbb{N}$

$$f_{+}(x,\lambda^{2},\widehat{q}_{k}) = c(x,\lambda^{2},\widehat{q}_{k}) + n_{\widehat{q}_{k}}(\lambda)s(x,\lambda^{2},\widehat{q}_{k}), \qquad x \in \mathbb{R},$$
(8)

and

$$\int_{0}^{+\infty} |f(x,\lambda^2,\widehat{q}_k)|^2 dx = \frac{\operatorname{Im} n_{\widehat{q}_k}(\lambda)}{2\operatorname{Im} \lambda \operatorname{Re} \lambda},\tag{9}$$

where

$$n_{\widehat{q}_k}(\lambda) = i\lambda + \int \frac{d\widehat{\mu}_k(t)}{t - i\lambda}, \qquad \widehat{\mu}_k = \Theta(\widehat{q}_k).$$

Since the sequence $(\widehat{\mu}_k)_{k\in\mathbb{N}}$ converges weakly to μ , then $\lim_{k\to\infty} n_{\widehat{q}_k}(\lambda) = n_q(\lambda)$, where $q = \Theta^{-1}(\mu)$. Taking into account (8) and (9), we obtain that the sequence $(f_+(\cdot, \lambda^2, \widehat{q}_k))_{k\in\mathbb{N}}$ converges to the solution

$$y(x) = c(x, \lambda^2, \widetilde{q}) + n_q(\lambda)s(x, \lambda^2, \widetilde{q}), \qquad x \in \mathbb{R},$$

of the equation $\mathfrak{t}_q(f) = \lambda^2 f$ uniformly on compacts, moreover, $y \in L_2(\mathbb{R}_+)$ and y(0) = 1. Uniqueness of the right Weyl–Titchmarsh solution (see [2]) implies that $y = f_+(\cdot, \lambda^2, \tilde{q})$, and, hence,

$$n_{\widetilde{q}}(\lambda) = f'_+(0,\lambda^2,\widetilde{q}) = y'(0) = n_q(\lambda).$$

Since $\lambda \in \Omega$ is arbitrary, we conclude that $n_{\tilde{q}} = n_q$. It means that $\tilde{q} = q = \Theta^{-1}(\mu)$.

Part 2: Let a sequence $(\mu_k)_{k\in\mathbb{N}}$ converge to $\mu \in \mathcal{M}(n)$ in $\mathcal{M}(n)$ and $q_k := \Theta^{-1}(\mu_k), k \in \mathbb{N}$. Assume the sequence $(q_k)_{k\in\mathbb{N}}$ does not converge in $\mathcal{Q}(2n)$. Since the space $\mathcal{Q}(2n)$ is metric compact, the set of accumulation points of the set $\{q_k\}_{k\in\mathbb{N}}$ contains at least two points. Thus from the sequence $(q_k)_{k\in\mathbb{N}}$ one can choose two subsequences, which converge to some functions u_1 and u_2 , respectively, moreover, $u_1 \neq u_2$. But it follows from Part 1 that $u_1 = \Theta^{-1}(\mu) = u_2$. We have got a contradiction. The proof is complete.

Lemma 2. Let $n \in \mathbb{N}$. The mapping Θ acts continuously from the space $\mathcal{Q}(n)$ into the space $\mathcal{M}(2n)$.

Proof. Let $n \in \mathbb{N}$. By Lemma 1 the mapping Θ^{-1} acts continuously and injective from the metric compact $\mathcal{M}(2n)$ into the metric compact $\mathcal{Q}(4n)$. Thus the image $\Theta^{-1}(\mathcal{M}(2n))$ is a metric compact with the metric (5). Therefore the mapping

$$\Theta^{-1} \colon \mathcal{M}(2n) \to \Theta^{-1}(\mathcal{M}(2n))$$

is a homeomorphism. Hence the mapping

$$\Theta \colon \Theta^{-1}(\mathcal{M}(2n)) \to \mathcal{M}(2n)$$

is continuous. In view of (4), we have $\mathcal{Q}(n) \subset \Theta^{-1}(\mathcal{M}(2n))$. Thus the mapping $\Theta \colon \mathcal{Q}(n) \to \mathcal{M}(2n)$ is continuous too.

Proof of Theorem 1. The closure of a set F (the set G) in $\mathcal{Q}(\mathcal{M})$ is equivalent to the fact that for all $n \in \mathbb{N}$ the set $F \cap \mathcal{Q}(n)$ ($G \cap \mathcal{M}(n)$) is closed in the space $\mathcal{Q}(n)$ (in the space $\mathcal{M}(n)$). Note that if the set F (G) belongs to $\mathcal{Q}(n)(\mathcal{M}(n))$ and is closed in $\mathcal{Q}(m)(\mathcal{M}(m))$, $n \leq m$, then it is closed in $\mathcal{Q}(n)(\mathcal{M}(n))$. Since the sets $\mathcal{Q}(n)(\mathcal{M}(n))$ are compacts, in view of Lemma 1 and 2 their images $\Theta(\mathcal{Q}(n))(\Theta^{-1}(\mathcal{M}(n)))$ are compacts in $\mathcal{M}(2n)(\mathcal{Q}(2n))$, and, hence, are closed in $\mathcal{M}(2n)(\mathcal{Q}(2n))$.

Let G be a closed set in the space \mathcal{M} . Let us show that the set $\Theta^{-1}(G)$ is closed in \mathcal{Q} . Indeed, for an arbitrary $n \in \mathbb{N}$

$$\Theta^{-1}(G) \cap \mathcal{Q}(n) = \Theta^{-1}[G \cap \Theta(\mathcal{Q}(n))].$$

Since the set $\Theta(\mathcal{Q}(n))$ is closed in $\mathcal{M}(2n)$, then $G \cap \Theta(\mathcal{Q}(n))$ is closed in $\mathcal{M}(2n)$. It follows from Lemma 2 that the set $\Theta^{-1}[G \cap \Theta(\mathcal{Q}(n))]$ is closed in $\mathcal{Q}(n)$ as the preimage of a closed set under a continuous map. Therefore, the set $\Theta^{-1}(G) \cap \mathcal{Q}(n)$ is closed in $\mathcal{Q}(n)$ for arbitrary $n \in \mathbb{N}$, and, hence, the set $\Theta^{-1}(G)$ is closed in \mathcal{Q} .

Analogously, we prove that if F is a closed set in \mathcal{Q} , then the set $\Theta(F)$ is closed in \mathcal{M} . It follows from the above that Θ is a homeomorphism between \mathcal{Q} and \mathcal{M} .

REFERENCES

- 1. B.M. Levitan, Inverse Sturm–Liouville Problem, VNU Science Press, Utrecht, 1987.
- 2. V.A. Marchenko, *The Cauchy problem for the KdV equation with nondecreasing initial data*, in: What is integrability?, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, 273–318.
- S. Kotani, KdV flow on generalized reflectionless potentials, Zh. Mat. Fiz. Anal. Geom., 4 (2008), №4, 490–528.
- I. Hur, M. McBride, and C. Remling, The Marchenko representation of reflectionless Jacobi and Schrödinger operators, Trans. AMS, 368 (2016), №2, 1251–1270.
- 5. F.V. Atkinson, Discrete and continuous boundary problems, Academic Press, New York, 1964.
- E.C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. V.1, Clarendon Press, Oxford, 1946.

Ivan Franko National University of Lviv Lviv, Ukraine yamykytyuk@yahoo.com n.sushchyk@gmail.com