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In this paper, we consider some numerical aspects of branched continued fractions as special
families of functions to represent and expand analytical functions of several complex variables,
including generalizations of hypergeometric functions. The backward recurrence algorithm is
one of the basic tools of computation approximants of branched continued fractions. Like most
recursive processes, it is susceptible to error growth. Each cycle of the recursive process not only
generates its own rounding errors but also inherits the rounding errors committed in all the
previous cycles. On the other hand, in general, branched continued fractions are a non-linear
object of study (the sum of two fractional-linear mappings is not always a fractional-linear
mapping). In this work, we are dealing with a confluent branched continued fraction, which is
a continued fraction in its form. The essential difference here is that the approximants of the
continued fraction are the so-called figure approximants of the branched continued fraction.
An estimate of the relative rounding error, produced by the backward recurrence algorithm
in calculating an nth approximant of the branched continued fraction expansion of Horn’s
hypergeometric function H4, is established. The derivation uses the methods of the theory
of branched continued fractions, which are essential in developing convergence criteria. The
numerical examples illustrate the numerical stability of the backward recurrence algorithm.

1. Introduction. Numerous studies show that branched continued fraction expansions
provide a useful means for representing and extending of special functions, including generali-
zed hypergeometric functions [3, 33], Appell’s hypergeometric functions [11, 20, 25], Horn’s
hypergeometric functions [2, 4, 5, 6, 15], Lauricella–Saran’s hypergeometric functions [1, 12,
24], and also some other functions [10, 17, 18, 29]. To render branched continued fractions
more useful in computational, one needs to know more about their numerical stability, which
is the main concern of this paper.

The backward recurrence algorithm for computing the nth approximant

fn = 1 + a1,0 +
a0,1

1 + a1,1 +
a0,2

1 + a1,2 +
a0,3

1 + ...+a1,n−2 +
a0,n−1

1 + a1,n−1 + a0,n
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of a branched continued fraction

1 + a1,0 +
a0,1

1 + a1,1 +
a0,2

1 + a1,2 +
a0,3

1 + ...

(1)

consists of setting G
(n)
n = 1 and computing successively, from tail to head,

G
(n)
k = 1 + a1,k +

a0,k+1

G
(n)
k+1

, n− 1 ≥ k ≥ 0.

Thus,
fn = G

(n)
0 .

It should be noted that the branched continued fraction (1) is a confluent branched
continued fraction, which is a continued fraction in its form. The essential difference here is
that the approximants of the continued fraction are the so-called figure approximants of the
branched continued fraction (see, [8, p. 18]).

Branched continued fractions of the structure (1) appeared thanks to works [4, 16] and
are related to Horn’s hypergeometric function H4 (see [23])

H4(a, b; c, d; z) =
∞∑

r,s=0

(a)2r+s(b)s
(c)r(d)s

zr1
r!

zs2
s!
, |z1| < p, |z2| < q,

where a, b, c, d ∈ C; c, d ̸∈ {0,−1,−2, . . .}; p and q are positive numbers such that 4p =
(q − 1)2 and q ̸= 1; (α)0 = 1 and (α)n = α(α + 1) . . . (α + n − 1), z = (z1, z2) ∈ C2. The
paper [4] provides the formal expansion

H4(a, b; c, b; z)

H4(a+ 1, b; c+ 1, b; z)
= 1− z2 −

h1z1

1− z2 −
h2z1

1− z2 −
h3z1

1− ...

, (2)

where

hk =
(2c− a+ k − 1)(a+ k)

(c+ k − 1)(c+ k)
, k ≥ 1, (3)

as well as,

H4(a, d+ 1; c, d; z)

H4(a+ 1, d+ 1; c, d+ 1; z)
= 1− d− a

d
z2 −

m1z1

1− z2 −
m2z1

1− z2 −
m3z1
1− ...

, (4)

where m1 =
2(a+ 1)

c
, mk =

(2c− a+ k − 3)(a+ k)

(c+ k − 2)(c+ k − 1)
(k ≥ 2), and

H4(a, d+ 1; c, d; z)

H4(a, d+ 2; c, d+ 1; z)
= 1 +

v0z2

1 + v1z2 +
u1z1

1 + v2z2 +
u2z1

1 + ...

, (5)
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where v0 =
a

d(d+ 1)
, v1 =

a

d+ 1
− 1, u1 = −2(a+ 1)

c
,

vk = −1, uk = −(2c− a+ k − 3)(a+ k)

(c+ k − 2)(c+ k − 1)
(k ≥ 2).

Some questions of convergence of the expansions (2), (4), and (5) were discussed in
[4, 13, 14, 15]. Numerical aspects related to the backward recurrence algorithm for computing
the approximants of continued fractions were considered in [7, 9, 27, 28, 30]. Some analogous
results concerning branched continued fractions can be found in [19, 21, 22, 25, 31, 32].

2. Estimates of relative rounding error. In this section, we will establish an estimate
of the relative rounding error produced by the backward recurrence algorithm in calculating
the nth approximant of (2).

Let us recall the necessary concepts. Let n be an arbitrary fixed natural number. For
each 1 ≤ k ≤ n, let â1,k−1 and â0,k denote rounded values of the elements a1,k−1 and a0,k,
respectively, of a given branched continued fraction (1). The number

f̂n = 1 + â1,0 +
â0,1

1 + â1,1 +
â0,2

1 + â1,2 +
â0,3

1 + ...+â1,n−2 +
â0,n−1

1 + â1,n−1 + â0,n

is the computed (approximate) value of fn = G
(n)
0 .

Definition 1. A numerical stability set Ω is a set to which for any ε > 0 one can find δ > 0
depending only on ε and Ω such that, for all n ≥ 1∣∣∣f̂n − fn

∣∣∣ < ε · |fn|

for every branched continued fraction (1) with all a1,k−1, a0,k ∈ Ω and â1,k−1, â0,k ∈ Ω such
that, for all k ≥ 1 ∣∣∣∣ â1,k−1 − a1,k−1

a1,k−1

∣∣∣∣ < δ and
∣∣∣∣ â0,k − a0,k

a0,k

∣∣∣∣ < δ.

We set

G(n)
n (z) = 1, n ≥ 1, (6)

and

G
(n)
k (z) = 1− z2 −

hk+1z1

1− z2 −
hk+2z1

1− ...−z2 −
hn−1z1

1− z2 − hnz1

for 1 ≤ k ≤ n− 1, n ≥ 2, where hk, 1 ≤ k ≤ n− 1, n ≥ 2, are defined by (3). It follows that

G
(n)
k (z) = 1− z2 −

hk+1z1

G
(n)
k+1(z)

, 1 ≤ k ≤ n− 1, n ≥ 2, (7)

and nth approximant of (2) we write as
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fn(z) = 1− z2 −
h1z1

G
(k)
1 (z)

.

Let α1, α2, and βk, 1 ≤ k ≤ n, denote the relative errors in the rounded values ẑ1, ẑ2,
and ĥk, 1 ≤ k ≤ n, of z1, z2, and hk, 1 ≤ k ≤ n, respectively, so that

ẑ1 = z1(1 + α1), ẑ2 = z2(1 + α2), ĥk = hk(1 + βk), 1 ≤ k ≤ n. (8)

Similarly, let ε
(n)
k , 0 ≤ k ≤ n, denote the relative errors in Ĝ

(n)
k (ẑ), the approximation to

G
(n)
k (z) from (6)–(7) and

G
(n)
0 (z) = 1− z2 −

h1z1

G
(n)
1 (z)

using ẑ1, ẑ2, and ĥk, 1 ≤ k ≤ n. Thus,

Ĝ
(n)
k (ẑ) = G

(n)
k (z)(1 + ε

(n)
k ), 0 ≤ k ≤ n, (9)

and

Ĝ(n)
n (ẑ) = G(n)

n (z) = 1, and ε(n)n = 0. (10)

Also, for convenience, let α̂1, α̂2, β̂k, 1 ≤ k ≤ n, and ε̂
(n)
k , 0 ≤ k ≤ n, denote the relative

errors defined by z1 = ẑ1(1 + α̂1), z2 = ẑ2(1 + α̂2), hk = ĥk(1 + β̂k), 1 ≤ k ≤ n, and
G

(n)
k (z) = Ĝ

(n)
k (ẑ)(1 + ε̂

(n)
k ), 0 ≤ k ≤ n,

respectively.
Next, we establish recurrence relations for relative errors ε

(n)
k , 0 ≤ k ≤ n − 1. For

arbitrary k, 0 ≤ k ≤ n− 1, one obtains

ε
(n)
k =

Ĝ
(n)
k (ẑ)−G

(n)
k (z)

G
(n)
k (z)

=
1

G
(n)
k (z)

(
1− ẑ2 −

ĥk+1ẑ1

Ĝ
(n)
k+1(ẑ)

)
− 1 =

=
1

G
(n)
k (z)

(
1− z2(1 + α2)−

hk+1(1 + βk+1)z1(1 + α1)

G
(n)
k+1(z)(1 + ε

(n)
k+1)

)
− 1 =

=
1

G
(n)
k (z)

− z2(1 + α2)

G
(n)
k (z)

−
hk+1(1 + βk+1)z1(1 + α1)(1 + ε̂

(n)
k+1)

G
(n)
k (z)G

(n)
k+1(z)

− 1.

It follows from (7) that
1

G
(n)
k (z)

= 1 +
z2

G
(n)
k (z)

+
hk+1z1

G
(n)
k (z)G

(n)
k+1(z)

.

Then,

ε
(n)
k =

z2

G
(n)
k (z)

− z2(1 + α2)

G
(n)
k (z)

− hk+1z1

G
(n)
k (z)G

(n)
k+1(z)

((1 + βk+1)(1 + α1)(1 + ε̂
(n)
k+1)− 1) =

= − z2α2

G
(n)
k (z)

− hk+1z1

G
(n)
k (z)Ĝ

(n)
k+1(ẑ)

(βk+1 + α1 + βk+1α1)−
hk+1z1

G
(n)
k (z)G

(n)
k+1(z)

ε̂
(n)
k+1.

Thus, for each 0 ≤ k ≤ n− 1,

ε
(n)
k = − z2α2

G
(n)
k (z)

− hk+1z1

G
(n)
k (z)Ĝ

(n)
k+1(ẑ)

(βk+1 + α1 + βk+1α1)−
hk+1z1

G
(n)
k (z)G

(n)
k+1(z)

ε̂
(n)
k+1. (11)
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Similarly, for relative errors ε̂
(n)
k , 0 ≤ k ≤ n− 1, one obtains

ε̂
(n)
k = − ẑ2α̂2

Ĝ
(n)
k (z)

− ĥk+1ẑ1

Ĝ
(n)
k (ẑ)G

(n)
k+1(z)

(β̂k+1 + α̂1 + β̂k+1α̂1)−
ĥk+1ẑ1

Ĝ
(n)
k (ẑ)Ĝ

(n)
k+1(ẑ)

ε
(n)
k+1. (12)

Combining (11) and (12) with

g
(n)
k (z) = − hkz1

G
(n)
k−1(z)G

(n)
k (z)

, ĝ
(n)
k (ẑ) = − ĥkẑ1

Ĝ
(n)
k−1(ẑ)Ĝ

(n)
k (ẑ)

, 1 ≤ k ≤ n− 1, (13)

one easily obtains the relation

ε
(n)
0 =

n∑
k−1

(−1)k

G̃
(n)
k−1

(
z2,kα2,k +

h̃kz1,k(β̃k + α1,k + β̃kα1,k)

G̃
(n)
k

)
k−1∏
r=1

g̃(n)r , (14)

where, for p = 1, 2, zp,k =

{
ẑp, if k even,
zp, if k odd,

αp,k =

{
α̂p, if k even,
αp, if k odd,

and

h̃k =

{
ĥk, if k even,
hk, if k odd,

g̃
(n)
k =

{
g
(n)
k (z), if k even,
ĝ
(n)
k (ẑ), if k odd,

G̃
(n)
k =

{
G

(n)
k (z), if k even,

Ĝ
(n)
k (ẑ), if k odd.

For convenience, we set εn = ε
(n)
0 . Now we are ready to prove our main result.

Theorem 1. Let there exist a constant α, 0 < α < 1, such that

|α1| ≤ α, |α2| ≤ α, and |βk| ≤ α for all k ≥ 1, (15)

where α1, α2, and βk, k ≥ 1, are relative errors of z1, z2, and hk, k ≥ 1, respectively, which
are defined in (8) for all n ≥ 1. Then:
(A) The set

Hh,l =
{
z ∈ C2 : |z1| < l(1− l)/(2h), |z2| < (1− l)/2

}
, (16)

where

h = max
k∈N

{|hk|, |ĥk|}, l ∈ (0, 1/3) ∪ (1/3, 1), (17)

forms the numerical stability set of the branched continued fraction (2).
(B) If εn denotes the relative errors of nth approximant of (2), then, for n ≥ 1,

|εn| ≤
4α

(1 + l + |3l − 1|)(1− α)

(
1− l

2
+

2l(1− l)

1 + l + |3l − 1|

(
2 +

α

1− α

))
1− ηn

1− η
, (18)

where

η =

{
2l/(1− l), if 1 < l < 1/3,

(1− l)/(2l), if 1/3 < l < 1.
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Remark 1. It follows from [15, Theorem 2] that if a and c are complex constants such that
|hk|+Re(hk) ≤ pq(1− q) for all k ≥ 1,

where hk, k ≥ 1, are defined by (3), c ̸∈ {0,−1,−2, . . .}, p is a positive number, 0 < q < 1,
then the branched continued fraction (2) converges uniformly on every compact subset of
the domain (16).

Proof of Theorem 1. We consider the periodic continued fraction

(1 + l)/2− l(1− l)/2

(1 + l)/2− l(1− l)/2

(1 + l)/2− l(1− l)/2

(1 + l)/2− ...

, (19)

which is equivalent to

(1 + l)/2− l(1− l)/(1 + l)

1− 2l(1− l)/(1 + l)2

1− 2l(1− l)/(1 + l)2

1− ...

, (20)

since (1 + l)/2 ̸= 0 (see, [26, Section 2.3]).
It is easy to show that −1

4
< −2l(1−l)

(1+l)2
, i.e. the elements of (20) satisfy Theorem 3.2 in

[26]. According to this theorem, the continued fraction (20) converges, and its value is

f ∗ =
1 + l

2

(
1−

1− 2
√

1/4− 2l(1− l)/(1 + l)2

2

)
=

=
1 + l

2

(
1− 1 + l − |1− 3l|

2(1 + l)

)
=

1 + l + |1− 3l|
4

.

The continued fraction (19), as equivalent to (20), also converges to the value f ∗. In addition,
it is easy to show that the approximants

f ∗
n = (1 + l)/2− l(1− l)/2

(1 + l)/2− l(1− l)/2

(1 + l)/2− ...− l(1− l)/2

(1 + l)/2

, n ≥ 1,

forms a monotonically descending sequence.
Let n be an arbitrary fixed natural number. Let us prove that

|G(n)
k (z)| > f ∗

n−k, 0 ≤ k ≤ n− 1,

where G
(n)
k (z), 0 ≤ k ≤ n− 1, are defined by (6)–(7).

If k = n− 1, we have

|G(n)
n−1(z)| ≥ 1− |z2| − |hn||z1| >

1 + l

2
− l(1− l)

2
> (1 + l)/2− l(1− l)/2

(1 + l)/2
= f ∗

1 .

Assuming that the inequality (20) is true if k = s+ 1 ≤ n− 1. Then, for k = s from (7) we
obtain
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|G(n)
s (z)| ≥ 1− |z2| −

|hs+1||z1|
|G(n)

s+1(z)|
> (1 + l)/2− l(1− l)/2

f ∗
n−s−1

= f ∗
n−s.

Since f ∗
n > f ∗ for all n ≥ 1, then |G(n)

k (z)| > f ∗ for each 0 ≤ k ≤ n − 1. Considering
z1 ̸= 0, let us estimate the values g

(n)
k (z), 1 ≤ k ≤ n− 1, which are defined in (13).

For any k, 1 ≤ k ≤ n− 1, one obtains

|g(n)k (z)| =

∣∣∣∣∣ hkz1

G
(n)
k+1(z)G

(n)
k (z)

∣∣∣∣∣ =
∣∣∣∣∣ hkz1/G

(n)
k (z)

1− z2 − hkz1/G
(n)
k (z)

∣∣∣∣∣ = 1∣∣∣∣1− z2
hkz1

G
(n)
k (z)− 1

∣∣∣∣ ≤

≤ 1

1− |z2|
|hk||z1|

|G(n)
k (z)| − 1

<
1

(1 + l)(1 + l + |1− 3l|)
4l(l − 1)

− 1

=


2l

1− l
, if 1 < l <

1

3
,

1− l

2l
, if

1

3
< l < 1.

Now since ẑ = (ẑ1, ẑ2) ∈ Ωh,l, we have

|Ĝ(n)
k (ẑ)| > f ∗

n−k for each 0 ≤ k ≤ n− 1, (21)

and

ĝ
(n)
k (ẑ) < η for each 1 ≤ k ≤ n− 1, (22)

where Ĝ
(n)
k (ẑ), 0 ≤ k ≤ n− 1, and ĝ

(n)
k (ẑ), 1 ≤ k ≤ n− 1, are defined in (9)–(10) and (13),

respectively. Further, from the conditions of this theorem it follows

|z1,k| <
l(1− l)

2h
, |z2,k| <

1− l

2
, |h̃k| ≤ h for each 1 ≤ k ≤ n.

Thus, from (14) we have

|εn| ≤
n∑

k−1

1

|G̃(n)
k−1|

(
|z2,k||α2,k|+

|h̃k||z1,k|(|β̃k|+ |α1,k|+ |β̃k||α1,k|)
|G̃(n)

k |

)
k−1∏
r=1

|g̃(n)r |.

Using (21)–(22), we get

|εn| ≤
4α

(1 + l + |3l − 1|)(1− α)

(
1− l

2
+

2l(1− l)

1 + l + |3l − 1|

(
2 +

α

1− α

)) n∑
k=1

ηk−1,

which is equal to (18), since
∑n

k=1 η
k−1 = 1−ηn

1−η
.

Finally, it follows from (18) that there exists a constant C such that |εn| ≤ αC/(1− α)
for all n ≥ 1. It is easy to show that, if

|α1| ≤ α <
ε

ε+ C
, |α2| ≤ α <

ε

ε+ C
,

and |βk| ≤ α < ε/(ε+ C) for all k ≥ 1, where ε is an arbitrary positive constant, then
|εn| < ε for all n ≥ 1. This fact proves that the conditions from Definition 1 are fulfilled.

From Theorem 1 we have the following.
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Corollary 1. Let there exist a constant α, 0 < α < 1, satisfying (15), where α1, α2, and
βk, k ≥ 1, are relative errors of z1, z2, and hk, k ≥ 1, respectively, of the branched continued
fraction

1

1− z2 −
h1z1

1− z2 −
h2z1

1− ...

, (23)

where h1 = 2/c, hk =
k(2c+ k − 3)

(c+ k − 2)(c+ k − 1)
for all k ≥ 2. Then:

(A) The set (16), where h and l are defined in (17), forms the numerical stability set of (23).

(B) If εn denotes the relative errors of the nth approximant of the branched continued
fraction (23), then estimate (18) holds for all n ≥ 1.

Remark 2. Results similar to Theorem 1 can also be obtained for the other two expansions
in (4) and (5). In the general case, the problem of studying the numerical stability set of all
three expansions remains open.

3. Numerical experiments. To illustrate the numerical stability of the backward recur-
rence algorithm, we describe the numerical examples taken from the branched continued
fraction representation of the function (see [4])

H4(1, b; 1, b; z) =
√

(1− z2)2 − 4z1 =
1

1− z2 −
2z1

1− z2 −
z1

1− z2 −
z1

1− z2 − ...

. (24)

We considered the values of the nth approximants fn(z), 1 ≤ n ≤ 100, correctly rounded
to 28 decimal digits for the points (0.125, 0.25) and (0.0625,−0.25), respectively. We also
considered an approximation to each fn(z) obtained by the backward recurrence algorithm,
correctly rounded to 14 decimal digits. We take the values f̂n(0.125, 0.25) correctly rounded
to 14 decimal places for all 1 ≤ n ≤ 100.

Further, calculations of fn(0.125, 0.25) and f̂n(0.125, 0.25), for 55 ≤ n ≤ 96, showed that
|f̂n(0.125, 0.25)− fn(0.125, 0.25)|/|fn(0.125, 0.25)| decreases and for 97 ≤ n ≤ 100 are equal
zero, as well as for n = 1, 2. The relative rounding error at the point (0.0625,−0.25) does
not decrease or increase for 1 ≤ n ≤ 100. In the case of the backward recurrence algorithm,
f̂n(0.0625,−0.25) remains correctly rounded to 14 decimal places for all 1 ≤ n ≤ 100. Finally,
from Corollary 1, one can obtain rigorous bounds for the relative rounding error |εn| for each
n ≥ 1, which are entirely consistent with those found numerically in these examples.

Our calculations were performed using Maple software 2022.2 for Windows.

4. Conclusions. This paper concerns the establishment of the numerical stability sets of
the branched continued fraction in the domains of its convergence. An estimate of the relati-
ve rounding error, produced by the backward recurrence algorithm in calculating an nth
approximant of the branched continued fraction expansion of Horn’s hypergeometric functi-
on H4, is established. It has provided to investigate the numerical stability of the bi-disc.
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The considered numerical experiments are entirely consistent with theoretical calculations.
Both of them, in particular, show that the stability of the backward recurrence algorithm
depends not only on the calculation value of the elements of the branched continued fraction
but also on the domain of convergence. Further research is to study wider sets of numerical
stability.
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